Implementación de un modelo predictivo mediante la metodología de machine learning para la localización de pozos inyectores de agua en un yacimiento heterogéneo
Date
2022-02-03
Journal Title
Journal ISSN
Volume Title
Publisher
Fundación Universidad de América
Abstract
Los yacimientos heterogéneos son comunes en el mundo siendo una distribución espacial no uniforme y no lineal de las propiedades de las rocas tales como porosidad, permeabilidad y saturación de petróleo, gas y agua. La industria del petróleo ofrece opciones limitadas para predecir ubicaciones efectivas para pozos inyectores de agua en un yacimiento heterogéneo. El país líder en el uso de inteligencia artificial es China y se está implementando en diferentes sectores de la vida diaria como la medicina y la vigilancia entre otros.
Description
Heterogeneous reservoirs are common in the world being a non-uniform and non-linear spatial distribution of rock properties such as porosity, permeability and oil, gas and water saturation. The petroleum industry offers limited options for predicting effective locations for water injection wells in a heterogeneous reservoir. The leading country in the use of artificial intelligence is China and it is being implemented in different sectors of daily life such as medicine and surveillance among others.
Keywords
Aprendizaje autónomo, Inyección de agua, Yacimiento heterogeneo, Autonomous Learning, Water injection, Heterogeneous reservoir
Citation
APA 7th - Granobles Urrutia, S. et al. (2022) Implementación de un modelo predictivo mediante la metodología de machine learning para la localización de pozos inyectores de agua en un yacimiento heterogéneo. [Artículo de grado, Fundación Universidad de América] Repositorio Institucional Lumieres. https://hdl.handle.net/20.500.11839/9133