SIMULACIÓN Y MODELAMIENTO DE LA PRODUCCIÓN SECUENCIAL DE BIOGÁS E HIDRÓGENO A PARTIR DE LA PULPA DE CAFÉ, POR MEDIO DE LA DIGESTIÓN ANAEROBIA UTILIZANDO HERRAMIENTAS COMPUTACIONALES

> LAURA JIMENA CAMARGO VEGA CAMILA COBOS MOLANO

Proyecto Integral de Grado para optar al título de INGENIERO QUÍMICO

Director CÉSAR AUGUSTO SÁNCHEZ CORREA PhD. M.Sc Ingeniero Químico

Codirector JAIME EDUARDO ARTURO CALVACHE M. Sc. Ingeniero Químico

FUNDACIÓN UNIVERSIDAD DE AMÉRICA FACULTAD DE INGENIEÍAS PROGRAMA DE INGENIERÍA QUÍMICA 2023

# NOTA DE ACEPTACIÓN

\_\_\_\_

\_\_\_\_

Ing.

Ing.

Bogotá D.C, febrero de 2023

## DIRECTIVOS DE LA UNIVERSIDAD

Presidente de la Universidad y Rector de Claustro

# Dr. MARIO POSADA GARCÍA-PEÑA

Consejero Institucional

# Dr. LUIS JAIME GARCÍA-PEÑA

Vicerrectora Académica y de investigaciones

# Dra. ALEXANDRA MEJÍA GUZMÁN

Vicerrector Administrativo y Financiero

# Dr. RICARDO ALFONSO PEÑARANDA CASTRO

Secretario General

# Dr. JOSÉ LUIS MACÍAS RODRÍGUEZ

Decano de Facultad de Ingenierías

# Dra. NALINY PATRICIA GUERRA PRIETO

Director del Departamento de Ingeniería Química

# Ing. NUBIA LILIANA BECERRA

Las directivas de la Universidad de América, los jurados calificadores y el cuerpo docente no son responsables por los criterios e ideas expuestas en el presente documento. Estos corresponden únicamente a los autores.

# TABLA DE CONTENIDO

|                                                    |          |                                        | Pág. |
|----------------------------------------------------|----------|----------------------------------------|------|
| INT                                                | RODUC    | CIÓN                                   | 15   |
| 1.                                                 | GENER    | ALIDADES                               | 18   |
| 1.1                                                | Biomas   | a                                      | 18   |
| 1.20                                               | Café     |                                        | 18   |
| 1.30                                               | Context  | o económico del café en Colombia       | 19   |
| 1.4                                                | Estructu | ura del café                           | 19   |
| 1.5 Beneficiado húmedo del café                    |          | 20                                     |      |
| 1.6                                                | Subpro   | ductos del beneficiado húmedo del café | 21   |
|                                                    | 1.6.1    | Mucílago de café                       | 22   |
|                                                    | 1.6.2    | Cisco de café                          | 23   |
|                                                    | 1.6.3    | Borra de café                          | 24   |
|                                                    | 1.6.4    | Pulpa de café                          | 25   |
|                                                    | 1.6.5    | Beneficios de la pulpa de café         | 26   |
|                                                    | 1.6.6    | Usos de la pulpa de café               | 27   |
| 2                                                  | DIGES    | ΓΙÓΝ ANAEROBIA                         | 28   |
| 2.1 Tecnologías de aprovechamiento para la biomasa |          | 28                                     |      |
|                                                    | 2.1.1    | Digestión aerobía                      | 28   |
|                                                    | 2.1.2    | Fermentación aerobía                   | 29   |
|                                                    | 2.1.3    | Digestión anaerobía                    | 30   |
|                                                    | 2.1.4    | Etapas de la digestión anaerobía       | 32   |
|                                                    | 2.1.5    | Microorganismos                        | 33   |
|                                                    | 2.1.6    | Ventajas de la digestión anaerobía     | 34   |
| 2.2                                                | Biogás   |                                        | 35   |
|                                                    | 2.1.1    | Potencial energético del Biogás        | 35   |
| 2.21                                               | Hidróge  | no industrial                          | 35   |
|                                                    | 2.2.1    | Producción de hidrógeno industrial     | 36   |

| 3   | MODEL  | AMIENTO MATEMÁTICO                                                | 38  |
|-----|--------|-------------------------------------------------------------------|-----|
| 3.1 | Paráme | tros e inhibiciones                                               | 39  |
|     | 3.1.1  | Temperatura                                                       | 38  |
|     | 3.1.2  | рН                                                                | 38  |
|     | 3.1.3  | Amonio (NH4+) y amoniaco (NH3)                                    | 39  |
|     | 3.1.4  | Agitación                                                         | 39  |
|     | 3.1.5  | Nutrientes (relación C/N)                                         | 39  |
|     | 3.1.6  | Presión                                                           | 40  |
|     | 3.1.7  | Luz                                                               | 40  |
|     | 3.1.8  | Oxígeno                                                           | 40  |
|     | 3.1.9  | Compuestos de azufre                                              | 40  |
|     | 3.1.10 | Ácidos orgánicos (ácidos grasos y aminoácidos)                    | 41  |
|     | 3.1.11 | Nitrato (NO3)                                                     | 41  |
|     | 3.1.12 | Porcentaje de agua                                                | 41  |
|     | 3.1.13 | Materia seca                                                      | 42  |
|     | 3.2.1  | Modelo termodinámico predictivo para la fase líquida de la mezcla | 42  |
|     | 3.2.2  | Modelo termodinámico predictivo para la fase vapor                | 45  |
|     | 3.2.3  | Modelo NRTL - HOC                                                 | 50  |
|     | 3.2.4  | Validación del modelo termodinámico                               | 50  |
| 4   | DISEÑO | O CONCEPTUAL                                                      | 103 |
| 4.1 | Diseño | conceptual                                                        | 104 |
|     | 4.1.2  | Química verde                                                     | 104 |
|     | 4.1.3  | Reacciones de la digestión anaerobia                              | 105 |
|     | 4.1.4  | Criterios de la materia prima                                     | 108 |
|     | 4.1.5  | Tipo de procesos (Continuo vs discontinuo)                        | 109 |
|     | 4.1.6  | Operaciones unitarias                                             | 110 |

|                 | 4.1.5   | Reactores                                             | 111 |
|-----------------|---------|-------------------------------------------------------|-----|
|                 | 4.2.1   | Ingreso de los componentes involucrados es el proceso | 117 |
|                 | 4.2.2   | Especificación de pseudocomponentes                   | 119 |
|                 | 4.2.3   | Construcción del Flowsheet                            | 121 |
| 5. CONCLUSIONES |         | LUSIONES                                              | 130 |
| BIE             | BLIOGR  | AFÍA                                                  | 141 |
| GL              | .OSARIO | 0                                                     | 147 |
| AN              | IEXOS   |                                                       | 148 |

## LISTA DE FIGURAS

| F                                                                              | ۶ág. |
|--------------------------------------------------------------------------------|------|
| Figura 1/ Estructura del café                                                  | 19   |
| Figura 2/ Beneficiado húmedo del café                                          | 20   |
| Figura 3/ Mucílago de Café                                                     | 22   |
| Figura 4/ Cisco de Café                                                        | 22   |
| Figura 5/ Borra de Café                                                        | 23   |
| Figura 6 Digestión Anaerobia                                                   | 28   |
| Figura 7 Fermentación aerobia                                                  | 29   |
| Figura 8 Proceso de digestión anaerobia en dos etapas                          | 30   |
| Figura 9 Producción de hidrógeno                                               | 36   |
| Figura 10 Los primeros pasos para seleccionar métodos de propiedades física    | 42   |
| Figura 11 Procedimiento para componentes polares y no electrolíticos           | 43   |
| Figura 12 Opciones para cálculos de fase de vapor con modelos de coeficiente   | ÷    |
| de actividad                                                                   | 44   |
| Figura 13 Ruta de selección de la figura 5                                     | 45   |
| Figura 14 Ruta de selección de la figura 6                                     | 46   |
| Figura 15/ Ruta de selección para modelo de la fase de vapor                   | 47   |
| Figura 16 Diagrama T-xy Agua / Glicerol. Fuente: Chen, D. H. T.; Thompson, A   | .=   |
| R. J. Chem. Eng. Data, 1970, 15, 471 Equilibrios isobáricos vapor- líquido     | )    |
| para los sistemas Glicerol-agua y glicerol-agua saturada con cloruro de        | 3    |
| sodio.                                                                         | 49   |
| Figura 17 Diagrama T-xy- Agua/Amoniaco. Fuente: Clifford, I. L.; Hunter, E. J  | •    |
| Phys. Chem., 1933, 37, 101 El sistema de amoníaco- agua a temperaturas de      | 3    |
| hasta 150 grados y a presiones de hasta 20 atmósferas                          | 51   |
| Figura 18 Diagrama T-xy Agua / Dióxido de carbono. Fuente: Todheide, K.        | ;    |
| Franck, E. U. Z. Phys. Chem., 1963, 37, 387-401 Rango bifásico y la curva      | 3    |
| crítica en el sistema dióxido de carbono- agua hasta 3500 bar.                 | 53   |
| Figura 19 Diagrama T-xy Agua / Ácido acético. Fuente: Fu, H.; Chen, G.; Han, S | -    |
| Huaxue Gongcheng, 1986, No. 6, 56-61                                           | 55   |

| Figura 20 Diagrama T-xy Agua / Ácido propiónico. Fuente: AmerAmezaga, S. An.    |    |
|---------------------------------------------------------------------------------|----|
| Quim., 1975, 71, 127 Equilibrio vapor- líquido a 760mm de sistemas binarios     |    |
| formados por ácido propiónico con agua y alcoholes n- amílico, isoamílico,      |    |
| sec- amílico, t- amílico                                                        | 57 |
| Figura 21 Diagrama T-xy Ácido acético/ Ácido propiónico. Fuente: Malijevska,    |    |
| I.; Sysova, M.; Vlckova, D. Collect. Czech. Chem. Commun., 1986, 51, 194        |    |
| Equilibrio vapor- líquido en sistemas fuertemente asociados, los sistemas       |    |
| ácido acético- ácido propiónico y ácido                                         | 59 |
| Figura 22 Diagrama T-xy Ácido propiónico/ Ácido butírico. Fuente:               |    |
| Tatsievskaya, G. I.; Kushner, T. M. Sb. Nauch. Tr., Ivanov. Energ. Inst., 1972, |    |
| No. 14, 256-7 Equilibrio líquido- vapor en los sistemas ácido propiónico +      |    |
| ácido isobutírico y ácido butírico + ác                                         | 61 |
| Figura 23 Diagrama T-xy Agua/ Etanol. Fuente: Stabnikov, V. M.; Metyushev, B.   |    |
| D.; Protsyuk, T. B.; Yushchenko, N. M. Pishch. Prom-st. (Kiev), 1972, No. 15,   |    |
| 49-56 Equilibrio en el sistema alcohol etílico + agua a presión atmosférica.    | 63 |
| Figura 24 Diagrama de proceso básico                                            | 68 |
| Figura 25 Diagrama asociado a las ecuaciones del BR1                            | 72 |
| Figura 26 Diagrama asociado ecuaciones del BR2                                  | 79 |
| Figura 27 Concentración de bacterias acetogénicos en el reactor BR1 Vs Tasa     |    |
| de Dilución D1, a diferentes concentraciones de celulosa inicial                | 85 |
| Figura 28 Concentración de celulosa en el reactor BR1 Vs Tasa de Dilución D1,   |    |
| a diferentes concentraciones de celulosa inicial                                | 85 |
| Figura 29 Tasa de flujo de Hidrógeno producida en el reactor BR1 Vs Tasa de     |    |
| Dilución D1, a diferentes concentraciones de celulosa inicial                   | 86 |
| Figura 30 Tasa de flujo de Hidrógeno producida en el reactor BR1 Vs Tasa de     |    |
| Dilución D1 con una concentración de 17g/L de celulosa inicial equivalente      |    |
| a la que contiene la pulpa de café                                              | 87 |
| Figura 31 Concentración de bacterias degradadoras de ácido propiónico en el     |    |
| reactor BR2 Vs Tasa de Dilución D2, con diferentes concentraciones              |    |
| iniciales                                                                       | 90 |

| Figura 32 Concentración de bacterias metanogénicas Vs Tasa de Dilución | D2,  |
|------------------------------------------------------------------------|------|
| con diferentes concentraciones iniciales                               | 93   |
| Figura 33 Concentración de ácido acético Vs Tasa de Dilución D2,       | con  |
| diferentes concentraciones                                             | 96   |
| Figura 34 Tasa de flujo de metano producida en el reactor BR2 Vs Tasa  | a de |
| Dilución D2 con una concentración de 17g/L de celulosa inicial equival | ente |
| a la que contiene la pulpa de café                                     | 99   |
| Figura 35 Tasa de flujo de metano producida en el reactor BR1 Vs Tasa  | a de |
| Dilución D1 con una concentración de 17g/L de celulosa inicial equival | ente |
| a la que contiene la pulpa de café                                     | 100  |
| Figura 36 Diagrama de bloques con gasómetros                           | 109  |
| Figura 37 Diagrama de proceso con válvulas                             | 112  |
| Figura 38 Diagrama de proceso con posibles métodos de separación       | 113  |
| Figura 39 Caracterización de las corrientes de alimentación al MIXER   | 120  |
| Figura 40 Mezclador industrial                                         | 121  |
| Figura 41 Reactor estequiométrico BR1                                  | 122  |
| Figura 42 Reactor de mezcla completa BR2                               | 123  |
| Figura 43 Corriente entrada y salida BR2                               | 123  |
| Figura 44 Condiciones de operación BR2                                 | 123  |

# LISTA DE TABLAS

| Tabla 1. Subproductos del proceso del beneficiado húmedo del café en cada      |    |
|--------------------------------------------------------------------------------|----|
| proceso                                                                        | 21 |
| Tabla 2 Composición Café                                                       | 24 |
| Tabla 3 Cálculo de error para el ELV – Agua/Glicerol                           | 50 |
| Tabla 4 Datos experimentales y teóricos para las curvas de equilibrio entre la |    |
| mezcla agua/amoniaco                                                           | 52 |
| Tabla 5 Cálculo de error para el ELV – Agua/Dióxido de carbono                 | 54 |
| Tabla 6 Cálculo de error para el ELV – Agua/Ácido acético                      | 56 |
| Tabla 7 Cálculo de error para el ELV – Agua/Ácido propiónico                   | 58 |
| Tabla 8 Cálculo de error para el ELV – Agua acético/Ácido propiónico           | 60 |
| Tabla 9 Cálculo de error para el ELV – Agua propiónico /Ácido butírico         | 62 |
| Tabla 10 Cálculo de error para el ELV – Agua /Etanol. Parte 1                  | 64 |
| Tabla 11Cálculo de error para el ELV – Agua /Etanol. Parte 2                   | 65 |
| Tabla 12 Variables BR1 Parte 1                                                 | 73 |
| Tabla 13 Variables BR1 Parte 2                                                 | 74 |
| Tabla 14 Variables de las ecuaciones del BR2- Parte 1                          | 80 |
| Tabla 15 Concentración de bacterias degradadoras de ácido propiónico en el     |    |
| reactor BR2 Vs Tasa de Dilución D2, con concentración inicial de 15L/h         | 88 |
| Tabla 16 Concentración de bacterias degradadoras de ácido propiónico en el     |    |
| reactor BR2 Vs Tasa de Dilución D2, con concentración inicial de 25L/h         | 89 |
| Tabla 17 Concentración de bacterias degradadoras de ácido propiónico en el     |    |
| reactor BR2 Vs Tasa de Dilución D2, con concentración inicial de 35L/h         | 89 |
| Tabla 18 Concentración de bacterias metanogénicas Vs Tasa de Dilución D2,      | I  |
| con concentración inicial de 15L /h                                            | 91 |
| Tabla 19 Concentración de bacterias metanogénicas Vs Tasa de Dilución D2,      | I  |
| con concentración inicial de 25L /h                                            | 92 |

| Tabla 20 Concentración de bacterias metanogénicas Vs Tasa de Dilución D2 | )<br>-,    |
|--------------------------------------------------------------------------|------------|
| con concentración inicial de 35L /h                                      | 92         |
| Tabla 21 Concentración de bacterias metanogénicas Vs Tasa de Dilución D2 | )<br>-,    |
| con concentración inicial de 15L /h                                      | 94         |
| Tabla 22 Concentración de bacterias metanogénicas Vs Tasa de Dilución D2 | ,<br>-,    |
| con concentración inicial de 25L /h                                      | 94         |
| Tabla 23 Concentración de bacterias metanogénicas Vs Tasa de Dilución D2 | <u>)</u> , |
| con concentración inicial de 35L /h                                      | 95         |
| Tabla 24 Methane flow rate = Caudal de metano Vs Tasa de Dilución D2, co | n          |
| concentración inicial de 15L /h                                          | 96         |
| Tabla 25 Concentración de bacterias metanogénicas Vs Tasa de Dilución D2 | )<br>- ,   |
| con concentración inicial de 18L /h                                      | 97         |
| Tabla 26 Concentración de bacterias metanogénicas Vs Tasa de Dilución D2 | ,<br>-,    |
| con concentración inicial de 25L /h                                      | 98         |
| Tabla 27 Concentración de bacterias metanogénicas Vs Tasa de Dilución D2 | ,<br>-,    |
| con concentración inicial de 35L /h                                      | 98         |
| Tabla 28/Reacciones de las etapas de hidrólisis y acidogénesis.          | 103        |
| Tabla 29/Reacciones Aminoácidos                                          | 105        |
| Tabla 30/• ¡Error! Marcador no definido.                                 |            |
| Tabla 31/ Parámetros de muestreo de biomasa                              | 107        |
| Tabla 32/ Componentes ingresados a la simulación                         | 116        |
| Tabla 33/Parámetros de interacción binaria por el modelo NRTL-HOC        | 119        |
| Tabla 34/Parámetros de Temperatura y presión                             | 122        |
| Tabla 35/ Resultados                                                     | 124        |
| Tabla 36/Flujo de calor reactores                                        | 125        |

#### RESUMEN

La digestión anaerobia es un proceso biológico que se caracteriza por tener cuatro (4) etapas en el cual la materia orgánica es descompuesta por acción de microorganismos en ausencia de oxígeno, produciendo biogás, el cual está compuesto principalmente por metano, dióxido de carbono (CO2) y trazas de hidrógeno. La DA comprende 4 etapas: hidrólisis, acidogénesis, acetogénesis y la metanogénesis.

Este trabajo de grado tiene como finalidad realizar la simulación y modelamiento de la producción de Hidrógeno y biogás utilizando la pulpa de café un subproducto del beneficiado húmedo del café por medio de la digestión anaerobia. Para dicho objetivo se desarrollan 4 capítulos que hacen referencia a las generalidades del café, de la digestión anaerobia, al modelamiento matemático y por ultimo a la modelación y diseño del proceso.

En el primer capítulo se encuentra información sobre el café, su origen, algunas características de este, su composición, su importancia y el impacto que posee en Colombia, su procesamiento, sus residuos o subproductos y el uso que se le puede dar a estos.

En el segundo capítulo se enfatiza en las tecnologías que se utilizan para el aprovechamiento de residuos agroindustriales, una vez seleccionada de tipo de tecnología analizando la biomasa a utilizar que en este caso es la pulpa de café, se habla más detalladamente de esta, de los microorganismos que necesita para desarrollarse, de sus etapas, de sus productos y del uso y potencial que poseen.

En el tercer capítulo se desarrolla el modelo matemático del proceso, en esta sección inicialmente se habla de los parámetros importantes que se deben tener en cuenta en la digestión anaerobia, incluyendo las inhibiciones, posteriormente se habla del modelo termodinámico que describe la fase gaseosa y liquida de las sustancias a utilizar en el proceso. Por otro lado, se describen los balances de masa y la cinética a utilizar en el proceso, la cual se desarrolla en programa Octave, donde se establece la importancia de la relación de proporción entre los volúmenes de los biorreactores. Para terminar esta

sección se grafican los resultados comparados con los de un artículo base para este proyecto.

Por último, en el cuarto capítulo se describe el diseño conceptual que tendría el proceso, inicialmente se habla de las reacciones que se dan en el proceso, de las metas y niveles de producción para establecer el tipo de proceso a utilizar, también se enfatiza en las operaciones unitarias del proceso, los equipos a utilizar, sus purgas y sistemas de separación. En esta sección finalmente se describe como simular el proceso unificando todo lo anteriormente descrito.

Palabras clave: Digestión anaerobia, pulpa de café, hidrógeno, biogás, simulación.

### INTRODUCCIÓN

En Colombia, la producción de café data desde 1835 cuando se comenzaron a exportar los primeros sacos, posteriormente en 1870 la exportación pasó de 60 mil a 600 mil sacos de 60 kg, hoy en día según el último informe de gestión ejecutado por la asociación nacional de cafeteros, Colombia produjo 13.9 millones de sacos en el 2020 y tuvo una caída de 0.9 millones de sacos respecto al 2019 por el confinamiento ocurrido [1]. Colombia contaba con más de 877 mil hectáreas (Ha) en 2018, dedicadas a la plantación de café con una productividad de 18,8 sacos de 60 kg de café por hectárea, cifra promedio entre 2010 y 2018 [2].

En el 2019 se registró una generación de residuos de café de 12.246.994 kg y en el 2020 de 11.339.809 kg de residuos del café [1]. En la industrialización del café se derivan varios residuos como la pulpa, el mucílago, agua producida y el pergamino o película plateada generado en la trilla de café, representando el 44%, 15%,17.2% y 4.3% del fruto fresco respectivamente. De este proceso se aprovecha aproximadamente un 5% del fruto en su preparación, y el 95% restante está representado en los residuos generados [5].

El manejo de residuos es uno de los pilares de la asociación nacional de cafeteros y de la agenda internacional de desarrollo sostenible, estos residuos normalmente se desechan de manera incorrecta en fosas, en otros casos quedan almacenados en centros de acopio, también algunos subproductos son vertidos en cuerpos de agua. La pulpa de café es el principal subproducto, el cual normalmente se almacena en una planta de procesamiento durante meses, en el transcurso de ese tiempo se producen emisiones de  $CH_4$  y  $N_2O$ , lo que contribuye a la huella de carbono colombiana [6], por otro lado, cuando la pulpa se descompone en el suelo se da una lixiviación de líquidos, lo que produce olores, propagación de vectores y por lo tanto riesgo sanitario. [7].

El mucílago es el segundo subproducto y normalmente es desechado de maneras similares a las de la pulpa. Estos datos dejan entrever el grave problema ambiental que genera la pulpa y los subproductos del café en los países productores, como lo es

Colombia, pero a su vez. Por esta razón se ha optado desde hace varios años por reutilizar estos subproductos como materia prima [9], y ha sido utilizado para la producción de biogás y bioetanol, también se ha estudiado la obtención de alcohol a partir de la pulpa de café por fermentación alcohólica.

Al igual que la pulpa de café, el mucílago también ha sido empleado para la producción de biogás y bioetanol. También se obtuvo en fuentes bibliográficas sobre métodos alternativos de la utilización del subproducto como materia prima en la producción de concentrados para las industrias porcícolas y ganaderas, en preparación de bebidas, vinagre, biogás, cafeína, pectinas, enzimas pépticas, proteínas y abonos [10].

Una de las formas más comunes para la producción de biogás es a través de biodigestores, sin embargo, esto representa un reto para el sector cafetero y para los gobiernos, ya que su implementación refleja inconvenientes en la relación costobeneficio, esto debido a que los gastos que se requieren en inversión tecnológica y mano de obra son considerablemente altos [11]. Sin embargo, debido a los elevados costos de los combustibles fósiles y su inestabilidad en el precio y dado que la energía obtenida de la pulpa del café proviene de recursos renovables es una alternativa a tener en cuenta para depurar, estudiarla, tecnificar e implementarla en la medida de lo posible [11]. En los últimos años, la producción de biogás ha sido identificada como un proceso sostenible para tratar y valorizar la biomasa residual en Colombia.

Actualmente se han incrementado el uso de la biotecnología: digestión anaerobia, que se constituye como un proceso biológico con cuatro etapas en el cual la materia orgánica es descompuesta por acción de microorganismos en ausencia de oxígeno ( $O_2$ ), produciendo biogás, que está compuesto principalmente por metano ( $CH_4$ ), dióxido de carbono ( $CO_2$ ) y trazas de hidrógeno ( $H_2$ ). Esta técnica permite la obtención secuencial de biogás e hidrógeno, de manera que se propone como alternativa de solución para mitigar el desperdicio de los subproductos a raíz del beneficiado húmedo del café.

## OBJETIVOS

## **Objetivo General**

Diseñar a nivel conceptual un proceso de digestión anaerobia para la producción de hidrógeno y biogás a partir de pulpa de café utilizando herramientas computacionales.

## **Objetivos Específicos**

- Establecer un modelo termodinámico que permita el desarrollo del proceso de la digestión anaerobia.
- Establecer el modelo cinético que permita una descripción de los cambios en composición de la pulpa de café por reacciones
- Realizar el diseño conceptual del proceso, en el cual se especifiquen cada una de las etapas que intervienen en la digestión anaerobia.
- Establecer las condiciones de operación que favorecen la producción secuencial de hidrógeno y biogás.

#### 1. GENERALIDADES

En el presente capítulo se realiza la descripción de las generalidades del café y la biomasa, se resalta la importancia y el impacto que tiene el café en un país como Colombia, un país cafetero, se realiza una descripción del café y su composición, además del principal proceso de obtención y los subproductos y residuos que se obtienen de el en el procesado.

#### 1.1 Biomasa

Biomasa se define como la fracción biodegradable de los productos y residuos de la agricultura, la forestación y sus industrias asociadas. El término también incluye la fracción orgánica de los desperdicios municipales e industriales. Dicha biomasa tiene carácter de energía renovable ya que su contenido energético procede, en última instancia, de la energía solar fijada por los vegetales en el proceso fotosintético. Esta materia orgánica es renovable cuando se produce a la misma velocidad de consumo, evitando la sobreexplotación de los recursos naturales [1].

#### 1.2 Café

El café es una fruta de la cual se extraen las semillas, se tuestan y se produce una de las bebidas más populares del mundo. El café es una planta *perenne tropical* perteneciente al género *Coffea* de la *familia Rubiaceae*. Aunque hoy en día se reconocen más de 103 especies son solo 2 las responsables del comercio mundial (*arábiga y canephora*) (1). La variedad arábica constituye más del 60% del café, que se comercializa en el mercado internacional, y está catalogada por los consumidores como el mejor café, por sus excepcionales características organolépticas (2).

Esto se debe a la gran variedad de compuestos químicos, los cuales son responsables de otorgar la calidad sensorial y los estímulos ocasionados al sistema nervioso. Por su parte, la especie *canephora* posee un mayor contenido de cafeína y además es

resistente a la roya (3). La producción mundial está dirigida en un 20% a *café Robusta* y el 80% restante corresponde a *café Arábica* (4).

## 1.3 Contexto económico del café en Colombia

Colombia produjo 13.9 millones de sacos de 60 kg (gracias a una productividad de 19.8 sacos/hectárea) en el 2020 y tuvo una caída de 0.9 millones de sacos respecto al 2019 por el confinamiento ocurrido [1]. En 2020 los caficultores recogieron una cosecha por valor de \$9 millones, gracias a la cotización buena del café en la bolsa, de \$603.174 pesos, y una prima de calidad promedio para el grano colombiano de \$266.666 pesos, que se tradujeron en un precio interno promedio de \$1.048.117 por carga de 125 kg de café. [1]

El sector del café genera retribuciones importantes económicas, primero genera cerca de 785 mil empleos lo que equivale al 26% del total del empleo agrícola convirtiéndose en uno de los sectores agropecuarios que provee más empleos en Colombia, por otro lado, según datos del Banco de la República informan que proporciona un efecto multiplicador de un incremento de 10% en el ingreso cafetero es de 43pb sobre el PIB nacional, en el departamento de Caldas con 38.758 caficultores y 87.127 hectáreas plantadas de café el producto representa el 59% del PIB agrícola del departamento. [2] Por otro lado, en la industrialización del café se derivan varios residuos como la pulpa, el mucílago, agua producida y el pergamino o película plateada generado en la trilla de café, representando el 44%, 15%, 17,2% y 4,3% del fruto fresco respectivamente. De este proceso se aprovecha aproximadamente un 5% del fruto en su preparación, y el 95% restante está representado en los residuos generados [5]. En el 2019 se registró una generación de residuos de café de 12.246.994 kg y en el 2020 de 11.339.809 kg de residuos del café [1].

## 1.4 Estructura del café

El fruto del café, más comúnmente conocido como la cereza del café, se divide en dos partes: Pericarpio: la cual a su vez está compuesta por tres capas externas de la fruta: exocarpio (piel externa), mesocarpio (mucílago y pulpa) y el endocarpio (pergamino). Semilla la cual a su vez consta de una película plateada, endospermo y un embrión [2]. La distribución de las partes se puede apreciar en la imagen 1.

### Figura 1.

Estructura del café



*Nota.* Descripción del contenido de la figura. Tomado de: Siegrist, H., Batstone, D. Free amomonia ang ph inhibition of acetotrophic methanogenesis at meso and thermophilic conditions. In: 9th World Congress Anaerobic Digestion 2001. Technologisch Instituut VZW, pp. 395–400, 2001.

### 1.5 Beneficiado húmedo del café

El proceso por medio del cual se somete al fruto del café se identifica como beneficiado húmedo del café, el cual se realiza por distintas etapas que tienen funciones específicas para lograr una transformación correcta del café extraído de la planta al café pergamino seco. Entre estas etapas se encuentra la recolección, recibo, primera clasificación, despulpado, segunda clasificación, fermentación, remoción del mucílago, lavado, tercera clasificación, secado, y almacenamiento y manejo productos secundarios [3]

### Figura 2.

Beneficiado húmedo del café



*Nota.* Descripción del contenido de la figura. Tomado de: Referencia. Tomado de: Puerta, G. I. (2000). Beneficie correctamente su café y conserve la calidad de la bebida. Centro Nacional de Investigaciones de Café (Cenicafé).

### 1.6 Subproductos del beneficiado húmedo del café

Durante la producción de café y en el proceso del beneficiado húmedo del café se pasa por varias etapas donde se producen diferentes subproductos que normalmente son desechados de manera incorrecta. Inicialmente, se realiza la recolección de los frutos, posteriormente despulpan la pulpa de grano por vía mecánica y el uso de agua, luego se remueve el mucílago mecánicamente, se realiza un lavado, un secado y por último se trilla para obtener el café listo para ser consumido.

## Tabla 1.

Subproductos del proceso del beneficiado húmedo del café en cada proceso

| Proceso            | Residuo obtenido | Perdida en gramos | Referencia |
|--------------------|------------------|-------------------|------------|
| Despulpado         | Pulpa            | 436               | [11]       |
| Desmucilaginado    | Mucílago         | 149               | [11]       |
| Secado             | Agua             | 171               | [11]       |
| Trilla             | Cisco            | 42                | [11]       |
| Preparación bebida | Borra            | 104               | [11]       |
| Pérdida total      |                  | 902               | [11]       |

*Nota.* Tomado de: Rodríguez, N., & Zambrano, D. A. (2013). Los subproductos del café: fuente de energía renovable. Centro Nacional de Investigaciones de Café (Cenicafé).

# 1.6.1 Mucílago de café

Este subproducto se genera en la etapa de desmucilaginado y en base húmeda representa el 14.85% del peso del fruto fresco, está compuesto principalmente por agua, azúcares y sustancias pépticas. Es utilizado para la producción de biogás, bioetanol y etanol [11].

## Mucílago de Café



*Nota:* Tomado de: Rodríguez, N., & Zambrano, D. A. (2013). *Los subproductos del café: fuente de energía renovable.* Centro Nacional de Investigaciones de Café (Cenicafé).

## 1.6.2 Cisco de café

Hace parto del endocarpio del fruto y está constituido por una mascarilla y una película plateada, este representa en peso el 4.2% del fruto seco, se produce en el proceso de la trilla del café. Normalmente se quema para producir vapor [11].

Cisco de Café



*Nota.* Tomado de: Rodríguez, N., & Zambrano, D. A. (2013). Los subproductos del café: fuente de energía renovable. Centro Nacional de Investigaciones de Café (Cenicafé)

### 1.6.3 Borra de café

Este residuo se genera en las fábricas que procesan el café soluble y corresponde a la fracción insoluble del grano tostado, aproximadamente representa el 10% del fruto seco. Es utilizado como combustible directo en calderas, para la producción de biogás, bioetanol, biodiesel, entre otros [11].

Cisco de Café



*Nota.* Tomado de: Rodríguez, N., & Zambrano, D. A. (2013). Los subproductos del café: fuente de energía renovable. Centro Nacional de Investigaciones de Café (Cenicafé).

#### 1.6.4 Pulpa de café

Es el primero producto que se obtiene del beneficiado por vía húmeda del procesamiento del fruto del café, representa aproximadamente el 43.58% del peso del fruto seco. El promedio de la producción de pulpa de café por año es de 2,25  $\frac{ton}{Ha*ano}$ , lo cual es una de las cifras más representativas de subproductos de toda la cadena de suministro [11], es el subproducto que mayor contaminación posee. Se caracteriza por tener una humedad alta, y 45,67% de azucares reductores, también contiene 2,262% de cafeína [42]. Ha sido utilizada como combustible directo porque posee un poder calorífico de 15,88  $\frac{Mj}{Kg}$  [11], también se ha utilizada para producir bioetanol y como abono a la tierra sin embargo esto produce un problema ambiental por sus altas cantidades de desecho

#### Tabla 2

### Composición Café

| g%   |                                                  |
|------|--------------------------------------------------|
| 81,8 |                                                  |
| 17,7 |                                                  |
| 0,23 |                                                  |
| 0,1  |                                                  |
| 0,17 |                                                  |
|      | <b>g%</b><br>81,8<br>17,7<br>0,23<br>0,1<br>0,17 |

*Nota.* Se presentan las composiciones del café. Tomado de: Rodríguez, N., & Zambrano, D. A. (2013). Los subproductos del café: fuente de energía renovable. Centro Nacional de Investigaciones de Café (Cenicafé).

#### 1.6.5 Beneficios de la pulpa de café

De acuerdo con lo mencionado previamente, es posible afirmar que la pulpa de café es el componente más representativo dentro de la composición del fruto del café. Sin embargo, no es única característica que lo posiciona como una promisoria fuente de aprovechamiento para la industria alimenticia y energética. Dentro de su contenido, es importante destacar la importante cantidad de proteínas, carbohidratos y minerales además de altos niveles de potasio, taninos, polifenoles y cafeína que la hace una materia orgánica de amplio potencial [11]. Gracias a los compuestos que hacen parte de la pulpa, ésta puede ser considerada como una materia prima para la obtención de diferentes tipos de sustancias utilizadas en prevención de enfermedades degenerativas [22] teniendo en cuenta que se ha establecido una relación entre el consumo de los polifenoles y la reducción de riesgos de padecer enfermedades crónicas, incluyendo enfermedades cardiovasculares y diabetes [15]

#### 1.6.6 Usos de la pulpa de café

• Fertilizantes: uno de los usos más frecuentes para los cuales es destinado este subproducto es en la producción de fertilizantes orgánicos, ya que no constituye un proceso complejo y representa una promisoria oportunidad principalmente para los caficultores, dado que les permite cumplir con los parámetros exigidos por las cooperativas en términos ambientales y económicos. Estos fertilizantes pueden obtenerse como subproducto de la digestión anaerobia por el elevado contenido orgánico generado por acción de las comunidades bacterianas.

• Alimento para ganado: la comida tradicional de los rumiantes corresponde al pasto, sin embargo, este carece de un elevado contenido de proteína, adicionalmente relentiza el sistema digestivo del animal [3]. De acuerdo a lo anteriormente expuesto, se ha implementado la pulpa de café como suplemento alimenticio del ganado puesto que contiene altos niveles de fibra, siendo suministrada en valores que varían entre el 20% y el 60% [43].

• **Producción de biocombustibles:** con base en la considerable cantidad de materia orgánica que integra la pulpa de café, se ha evaluado la posibilidad de diversificar la matriz energética, esto utilizando la celulosa y hemicelulosa como materia prima para la generación de biocombustibles. Sin embargo, no se dispone de suficiente información experimental con respecto a la estimación del potencial que tiene la pulpa de café para la producción de energía (biogás).

• Harina de pulpa de café: la industria alimentaria es uno de los focos con mayor potencial uso de la pulpa de café, por la fibra y minerales que contiene. La pulpa de café procesada se puede convertir en un polvo fino con textura similar a la harina, con altos niveles de fibra y proteína y sin la presencia de gluten en comparación con las otras harinas tradicionales [43].

# 2 DIGESTIÓN ANAEROBIA

En el presente capítulo de caracterizan las técnicas para el aprovechamiento de la biomasa, más específicamente la digestión anaerobia, la cual comprende las etapas, las variables de entrada y respuesta, los equipos y los microorganismos involucrados en el desarrollo del proceso de conversión biológica.

## 2.1 Tecnologías de aprovechamiento para la biomasa

La biomasa puede aprovecharse para producir energía térmica, eléctrica y mecánica. Para ello, se utilizan diversos métodos, que a grandes rasgos pueden diferenciarse en termoquímicos y bioquímicos. Entre los primeros destacan la combustión y la gasificación [4].

Entre los bioquímicos tiene especial relevancia la digestión anaeróbica, por su amplio uso comercial. La utilización de un método u otro depende de las características del combustible, de la demanda y de la naturaleza de su aplicación [4].

### 2.1.1 Digestión aerobia

Se trata de la descomposición biológica de la materia orgánica en presencia de oxígeno, consta principalmente de un sustrato que al hacer contacto con los microorganismos hace que aumente el crecimiento de estos, ya que existe una absorción y asimilación rápida de nutrientes.[22] Para realizar las funciones de síntesis de nueva masa protoplasmática, los microorganismos empiezan la etapa de oxidación por lo que su tasa de crecimiento disminuye a lo largo del tiempo, por lo que la demanda de oxígeno también disminuye. Cuando la materia orgánica es apenas suficiente para subsistir los microorganismos por medio de su metabolismo endógeno empiezan a autooxidarse, este proceso se puede observar en la figura 1. [57].

Se requiere de cierto grado de agitación para que este proceso sea eficaz y confiable y se obtienen principalmente productos finales inocuos y materia celular [58]. [22]

## Figura 6

Digestión aaerobia



*Nota.* Se presenta un diagrama de la metodología de la digestión aerobia.

# 2.1.2 Fermentación aerobia

Consiste en la degradación de materia orgánica en presencia de oxígeno por medio de bacterias, para producir principalmente dióxido de carbono, agua y otros componentes, como se observa en la figura 2. En este tipo de fermentación, se añade normalmente una solución rica en nutrientes, oxígeno, un antiespumante y se inoculan los microorganismos, las condiciones de operación pueden variar debido a la acumulación de productos de desecho y a la multiplicación de los microorganismos +

Fermentación aerobia



*Nota.* Se presenta un diagrama de la metodología de la fermentación aerobia.

### 2.1.3 Digestión anaerobia

La digestión anaerobia se define como una fermentación microbiana en ausencia de oxígeno, que da lugar a una mezcla de gases (principalmente metano y dióxido de carbono), conocida como "biogás" y a una suspensión acuosa o "lodo" que contiene los microorganismos responsables de la degradación sobre la materia orgánica. La materia

prima que normalmente se utiliza para ser sometida a este tratamiento es cualquier biomasa residual que contenga un alto contenido en humedad, tal es el caso de los restos de comida, restos de hojas y hierbas al limpiar un jardín o un huerto, residuos ganaderos, lodos de plantas depuradoras de aguas residuales urbanas y aguas residuales domésticas e industriales [17].

El proceso puede desarrollarse en una o varias etapas. Sin embargo, cuando se realiza en una sola etapa, el hidrógeno es consumido por los microorganismos metanogénicos (encargados de producir el biogás), de manera que, en un esquema consistente de dos tapas, es posible la recuperación y aprovechamiento del hidrógeno generado en las dos primeras etapas de la digestión anaerobia, tal como se ilustra en la figura 3.

## Figura 8

Proceso de digestión anaerobia en dos etapas



Nota. Se presenta un diagrama de la metodología de la digestión anaerobia por cada una de las etapas

### 2.1.4 Etapas de la digestión anaerobia

La digestión anaerobia se integra por 4 etapas fundamentalmente, las cuales de identifican como hidrólisis, acidogénesis, acetogénesis y metanogénesis. A continuación de describe cada una de las etapas y su influencia dentro del proceso.

2.1.4.a Hidrólisis. Se refiere al grupo de reacciones que describen la degradación de la materia orgánica compleja, constituida por carbohidratos complejos, proteínas y lípidos, los cuales se hidrolizan a monómeros solubles que pueden atravesar la membrana celular de las enzimas. La hidrólisis es la primera etapa para la degradación de sustratos orgánicos complejos, obteniendo como productos: aminoácidos disueltos, azúcares (glucosa), ácidos grasos de cadena larga y materia orgánica inerte. La etapa de hidrólisis se divide en hidrólisis biológica, química y física.

La hidrólisis biológica ocurre cuando las bacterias fermentativas excretan enzimas tales como la lipasa, proteasa y sacarosa, y atacan al sustrato. La hidrólisis química se debe normalmente a la acción de ácidos o bases débiles, que pueden ser añadidas al proceso para aumentar su tasa de reacción. En cuanto a la hidrólisis física, se puede dar por la desintegración mecánica de la materia orgánica, ultrasonido o tratamiento térmico [16].

2.1.4.b Acidogénesis. Es la fermentación de los azúcares disueltos, aminoácidos y ácidos grasos de cadena larga a ácidos grasos volátiles de cadena corta (ácido butírico, propiónico, fórmico, isobutírico, acético) por las bacterias anaerobias facultativas, alcoholes y cetonas (metanol, etanol, glicerol, acetona) dióxido de carbono e hidrógeno. Este proceso es energéticamente favorable para los microorganismos. Estas conversiones pueden ser llevadas a cabo por diferentes rutas bioquímicas, como la fermentación y la oxidación.

Los ácidos, acético y propiónico son los principales intermediarios de esta etapa, con el acético en mayor proporción. Los productos de esta etapa dependen de las condiciones

del medio (temperatura, pH, potencial redox, concentración de materia orgánica y micronutrientes). [16]

2.1.4.c Acetogénesis. Los ácidos grasos volátiles (AGV) son oxidados por arqueas anaeróbicas a hidrógeno, ácido acético y dióxido de carbono para que puedan ser consumidos por las bacterias metanogénicas. Los organismos acetogénicos pueden ser inhibidos fácilmente por factores como pH, amoniaco, etc., haciendo ésta una etapa limitante y potencialmente inestable, pues la acumulación de AGV es un signo de que el equilibrio microbiano en el digestor ha fallado.

La concentración de hidrógeno disuelto es otro parámetro importante ligado también a la estabilidad, ya que determina el rendimiento energético de la reacción donde los ácidos grasos volátiles (AGV) son degradados a ácido acético e hidrógeno y no debe acumularse. Un rango aceptable de presión parcial de hidrógeno para garantizar que las reacciones procedan es 0.01 y 1.01 KPa [17].

2.1.4.d Metanogénesis. Para esta ruta metabólica se lleva a cabo por dos grupos de microorganismos: los metanógenos, acetotróficos y Hidrógenotróficos. Los acetotróficos producen metano y dióxido de carbono a partir del ácido acético principalmente; mientras que los Hidrógenotróficos producen metano a partir del hidrógeno y dióxido de carbono.

### 2.1.5 Microorganismos

Se puede identificar dentro de este complejo proceso los siguientes subprocesos: hidrólisis, acidogénesis, acetogénesis y metanogénesis. En cada uno de estos subprocesos actúan diferentes colonias de bacterias, según la función catabólica que efectúan sobre el carbono se tienen cinco tipos [6]:

2.1.5.a Bacterias acidogénicas. estas catabolizan ácidos grasos y producen hidrógeno y ácidos volátiles. Son bacterias que presentan un crecimiento acelerado con un tiempo de duplicación de 30 minutos [6]. Algunos microorganismos conocidos son *Clostridium, Paenibacillus y Ruminococcus*. [22]

2.1.5.b Bacterias acetogénicas. estas catabolizan compuestos mono-carbonados e hidrolizan compuestos multi-carbonados produciendo ácido acético. Estas bacterias presentan un crecimiento lento con un tiempo de duplicación de 1,5 a 4 días [6]. Algunos microorganismos conocidos son bacterias acetogénicas reductoras de sulfato son capaces de degradar lactato y etanol, pero no son capaces de degradar ácidos grasos y compuestos aromáticos. [22]

2.1.5.c Bacterias metanogénicas. Estas catabolizan el ácido acético y compuestos monocarbonados para producir metano. Estas bacterias presentan un crecimiento lento con un tiempo de duplicación de 4 a 6 días [6].

2.1.5.d Bacterias Hidrógenotróficas. estas reducen el dióxido de carbono en metano utilizando el Hidrógeno [6]. Algunos microorganismos conocidos son Methanobacterium, *Methanospirillum hungatii, y Methanosarcina*. [22]

### 2.1.6 Ventajas de la digestión anaerobia

Una de las ventajas que brinda la digestión anaerobia, es que la mayoría del material orgánico se convierte en biogás, que puede ser combustionado con el fin de obtener energía o vapor. La energía se puede utilizar en la planta de producción de biogás o se puede proveer a la red de la energía.

El consumo de energía es muy bajo con el tratamiento anaerobio. Por ejemplo, no tiene que ser provisto oxígeno y no es necesario un mezclado intenso. Por otro lado, la producción de lodo en régimen anaerobio en el tratamiento anaerobio es muy baja (ya estabilizados y espesados), porque la mayoría del material orgánico se convierte en biogás, no en lodo. Además, el lodo anaerobio se estabiliza y se puede desecar fácilmente por gravedad. Se puede utilizar para la arrancada de nuevos reactores anaerobios, o se puede utilizar como biofertilizante en la tierra. Los gastos de transportación del lodo son por consiguiente mínimos.

Los costos de inversión son bajos, porque se aplican altas cargas orgánicas al reactor y los tiempos de la retención son cortos. Además, el diseño y la construcción de un reactor anaerobio son simples, lo que reduce aún más los costos.

#### 2.2 Biogás

El biogás se define como un combustible que se genera a raíz de la biodegradación de la materia orgánica mediante la acción de microorganismos y otros factores [2]. Está constituido principalmente por metano y dióxido de carbono (CO<sub>2</sub>), junto con trazas de gases como c hidrógeno (H<sub>2</sub>), nitrógeno (N<sub>2</sub>), oxígeno (O<sub>2</sub>), sulfuro de hidrógeno (H<sub>2</sub>S) y otros componentes en menor proporción [2].

### 2.2.1 Potencial energético del Biogás

El metano es un componente energético con un alto valor calorífico (~9,4 MJ /  $m^3$ ), el cual puede ser usado en diferentes propósitos como la generación de calor para distintas aplicaciones y la producción de electricidad [15.]Si el biogás es reformado y convertido en metano, es posible emplearlo como combustible para los vehículos.

De acuerdo con un estudio sobre el potencial energético del biogás por el grupo Tatoma [7], se estipula que con aproximadamente un metro cúbico de biogás se puede: Generar 6 horas de luz, equivalente a una bombilla de 60 watts, poner a funcionar un refrigerador de 1  $m^3$  de capacidad durante 1 hora, entre otros usos energéticos.

### 2.3 Hidrógeno industrial

El hidrógeno es el elemento más ligero que existe. Se presenta de forma estable en moléculas biatómicas, H<sub>2</sub>, y en condiciones atmosféricas es un gas incoloro, inodoro y no es tóxico [8].

#### 2.3.1 Producción de hidrógeno industrial

En la actualidad prácticamente el 96% del hidrógeno mundial se produce a partir de combustibles fósiles, principalmente por reformado de gas natural con vapor de agua, y se consume como un componente que forma parte de multitud de procesos convencionales, especialmente (en torno a un 72%) en la industria química y petroquímica (refino del petróleo, amoníaco, metanol, etc.). El resto se utiliza en metalurgia, en electrónica y en la propulsión de vehículos espaciales (Figura 4).

Tan solo un 4% del total se produce por electrólisis del agua que es el hidrógeno destinado a las aplicaciones que requieren una gran pureza del gas. Por lo tanto, las tecnologías de producción de hidrógeno a partir de combustibles fósiles, especialmente a partir de gas natural, son tecnologías demostradas y actualmente en aplicación. Las principales desventajas que presentan son que en el proceso de producción de hidrógeno se emite también  $CO_2$ , y que se están utilizando como materias primas recursos agotables, de los que se dispone de unas reservas limitadas y concentradas en pocos lugares del globo terráqueo[8].
Producción de hidrógeno



*Nota.* Las figuras muestran las posibles rutas para la producción de hidrógeno industrial. Tomado de: Satyawali, Y., Balakrishnan, M. Wastewater treatment in molasses based alcohol distilleries for cod and color removal: a review. Journal of Environmental Management 86 (3): 481–497, 2008.

### **3 MODELAMIENTO MATEMÁTICO**

En el siguiente apartado se describirá detalladamente la metodología empleada para dar cumplimiento al objetivo 1 y 2 del proyecto, los cuales consisten en la identificación del modelo termodinámico y la determinación de la cinética de las reacciones y de los reactores respectivamente.

#### 3.1 Parámetros e inhibiciones

#### 3.1.1 Temperatura

La variación de la temperatura afecta significativamente la digestión anaerobia y la cantidad de biogás producido. Para mantener el proceso estable, se recomienda que la temperatura de la materia prima en el interior del digestor se debe controlar ya que está no solo incide en el aspecto cinético (velocidad de consumo del sustrato, velocidad de crecimiento de biomasa) sino también en el aspecto termodinámico (conversión de sustrato a producto referente a las condiciones de equilibrio que se pueden lograr para una etapa determinada de la digestión anaerobia). Teniendo en consideración lo anterior, se puede afirmar que el rango óptimo de temperatura para la digestión anaerobia está entre 30 a 40 °C, de esta manera favorece el crecimiento de las bacterias metanogénicas y, por lo tanto, la degradación de la materia orgánica y la producción de biogás. [10]

### 3.1.2 pH

Un elevado índice de acidez no permite la actividad de las bacterias al interior del biodigestor, detiene la acción de las enzimas y afecta considerablemente la producción de ácidos orgánicos, ya que este es un factor limitante al momento de la producción de biogás. Los resultados encontrados dentro de la investigación permiten concluir que el pH óptimo para el correcto desempeño del sistema se encontró en un rango entre 6.8 a 7.2. [11]

38

#### 3.1.3 Amonio (NH<sub>4</sub>+) y amoniaco (NH<sub>3</sub>)

Las concentraciones de estos iones o compuesto de amonio son inevitables, ya que se presentan en las ecuaciones como subproductos indeseados, y además normalmente el agua, y la biomasa traen trazas de sulfatos. Estos compuestos afectan directamente el pH del sistema y puede llegar a ser tóxico para los microorganismos. Los parámetros como el pH y la temperatura son determinantes a la hora de cuantificar la cantidad de amoniaco liberado en el sistema, y la tasa de ionización de amoniaco afecta el proceso de la metanogénesis. Por otro lado, bajas concentraciones de amoníaco son beneficioso y necesario para las bacterias anaeróbicas debido a que utilizan nitrógeno como nutriente [18]. El uso de inóculos presenta muchas ventajas que favorecen la estabilidad del digestor, sin embargo, se debe verificar que la concentración de sólidos presentes no afecte la mezcla y homogeneidad en el sistema, y por lo tanto no sea un obstáculo al evaluar el desempeño de este. [8]

#### 3.1.4 Agitación

Si existe una buena agitación se asegura una adecuada distribución uniforme por todo el reactor de los nutrientes, se asegura que haya contacto entre la biomasa y los microorganismos, evita zonas de estancamiento o sedimentación.

#### 3.1.5 Nutrientes (relación C/N)

Una relación C/N demasiado baja conduce a un aumento de la producción de amoníaco que inhibe el proceso, y una relación C/N demasiado alta significa una falta de nitrógeno que tiene consecuencias negativas para la formación de proteínas y, por tanto, para el metabolismo de los microorganismos, por lo que es recomendable tener un punto equidistante entre los dos límites. [14]

#### 3.1.6 Presión

Afecta directamente la solubilidad de algunos compuestos según [14] un aumento de presión reduce la inhibición del amoniaco, y una disminución la inhibición del sulfuro de hidrógeno libre. El valor de presión óptimo se establece según la inhibición predominante.

#### 3.1.7 Luz

Según [14] la luz produce puede afectar directamente el proceso de la metanización, por lo que el proceso debe estar en completa oscuridad, con el fin de fomentar la fermentación oscura.

#### 3.1.8 Oxígeno

Teniendo en cuenta que es un proceso anaerobio, las bacterias solamente tienen la posibilidad de sobrevivir en un entorno con ausencia de oxígeno, sin embargo, hay un límite de inhibición de  $0.1 \frac{mg}{L}$  de  $O_2$  [14].

#### 3.1.9 Compuestos de azufre

Compuestos como el sulfato, Sulfuro, Sulfuro de hidrógeno en el gas, Sulfuro de hidrógeno no disociado en el líquido y formas disociadas  $HS^-$ ,  $S^-$ - [14]. Como se podrá observar en las reacciones es inevitable la producción de estos compuestos especialmente del ácido sulfhídrico, sin embargo, si no se controla su producción puede llegar a ser inhibidor del proceso, ya que afectaría directamente el pH del sistema, además tienen una facilidad por sobrepasar la población metanogénica, además este

compuesto en especial es tóxico para los metanógenos [18]. Si se tienen concentraciones muy altas se recomienda tratar con NaOH, o sales de hierro.

### 3.1.10 Ácidos orgánicos (ácidos grasos y aminoácidos)

Los ácidos grasos son los principales productos durante la etapa acidogénica y acetogénica sin embargo a concentraciones muy altas son inhibitorios del proceso porque afectan directamente el pH, los ácidos que se deben controlar más son el ácido acético, isobutírico, y propiónico.

#### 3.1.11 Nitrato (NO<sub>3</sub>-)

En la primera etapa el ion nitrato se desnitrifica, por lo que se debe cuidar su concentración desde el primer momento, si su concentración es muy alta la calidad del gas disminuye debido al mayor contenido de nitrógeno, y se consume más carbono no estando disponible para la metanización. Se habla de un alto contenido de nitrato  $NO_3N^-$ > 50 mg, antes de esta composición no produce la inhibición. [14]

#### 3.1.12 Porcentaje de agua

La cantidad de agua en el proceso es crítica debido a varios factores, en la primera etapa los compuestos no disueltos se rompen en monómeros (fragmentos solubles en agua) y este proceso es llevado a cabo por bacterias anaerobias facultativas y obligatorias que utilizan el oxígeno disuelto en el agua [30]. Por otro lado, una de las principales inhibiciones del proceso es la producción de amoniaco debido a su alteración en el pH, la mayor parte del amoníaco producido durante la digestión anaerobia permanece en el agua en forma de ion amonio (NH4+) debido a su alta solubilidad. El amoniaco en fase gaseosa ronda el 1 % de concentración.

41

#### 3.1.13 Materia seca

La materia seca es la parte que resta de un material tras extraer toda el agua posible a través de un calentamiento hecho en condiciones de laboratorio, esta variable se debe controlar en el proceso porque si la materia seca en el sustrato hace que pase demasiada agua, el proceso se vuelve menos económico. De lo contrario, si el contenido de materia seca es tan alto (superior al 30 %) el proceso funciona, pero tampoco funciona económicamente porque un contenido de agua demasiado bajo retarda el crecimiento celular, la transferencia de material se convierte en un factor limitante y la biomasa no puede bombearse bien o mezclado. Como conclusión se debe lograr una materia seca entre 12 % y 30 % [30].

### 3.2 Termodinámica

Para dar solución al primer objetivo del proyecto, el cuál menciona la selección del modelo termodinámico predictivo para el proceso de la digestión anaerobia, se parte de un árbol de decisión extraído del artículo [9].

### 3.2.1 Modelo termodinámico predictivo para la fase líquida de la mezcla



Los primeros pasos para seleccionar métodos de propiedades físicas

Nota. Se presenta la ruta que se utiliza para escoger el modelo termodinámico.

De acuerdo con el diagrama expresado en la **figura 5**, se establece la ruta que tenga la mayor adaptación a las sustancias involucradas en el proceso, para ello es preciso tener conocimiento de su carácter polar, la presencia de electrolitos, la presión y la disponibilidad de los parámetros de interacción binaria para las posibles mezclas.

Para realizar lo previamente mencionado, se tienen en consideración los componentes contenidos en la **tabla 2** junto con las características propias de cada uno de los compuestos. De acuerdo con esto, se conoce que el único con carácter polar es el agua, sin embargo, cabe destacar que, si una sola de las sustancias dentro de una mezcla es polar, esto influencia fuertemente en la decisión con respecto al modelo termodinámico. De manera que se caracteriza la mezcla como polar, adicionalmente los modelos que describen una sustancia de carácter polar también tienen la posibilidad de describir las sustancias que son apolares.

Con respecto a electrolitos, ninguno de los componentes que integran contiene ni es electrolito, por ende, se escoge la ruta correspondiente a la negativa de este ítem. De acuerdo con eso, nos remitimos a la **figura 6.** 

#### Figura 11

Procedimiento para componentes polares y no electrolíticos



Nota. Se presenta la ruta que se utiliza para escoger el modelo termodinámico partiendo de una mezcla polar sin electrolitos. Tomado de: Wooley, R.J., Putsche, V. Development of an Aspen plus physical property database for biofuels components. National renewable energy laboratory golden, CO, USA, 1996

Posterior a la elección de la presencia o ausencia de electrolitos, continua la especificación de la presión, la cual establece si la mezcla está por encima o por debajo de 10 bar. Para ello es importante destacar que la biomasa ingresa a condiciones atmosféricas, es decir, la presión es inferior a la de referencia del árbol de decisión. Adicionalmente, a lo largo de todo el proceso, no se manejan presiones superiores a 1 bar, por ende, nos dirigimos hacia la parte superior del diagrama de decisión.

Una vez especificada la presión, se procede con los parámetros de interacción binaria entre los componentes de la mezcla, es decir, si se tiene disponibilidad a la información con respecto a estos parámetros. En consonancia con lo anterior, se dispone a la búsqueda bibliográfica de artículos experimentales para la determinación de parámetros de interacción entre posibles mezclas durante el proceso. Tras la indagación correspondiente, fue posible encontrar la información requerida, de manera que se afirma la disponibilidad de los parámetros de interacción binaria.

Finalmente, para culminar con la elección del modelo que permita la completa caracterización de la fase líquida, se debe establecer que equilibrios están presentes en la mezcla durante el proceso. Para ello es importante destacar que dentro de los reactores hay presencia de componentes gaseosos, debido a la degradación por acción de las comunidades bacterianas, de manera que no solamente se establecerá un equilibrio líquido-líquido (LL), sino que también se generará equilibrio líquido-vapor (LV), por ende, se selecciona la negativa del ítem LL en el diagrama de decisión.

Ya caracterizada completamente los componentes individuales y la mezcla, se cuenta con la información requerida para determinar la elección del modelo. Tal y como se evidencia en la **figura 6**, los modelos termodinámicos sugeridos por el árbol de decisión de acuerdo con los criterios previamente detallados para la fase líquida, son: Wilson, NRTL, UNIQUAC y sus variantes.

### 3.2.2 Modelo termodinámico predictivo para la fase vapor

Para la elección del modelo termodinámico correspondiente a la fase de vapor, es preciso remitirnos a la **figura 7** en la cual se especifican los criterios a tener en consideración para seleccionar el modelo.

Opciones para cálculos de fase de vapor con modelos de coeficiente de actividad



*Nota.* Se presenta la ruta que se utiliza para escoger el modelo termodinámico que caracteriza la fase vapor dentro de la mezcla. Tomado de: Wooley, R.J., Putsche, V. Development of an Aspen plus physical property database for biofuels components. National renewable energy laboratory golden, CO, USA, 1996

La figura corresponde a la continuación de las figuras y, la cual inicia con el indicador de VAP, que corresponde a la ausencia o presencia de fase vapor para los modelos Wilson, NRTL, UNIQUAC y UNIFAC. A continuación, luego de tomar la ruta correspondiente a la afirmativa del ítem VAP, es menester especificar el grado de polimerización, es decir, si se producen hexámeros o dímeros. Teniendo en consideración que durante el proceso intervienen ácidos como el ácido butírico, ácido acético y ácido propiónico, se establece que estos forman dímeros, por ente se especifica el ítem DP.

A continuación, se ilustra la ruta descrita para la elección del modelo termodinámico tanto para la fase líquida, como para la fase vapor

### Ruta de selección de la figura 5



*Nota.* Se presenta la ruta escogida para el primer fragmento del árbol de decisión, la cual puede apreciarse en color rojo. Tomado de: Wooley, R.J., Putsche, V. Development of an Aspen plus physical property database for biofuels components. National renewable energy laboratory golden, CO, USA, 1996

Ruta de selección de la figura 6



*Nota.* Se presenta la ruta escogida para el primer fragmento del árbol de decisión, la cual puede apreciarse en color rojo para una mezcla polar no electrolítica. Tomado de: Wooley, R., Ruth, M., Glassner D., Sheehan, J. Process Design and Costing of Bioethanol Technology: A Tool for Determining the Status and Direction of Research and Development. Biotechnol. Prog. 15: 794-803, 1999.

Ruta de selección para modelo de la fase de vapor



Nota. Se presenta la ruta escogida para caracterizar la fase de vapor. Tomado de: Wooley, R., Ruth,
M., Glassner D., Sheehan, J. Process Design and Costing of Bioethanol Technology: A Tool for
Determining the Status and Direction of Research and Development. Biotechnol. Prog. 15: 794-803,
1999.

n concordancia con el árbol de decisión, se estipula que los modelos más adecuados para caracterizar la termodinámica del proceso son: Wilson, NRTL, UNIQUAC o UNIFAC para la fase líquida, y para la fase vapor se recomienda la ecuación de Hayden O' Conell o la Ecuación de Estado de Nothnagel. Se descarta el modelo de Nothnagel ya que es una ecuación de estado de tipo corrección de la idealidad, mientras que el modelo de Hayden O'Connell (HOC por su abreviación) es del tipo Virial, es decir calcula el segundo coeficiente de la ecuación del Virial y tiene en cuenta las asociaciones moleculares en su desarrollo lo que resulta mejor para modelar el comportamiento de los ácidos carboxílicos en el vapor

## 3.2.3 Modelo NRTL – HOC

El modelo NRTL elimina las limitaciones de Wilson para predecir el equilibrio líquido-líquido, aunque tiene tendencia a establecer falsas separaciones de fases. Es capaz de representar el comportamiento de los equilibrios LV, LL y LLV. En general es más preciso que Wilson y superior a otros modelos en sistemas de mezcla de compuestos orgánicos y agua. Es consistente termodinámicamente y puede aplicarse a sistemas ternarios y de orden superior usando parámetros obtenidos por regresión de datos de equilibrio binario.

### 3.2.4 Validación del modelo termodinámico

Para la validación del modelo termodinámico previsto con las **Figura 5**,**6 y 7**, se procede a realizar una comparación de equilibrio líquido-vapor (ELV) entre datos bibliográficos (experimentales) y teóricos tomados directamente del simulador Aspen Plus, con el fin de determinar si el modelo NRTL presenta una buena exactitud al momento de predecir el comportamiento tanto para la fase líquida como para la fase vapor.

Las posibles mezclas en el proceso se extraen del simulador Aspen Plus, esto por medio de los parámetros de interacción binaria, el cual brinda información con respecto a las posibles mezclas que se pueden dar durante la digestión anaerobia posteriormente se realiza una búsqueda sobre pruebas realizadas para los pares de componentes extraídos de Aspen.

En primer lugar, se establecen las condiciones a las cuales se va a evaluar el equilibrio (Temperatura o presión), a partir de ello, una vez ingresados los componentes en el simulador Aspen Plus, se grafica la envolvente entre las posibles mezclas. Con el fin de visualizar de manera más práctica la comparación entre los datos experimentales y teóricos, se calcula el porcentaje de error para cada una de las temperaturas a las cuales fueron evaluados, a partir de la siguiente expresión:

$$\% \ error = rac{Valor \ teórico - Valor \ experimental}{Valor \ teórico} * 100 \qquad [Ec. 1]$$

3.2.4.a ELV agua – glicerol. En primer lugar, se evalúa la posible mezcla de agua con glicerol. Cabe destacar que la glicerina es totalmente miscible en agua y no presenta azeotropía. Las condiciones a las cuales se evaluó el equilibrio es en condiciones isobáricas, a una presión de  $101320 \frac{N}{m^2}$  (1,0132 bar), bajo un rango de temperaturas entre 379 – 464 K aproximadamente. A continuación, se expresa la validación por medio de la gráfica de la línea de equilibrio tanto de forma teórica como experimental.

Diagrama T-xy Agua / Glicerol. Fuente: Chen, D. H. T.; Thompson, A. R. J. Chem. Eng. Data, 1970, 15, 471 Equilibrios isobáricos vapor- líquido para los sistemas Glicerolagua y glicerol-agua saturada con cloruro de sodio.



*Nota.* Se aprecia la representación gráfica del comportamiento de la mezcla en estado de equilibrio, tanto para la fase líquida como para la fase vapor, datos experimentales tomados de Aspen Plus.

En la **gráfica 1** es posible apreciar el comparativo entre los datos teóricos extraídos directamente del simulador Aspen Plus (Marcadores) en contraste con los datos experimentales, extraídos de artículos de la misma herramienta de simulación (Línea continua), tanto para la fase líquida como para la fase de vapor.

Adicionalmente se calcula el porcentaje de error con el fin de corroborar la adecuación del modelo al comportamiento de las sustancias con la ecuación [1].

### Tabla 3

|                   | TEORICO                      |                            | E                  | XPERIMENTA                       | L                               | %Error                       |                            |  |
|-------------------|------------------------------|----------------------------|--------------------|----------------------------------|---------------------------------|------------------------------|----------------------------|--|
| TOTAL<br>TEMP (K) | LIQUID1<br>MOLEFRAC<br>WATER | VAPOR<br>MOLEFRAC<br>WATER | Temperature<br>(K) | Liquid mole<br>fraction<br>WATER | Vapor mole<br>fraction<br>WATER | LIQUID1<br>MOLEFRAC<br>WATER | VAPOR<br>MOLEFRAC<br>WATER |  |
| 520,244           | 0,0657142                    | 0,790637                   | 520,11             | 0,0467                           | 0,9473                          | 28,9347                      | 19,8148                    |  |
| 497,615           | 0,1                          | 0,914226                   | 497,11             | 0,069                            | 0,9563                          | 31,0000                      | 4,6021                     |  |
| 492,595           | 0,108571                     | 0,930017                   | 492,31             | 0,0767                           | 0,9743                          | 29,3550                      | 4,7615                     |  |
| 483,383           | 0,125714                     | 0,95213                    | 483,11             | 0,0901                           | 0,9783                          | 28,3294                      | 2,7486                     |  |
| 475,853           | 0,141429                     | 0,965333                   | 475,61             | 0,1031                           | 0,9724                          | 27,1012                      | 0,7321                     |  |
| 469,672           | 0,155714                     | 0,973662                   | 469,610035         | 0,1159                           | 0,9839                          | 25,5687                      | 1,0515                     |  |
| 448,552           | 0,217143                     | 0,990481                   | 448,311165         | 0,1756                           | 0,9899                          | 19,1316                      | 0,0587                     |  |
| 422,495           | 0,335714                     | 0,997849                   | 422,41451          | 0,3004                           | 0,9964                          | 10,5191                      | 0,1452                     |  |
| 410,346           | 0,418571                     | 0,999064                   | 410,31693          | 0,3847                           | 0,9976                          | 8,0921                       | 0,1465                     |  |
| 409,984           | 0,421429                     | 0,999088                   | 409,91701          | 0,3895                           | 0,9988                          | 7,5764                       | 0,0288                     |  |
| 404,933           | 0,464286                     | 0,999382                   | 404,91801          | 0,4358                           | 0,9976                          | 6,1354                       | 0,1783                     |  |
| 394,63            | 0,572857                     | 0,999752                   | 394,62007          | 0,5633                           | 0,9984                          | 1,6683                       | 0,1352                     |  |
| 385,953           | 0,697143                     | 0,999908                   | 385,92181          | 0,7068                           | 0,9993                          | 1,3852                       | 0,0608                     |  |
| 384,468           | 0,722857                     | 0,999925                   | 384,42211          | 0,7386                           | 0,9994                          | 2,1779                       | 0,0525                     |  |
| 379,436           | 0,824286                     | 0,999969                   | 379,42311          | 0,8442                           | 0,9996                          | 2,4159                       | 0,0369                     |  |

Cálculo de error para el ELV – Agua/Glicerol

*Nota.* Se muestra de manera cuantitativa la aproximación entre los datos experimentales y teóricos para las curvas de equilibrio, a través del porcentaje de error.

A partir de la **gráfica 1** y la **tabla 3** Se puede concluir que existe una mayor dispersión entre los datos correspondientes a la fase líquida de agua, con un porcentaje de error máximo del 92% aproximadamente y un mínimo del 3.1%. Sin embargo, para la fase vapor presenta un acercamiento bastante bueno, ya que el porcentaje de error no supera el 7% de error, de acuerdo con esto se concluye que el modelo NRTL – HOC presenta un buen acercamiento entre los comportamientos graficados, de manera que es aplicable al sistema binario Agua-Glicerol, prediciendo con mayor exactitud el comportamiento de la fase vapor.

3.2.4.a ELV agua – amoniaco (NH<sub>3</sub>). A continuación, se realizó el mismo procedimiento previo para la mezcla de agua con glicerol, para la mezcla de agua y amoniaco (NH<sub>3</sub>). Las condiciones a las cuales fue evaluado el comportamiento de la mezcla en también en régimen isobárico, con un valor para la presión de 101325  $\frac{N}{m^2}$  (1,01325 bar) para un rango de temperatura entre 340 – 444 K aproximadamente.

53

Diagrama T-xy- Agua/Amoniaco. Fuente: Clifford, I. L.; Hunter, E. J. Phys. Chem., 1933, 37, 101 El sistema de amoníaco- agua a temperaturas de hasta 150 grados y a presiones de hasta 20 atmósferas



*Nota.* Se aprecia la representación gráfica del comportamiento de la mezcla en estado de equilibrio, tanto para la fase líquida como para la fase vapor del agua y el amoniaco. Datos experimentales tomados de Aspen Plus.

Según la **figura 17** es posible apreciar un comportamiento similar de las fases para el paquete de datos teórico y experimental, sin embargo, también es visible una aparente dispersión. Lo anterior se confirma a partir del porcentaje de error para el ELV de la mezcla binaria en cuestión.

## Tabla 4

|               | TEORICO                      |                            | E                  | XPERIMENTA                       | \L                              | % E                          | rror                       |
|---------------|------------------------------|----------------------------|--------------------|----------------------------------|---------------------------------|------------------------------|----------------------------|
| TOTAL<br>TEMP | LIQUID1<br>MOLEFRAC<br>WATER | VAPOR<br>MOLEFRAC<br>WATER | Temperature<br>(K) | Liquid mole<br>fraction<br>WATER | Vapor mole<br>fraction<br>WATER | LIQUID1<br>MOLEFRAC<br>WATER | VAPOR<br>MOLEFRAC<br>WATER |
| 363,193       | 0,972                        | 0,683451                   | 363,856224         | 0,97525                          | 0,7075                          | 0,3344                       | 3,5188                     |
| 365,253       | 0,978                        | 0,702342                   | 365,12597          | 0,9794                           | 0,7494                          | 0,1431                       | 6,7002                     |
| 365,951       | 0,98                         | 0,721762                   | 367,02559          | 0,98473                          | 0,8033                          | 0,4827                       | 11,2971                    |
| 366,744       | 0,982                        | 0,741716                   | 367,965402         | 0,98733                          | 0,8344                          | 0,5428                       | 12,4959                    |
| 367,447       | 0,984                        | 0,76221                    | 370,02499          | 0,99297                          | 0,904                           | 0,9116                       | 18,6025                    |
| 368,155       | 0,986                        | 0,774032                   | 370,634868         | 0,9933                           | 0,9128                          | 0,7404                       | 17,9279                    |
| 368,866       | 0,988                        | 0,796209                   | 371,204754         | 0,9949                           | 0,9315                          | 0,6984                       | 16,9919                    |
| 369,581       | 0,99                         | 0,819101                   | 371,204754         | 0,99611                          | 0,9453                          | 0,6172                       | 15,4070                    |
| 370,298       | 0,992                        | 0,842725                   | 371,92461          | 0,99674                          | 0,9564                          | 0,4778                       | 13,4890                    |
| 371,018       | 0,994                        | 0,867097                   | 372,064582         | 0,99708                          | 0,9605                          | 0,3099                       | 10,7719                    |
| 371,742       | 0,996                        | 0,892229                   | 372,584478         | 0,9985                           | 0,9795                          | 0,2510                       | 9,7812                     |
| 372,465       | 0,998                        | 0,918124                   | 372,77444          | 0,99897                          | 0,9865                          | 0,0972                       | 7,4474                     |

Datos experimentales y teóricos para las curvas de equilibrio entre la mezcla agua/amoniaco

*Nota.* Se muestra de manera cuantitativa la aproximación entre los datos experimentales y teóricos para las curvas de equilibrio entre la mezcla agua/amoniaco, a través del porcentaje de error.

Con base en la **tabla 4**, es posible distinguir porcentajes de error por encima del 60% para el equilibrio de la fase vapor, con un máximo del 74% aproximadamente y un mínimo del 0% seguido del 15%. Esto confirma lo descrito a partir de la **gráfica 2**, es decir, se presenta una dispersión importante de los datos experimentales con respecto a los obtenidos de manera teórica. En contraste se aprecia que, para el equilibrio correspondiente a la fase líquida, la aproximación es mayor, con un máximo de error del 22% y un mínimo del 0% seguido del 1%.

De lo anterior se puede concluir que el modelo presenta un buen acercamiento entre los comportamientos graficados, principalmente para la fase líquida, ya que para la fase vapor la dispersión mayor. Esto se puede originar a raíz de las diferencias entre los rangos de temperatura para los datos experimentales y los teóricos, ya que a pesar de se ajustaron en la mayor medida posible, aún es notoria la inexactitud entre estos valores.

3.2.4.b ELV agua – Dióxido de carbono (CO<sub>2</sub>). Para analizar el comportamiento de la mezcla binaria agua/dióxido de carbono, se realizó a condiciones isobáricas, con una presión de 100000000  $\frac{N}{m^2}$  (1000,00000 bar) para un rango de temperatura entre 423 –

553 K aproximadamente. La presión evaluada es lo suficientemente elevada para desplazar el azeótropo que forma del agua con el dióxido de carbono, sin embargo, en el proceso no se lleva a cabo a la temperatura estudiada para la validación, ya que el dióxido de carbono se produce principalmente en la etapa final y no entra en contacto directamente con el agua por prolongado tiempo, adicionalmente no afecta significativamente el producto final.

#### Figura 18

Diagrama T-xy Agua / Dióxido de carbono. Fuente: Todheide, K.; Franck, E. U. Z. Phys. Chem., 1963, 37, 387-401 Rango bifásico y la curva crítica en el sistema dióxido de carbono- agua hasta 3500 bar.



*Nota.* Se aprecia la representación gráfica del comportamiento de la mezcla en estado de equilibrio, tanto para la fase líquida como para la fase vapor del agua y el dióxido de carbono, datos experimentales tomados de Aspen Plus.

La **figura 18** representa el comportamiento de los equilibrios a raíz de los datos obtenidos de manera teórica y experimental a las condiciones descritas previamente. De acuerdo con esto se puede apreciar que de manera visual el comportamiento presenta un buen acercamiento para la fase vapor (la cual está denotada con los matices más oscuros tanto para la línea continua como para los puntos indicativos), con una ligera dispersión para los últimos datos. Por otro lado, para la fase líquida se evidencia una dispersión mayor entre los datos experimentales con respecto a los teóricos, principalmente para los últimos datos, sin embargo, esto será corroborado a partir del porcentaje de error para cada uno de los datos.

## Tabla 5

| TEORICO           |                              |                            | E                  | XPERIMENTA                       | % Error                         |                              |                            |
|-------------------|------------------------------|----------------------------|--------------------|----------------------------------|---------------------------------|------------------------------|----------------------------|
| TOTAL<br>TEMP (K) | LIQUID1<br>MOLEFRAC<br>WATER | VAPOR<br>MOLEFRAC<br>WATER | Temperature<br>(K) | Liquid mole<br>fraction<br>WATER | Vapor mole<br>fraction<br>WATER | LIQUID1<br>MOLEFRAC<br>WATER | VAPOR<br>MOLEFRAC<br>WATER |
| 373,169           | 0,86                         | 0,0259415                  | 373,17401          | 0,98                             | 0,029                           | 13,9535                      | 11,7900                    |
| 423,309           | 0,9909                       | 0,0231728                  | 423,18402          | 0,979                            | 0,06                            | 1,2009                       | 158,9243                   |
| 519,399           | 0,9995                       | 0,183825                   | 523,221015         | 0,972                            | 0,335                           | 2,7514                       | 82,2385                    |
| 528,25            | 0,9996                       | 0,213464                   | 533,22402          | 0,973                            | 0,399                           | 2,6611                       | 86,9168                    |
| 539,736           | 0,9997                       | 0,257194                   | 538,22602          | 0,974                            | 0,423                           | 2,5708                       | 64,4673                    |
| 555,798           | 0,9998                       | 0,329547                   | 541,22722          | 0,974                            | 0,441                           | 2,5805                       | 33,8201                    |
| 581,539           | 0,9999                       | 0,477323                   | 473,20302          | 0,976                            | 0,155                           | 2,3902                       | 67,5272                    |
| 639,156           | 1                            | 1                          | 623,235995         | 0,992                            | 0,945                           | 0,8000                       | 5,5000                     |

Cálculo de error para el ELV – Agua/Dióxido de carbono

*Nota.* Se muestra de manera cuantitativa la aproximación entre los datos experimentales y teóricos para las curvas de equilibrio entre la mezcla agua/dióxido de carbono, a través del porcentaje de error.

Según la **tabla 5**, se ratifica la hipótesis con respecto a la fase vapor es errónea, ya que presenta porcentajes de error muy por encima a los generados por la fase líquida, alcanzando un máximo de 162% de error y un mínimo del 0.6%. En términos generales según los resultados obtenidos, el modelo se adapta con mayor eficacia a la fase líquida, dado que no supera el 19% de error.

De lo anterior se puede concluir que el modelo no presenta un buen ajuste para la fase vapor en la mezcla binaria agua/dióxido de carbono, lo cual se puede deber a factores como los rangos de temperatura en los cuales fue evaluada la mezcla, sin embargo, presenta un buen acercamiento para la fase líquida.

3.2.4.c ELV Agua – Ácido acético. A continuación se procedió a realizar la validación para la mezcla binaria agua-ácido acético, la cual fue evaluada en condiciones

isobáricas, con un valor para la presión de 101000  $\frac{N}{m^2}$  (1.01 bar) para un rango de temperatura que oscila entre 373 – 375 K aproximadamente.

#### Figura 19

Diagrama T-xy Agua / Ácido acético. Fuente: Fu, H.; Chen, G.; Han, S. Huaxue Gongcheng, 1986, No. 6, 56-61



*Nota.* Se aprecia la representación gráfica del comportamiento de la mezcla en estado de equilibrio, tanto para la fase líquida como para la fase vapor del agua y el ácido acético. Datos experimentales tomados de Aspen Plus.

La **figura 19** permite visualizar el comportamiento ELV para la fase líquida y vapor de acuerdo con los datos teóricos y experimentales. De acuerdo con esto se deduce un acercamiento aceptable del modelo para la mezcla en cuestión, ya que predice el comportamiento de forma adecuada, sin embargo, aparentemente no se justa de forma precisa para los datos experimentales y teóricos, ya que se aprecia una dispersión entre los paquetes de datos.

### Tabla 6

|         | TEORICO  |           | E           | XPERIMENTA  | L          | % Error  |          |
|---------|----------|-----------|-------------|-------------|------------|----------|----------|
| TOTAL   | LIQUID1  | VAPOR     | Tomporatura | Liquid mole | Vapor mole | LIQUID1  | VAPOR    |
|         | MOLEFRAC | MOLEFRAC  |             | fraction    | fraction   | MOLEFRAC | MOLEFRAC |
|         | WATER    | WATER     | (n)         | WATER       | WATER      | WATER    | WATER    |
| 389,814 | 0,018    | 0,0536831 | 389,841026  | 0,025       | 0,053      | 38,8889  | 1,2725   |
| 387,097 | 0,064    | 0,171661  | 387,181558  | 0,065       | 0,123      | 1,5625   | 28,3471  |
| 386,144 | 0,082    | 0,211462  | 386,161762  | 0,105       | 0,184      | 28,0488  | 12,9867  |
| 384,958 | 0,106    | 0,259866  | 384,981998  | 0,133       | 0,236      | 25,4717  | 9,1840   |
| 383,952 | 0,128    | 0,300104  | 383,902214  | 0,172       | 0,3        | 34,3750  | 0,0347   |
| 382,853 | 0,154    | 0,343218  | 382,82243   | 0,212       | 0,346      | 37,6623  | 0,8106   |
| 382,773 | 0,156    | 0,346353  | 381,87262   | 0,26        | 0,391      | 66,6667  | 12,8906  |
| 381,058 | 0,202    | 0,412217  | 381,002794  | 0,301       | 0,427      | 49,0099  | 3,5862   |
| 380,072 | 0,232    | 0,449553  | 380,062982  | 0,35        | 0,479      | 50,8621  | 6,5503   |
| 379,293 | 0,258    | 0,478912  | 379,293136  | 0,4         | 0,524      | 55,0388  | 9,4147   |
| 378,631 | 0,282    | 0,503856  | 378,603274  | 0,443       | 0,573      | 57,0922  | 13,7230  |
| 377,874 | 0,312    | 0,532488  | 377,883418  | 0,492       | 0,624      | 57,6923  | 17,1857  |
| 377,366 | 0,334    | 0,551895  | 377,363522  | 0,524       | 0,657      | 56,8862  | 19,0444  |
| 376,976 | 0,352    | 0,566882  | 376,9736    | 0,557       | 0,682      | 58,2386  | 20,3072  |
| 376,532 | 0,374    | 0,584213  | 376,533688  | 0,6         | 0,717      | 60,4278  | 22,7292  |
| 376,155 | 0,394    | 0,599113  | 376,163762  | 0,631       | 0,744      | 60,1523  | 24,1836  |
| 375,872 | 0,41     | 0,610501  | 375,883818  | 0,658       | 0,767      | 60,4878  | 25,6345  |
| 375,539 | 0,43     | 0,624127  | 375,543886  | 0,691       | 0,793      | 60,6977  | 27,0575  |
| 375,289 | 0,446    | 0,634583  | 375,283938  | 0,717       | 0,811      | 60,7623  | 27,8005  |
| 374,967 | 0,468    | 0,648375  | 374,974     | 0,748       | 0,834      | 59,8291  | 28,6293  |
| 374,721 | 0,486    | 0,659203  | 374,734048  | 0,78        | 0,852      | 60,4938  | 29,2470  |
| 374,592 | 0,496    | 0,665058  | 374,584078  | 0,802       | 0,864      | 61,6935  | 29,9135  |
| 374,346 | 0,516    | 0,676453  | 374,344126  | 0,812       | 0,874      | 57,3643  | 29,2034  |
| 374,252 | 0,524    | 0,680903  | 374,264142  | 0,836       | 0,888      | 59,5420  | 30,4151  |
| 374,095 | 0,538    | 0,6885555 | 374,094176  | 0,86        | 0,904      | 59,8513  | 31,2894  |
| 373,988 | 0,548    | 0,693923  | 373,984198  | 0,883       | 0,917      | 61,1314  | 32,1472  |
| 373,884 | 0,558    | 0,699217  | 373,894216  | 0,898       | 0,928      | 60,9319  | 32,7199  |
| 373,765 | 0,57     | 0,705479  | 373,764242  | 0,917       | 0,941      | 60,8772  | 33,3846  |
| 373,597 | 0,588    | 0,71471   | 373,604274  | 0,931       | 0,951      | 58,3333  | 33,0610  |
| 373,508 | 0,598    | 0,719766  | 373,514292  | 0,949       | 0,964      | 58,6957  | 33,9324  |
| 373,439 | 0,606    | 0,723778  | 373,444306  | 0,962       | 0,973      | 58,7459  | 34,4335  |
| 373,357 | 0,616    | 0,728758  | 373,364322  | 0,973       | 0,98       | 57,9545  | 34,4754  |
| 373,247 | 0,63     | 0,735676  | 373,244346  | 0,983       | 0,987      | 56,0317  | 34,1623  |
| 373,187 | 0,638    | 0,739606  | 373,204354  | 0,989       | 0,992      | 55,0157  | 34,1255  |
| 373,157 | 0,642    | 0,741567  | 373,164362  | 0,995       | 0,996      | 54,9844  | 34,3102  |

Cálculo de error para el ELV – Agua/Ácido acético

*Nota.* Se muestra de manera cuantitativa la aproximación entre los datos experimentales y teóricos para las curvas de equilibrio entre la mezcla agua/ácido acético, a través del porcentaje de error.

De acuerdo con la **tabla 6** se puede apreciar que para la fase líquida el acercamiento es menor con un máximo de error del 98% aproximadamente y un mínimo del 20%, en contraste con la adaptación para la fase vapor, la cual presenta un máximo de error de 68% con un mínimo del 15%. De esta manera es posible concluir que el modelo en

términos generales puede adaptarse de manera apropiada al comportamiento de la mezcla, sin embargo, puede presentar dispersión e inexactitud para algunos datos experimentales.

3.2.4.d ELV Agua – Ácido propiónico. Para la interacción entre el agua y el ácido propiónico se evaluó para un valor de presión de 101320  $\frac{N}{m^2}$  (1,01320 bar), ya que según la base de datos utilizada es de la cual se obtiene una mayor cantidad de valores experimentales. El estudio se llevó a cabo para un rango de temperatura que oscila entre valores muy cercanos a 273 -291 K, Sin embargo, se excluyeron los valores que se encontraban por encima de 273 K, ya que entre mayor es el valor de la temperatura, mayor es el porcentaje de error, por encima del 200%

#### Figura 20

Diagrama T-xy Agua / Ácido propiónico. Fuente: AmerAmezaga, S. An. Quim., 1975, 71, 127 Equilibrio vapor- líquido a 760mm de sistemas binarios formados por ácido propiónico con agua y alcoholes n- amílico, isoamílico, sec- amílico, t- amílico



*Nota.* Se aprecia la representación gráfica del comportamiento de la mezcla en estado de equilibrio, tanto para la fase líquida como para la fase vapor del agua y el ácido propiónico. Datos experimentales tomados de Aspen Plus.

Según la **figura 20**, es posible apreciar un comportamiento similar al generado por la **gráfica 19**, esto debido a que las propiedades entre las sustancias partícipes de la mezcla son similares y así mismo su comportamiento, de acuerdo con esto, se visualiza

que la predicción del comportamiento es aceptable, a pesar de la dispersión aparente entre los datos.

## Tabla 7

|         | TEORICO  |          | Е           | XPERIMENTA  | L          | %E       | rror     |
|---------|----------|----------|-------------|-------------|------------|----------|----------|
| TOTAL   | LIQUID1  | VAPOR    | <b>T</b>    | Liquid mole | Vapor mole | LIQUID1  | VAPOR    |
| TOTAL   | MOLEFRAC | MOLEFRAC | Temperature | fraction    | fraction   | MOLEFRAC | MOLEFRAC |
| TEMP    | WATER    | WATER    | (K)         | WATER       | WATER      | WATER    | WATER    |
| 410.55  | 0.014    | 0.115672 | 410.61687   | 0.012       | 0.104      | 14,2857  | 10.0906  |
| 407,866 | 0.026    | 0,198481 | 407,71745   | 0,025       | 0,191      | 3,8462   | 3,7691   |
| 405,016 | 0,04     | 0,279908 | 405,21795   | 0,051       | 0,25       | 27,5000  | 10,6849  |
| 402,435 | 0,054    | 0,348221 | 402,41851   | 0,087       | 0,344      | 61,1111  | 1,2122   |
| 401,069 | 0,062    | 0,382404 | 401,11877   | 0,11        | 0,362      | 77,4194  | 5,3357   |
| 397,108 | 0,088    | 0,474324 | 397,01959   | 0,12        | 0,458      | 36,3636  | 3,4415   |
| 395,497 | 0,1      | 0,508819 | 395,41991   | 0,137       | 0,508      | 37,0000  | 0,1610   |
| 392,845 | 0,122    | 0,562199 | 392,92041   | 0,154       | 0,56       | 26,2295  | 0,3911   |
| 390,502 | 0,144    | 0,610107 | 390,62087   | 0,198       | 0,598      | 37,5000  | 1,9844   |
| 390,307 | 0,146    | 0,61358  | 390,52089   | 0,209       | 0,599      | 43,1507  | 2,3762   |
| 388,304 | 0,168    | 0,648011 | 388,22135   | 0,249       | 0,645      | 48,2143  | 0,4647   |
| 386,694 | 0,188    | 0,674237 | 386,72165   | 0,258       | 0,679      | 37,2340  | 0,7064   |
| 385,124 | 0,21     | 0,698689 | 385,12197   | 0,293       | 0,704      | 39,5238  | 0,7601   |
| 383,736 | 0,232    | 0,719458 | 383,72225   | 0,356       | 0,731      | 53,4483  | 1,6043   |
| 383,047 | 0,244    | 0,729499 | 383,02239   | 0,367       | 0,748      | 50,4098  | 2,5361   |
| 382,298 | 0,258    | 0,740228 | 382,22255   | 0,389       | 0,756      | 50,7752  | 2,1307   |
| 381,797 | 0,268    | 0,747309 | 381,82263   | 0,414       | 0,767      | 54,4776  | 2,6349   |
| 381,415 | 0,276    | 0,752656 | 381,42271   | 0,428       | 0,773      | 55,0725  | 2,7030   |
| 380,613 | 0,294    | 0,763754 | 380,62287   | 0,443       | 0,782      | 50,6803  | 2,3890   |
| 379,437 | 0,324    | 0,779787 | 379,42311   | 0,495       | 0,811      | 52,7778  | 4,0028   |
| 378,622 | 0,348    | 0,790776 | 378,62327   | 0,537       | 0,822      | 54,3103  | 3,9485   |
| 378,311 | 0,358    | 0,794945 | 378,32333   | 0,562       | 0,834      | 56,9832  | 4,9129   |
| 377,031 | 0,406    | 0,812192 | 377,02359   | 0,591       | 0,847      | 45,5665  | 4,2857   |
| 376,716 | 0,42     | 0,816491 | 376,72365   | 0,609       | 0,844      | 45,0000  | 3,3692   |
| 376,005 | 0,456    | 0,826322 | 376,02379   | 0,645       | 0,86       | 41,4474  | 4,0757   |
| 375,934 | 0,46     | 0,827318 | 375,92381   | 0,661       | 0,87       | 43,6957  | 5,1591   |
| 375,334 | 0,498    | 0,835958 | 375,32393   | 0,686       | 0,877      | 37,7510  | 4,9096   |
| 374,526 | 0,566    | 0,848481 | 374,52409   | 0,739       | 0,892      | 30,5654  | 5,1290   |
| 374,237 | 0,598    | 0,853432 | 374,22415   | 0,761       | 0,898      | 27,2575  | 5,2222   |
| 373,819 | 0,656    | 0,861482 | 373,82423   | 0,796       | 0,909      | 21,3415  | 5,5158   |
| 373,62  | 0,69     | 0,86595  | 373,62427   | 0,814       | 0,914      | 17,9710  | 5,5488   |
| 373,32  | 0,75     | 0,874209 | 373,32433   | 0,833       | 0,917      | 11,0667  | 4,8948   |
| 373,32  | 0,752    | 0,874439 | 373,32433   | 0,852       | 0,921      | 13,2979  | 5,3247   |
| 373,124 | 0,796    | 0,88176  | 373,12437   | 0,872       | 0,928      | 9,5477   | 5,2441   |
| 373,115 | 0,798    | 0,882137 | 373,32433   | 0,906       | 0,937      | 13,5338  | 6,2193   |
| 373,106 | 0,8      | 0,882519 | 373,22435   | 0,918       | 0,94       | 14,7500  | 6,5133   |
| 373,022 | 0,82     | 0,88663  | 373,02439   | 0,943       | 0,95       | 15,0000  | 7,1473   |

Cálculo de error para el ELV – Agua/Ácido propiónico

*Nota.* Se muestra de manera cuantitativa la aproximación entre los datos experimentales y teóricos para las curvas de equilibrio entre la mezcla agua/ácido propiónico, a través del porcentaje de error.

Para este caso en particular es posible evidenciar según la **tabla 7**, que el modelo se adecúa de manera adecuada a ambas fases, lo cual se le puede atribuir a los rangos de

temperaturas tan estrechos para los cuales se evaluó el comportamiento de la mezcla. Para la fase líquida se presenta un mayor porcentaje de error con un valor máximo de 58% y un valor mínimo del 0.8%; mientras que para la fase vapor se aprecia un valor máximo de error del 43% y un mínimo del 0.0005%, es decir, que, para algunas condiciones de temperatura puntuales, la aproximación es supremamente cercana.

3.2.4.e ELV Ácido acético – Ácido propiónico. A continuación se procede a estudiar el comportamiento sobre la mezcla binaria ácido acético/ácido propiónico, la cual se evalúa bajo una presión de 101325  $\frac{N}{m^2}$  (1,01325 bar), para un rango de temperatura que oscila entre 391 – 408 K aproximadamente.

# Figura 21

Diagrama T-xy Ácido acético/ Ácido propiónico. Fuente: Malijevska, I.; Sysova, M.; Vlckova, D. Collect. Czech. Chem. Commun., 1986, 51, 194 Equilibrio vapor- líquido en sistemas fuertemente asociados, los sistemas ácido acético- ácido propiónico y ácido



*Nota.* Se aprecia la representación gráfica del comportamiento de la mezcla en estado de equilibrio, tanto para la fase líquida como para la fase vapor del ácido acético y el ácido propiónico. Datos experimentales tomados de Aspen Plus.

En la **figura 21** se registra de manera visual el comportamiento de las sustancias tanto para la fase vapor como para la fase líquida, de acuerdo con esto, se proyecta una aproximación eficiente del modelo a los datos experimentales y teóricos, con ligeras dispersiones aparentes entre los paquetes de datos. Sin embargo, esto se refutará o ratificará por medio del cálculo de los porcentajes de error para cada uno de los componentes.

#### Tabla 8

|               | TEORICO                         |                               | E                  | XPERIMENTA                          | L                                  | % E                            | rror                         |
|---------------|---------------------------------|-------------------------------|--------------------|-------------------------------------|------------------------------------|--------------------------------|------------------------------|
| TOTAL<br>TEMP | LIQUID1<br>MOLEFRAC<br>ACETI-AC | VAPOR<br>MOLEFRAC<br>ACETI-AC | Temperature<br>(K) | Liquid mole<br>fraction<br>ACETI-AC | Vapor mole<br>fraction<br>ACETI-AC | LIQUID1<br>MOLFRAC<br>ACETI-AC | VAPOR<br>MOLFRAC<br>ACETI-AC |
| 412,962       | 0,0314285                       | 0,0623661                     | 412,986396         | 0,049                               | 0,086                              | 55,9094                        | 37,8954                      |
| 411,631       | 0,0728571                       | 0,138978                      | 411,61667          | 0,108                               | 0,171                              | 48,2354                        | 23,0411                      |
| 408,643       | 0,171429                        | 0,299109                      | 408,657262         | 0,218                               | 0,319                              | 27,1663                        | 6,6501                       |
| 408,189       | 0,187143                        | 0,322093                      | 408,227348         | 0,301                               | 0,417                              | 60,8396                        | 29,4657                      |
| 405,976       | 0,267143                        | 0,429769                      | 405,9678           | 0,332                               | 0,448                              | 24,2780                        | 4,2420                       |
| 405,148       | 0,298571                        | 0,468196                      | 404,16816          | 0,381                               | 0,497                              | 27,6078                        | 6,1521                       |
| 402,773       | 0,394286                        | 0,573006                      | 402,778438         | 0,444                               | 0,559                              | 12,6086                        | 2,4443                       |
| 402,671       | 0,398571                        | 0,577374                      | 402,698454         | 0,448                               | 0,562                              | 12,4016                        | 2,6627                       |
| 402,097       | 0,422857                        | 0,601587                      | 402,11857          | 0,472                               | 0,586                              | 11,6217                        | 2,5910                       |
| 401,666       | 0,441429                        | 0,61951                       | 401,678658         | 0,485                               | 0,601                              | 9,8704                         | 2,9878                       |
| 401,015       | 0,47                            | 0,646133                      | 401,008792         | 0,515                               | 0,627                              | 9,5745                         | 2,9612                       |
| 400,098       | 0,511429                        | 0,682821                      | 400,11897          | 0,553                               | 0,66                               | 8,1284                         | 3,3422                       |
| 399,912       | 0,52                            | 0,690145                      | 399,909012         | 0,565                               | 0,672                              | 8,6538                         | 2,6292                       |
| 399,85        | 0,522857                        | 0,692567                      | 399,859022         | 0,569                               | 0,676                              | 8,8252                         | 2,3921                       |
| 398,762       | 0,574286                        | 0,734569                      | 398,779238         | 0,613                               | 0,712                              | 6,7412                         | 3,0724                       |
| 397,974       | 0,612857                        | 0,764227                      | 397,979398         | 0,653                               | 0,75                               | 6,5501                         | 1,8616                       |
| 397,069       | 0,658571                        | 0,797532                      | 397,06958          | 0,692                               | 0,78                               | 5,0760                         | 2,1983                       |
| 395,711       | 0,73                            | 0,846013                      | 395,729848         | 0,759                               | 0,834                              | 3,9726                         | 1,4200                       |
| 393,62        | 0,847143                        | 0,917676                      | 393,62027          | 0,867                               | 0,91                               | 2,3440                         | 0,8365                       |
| 391,878       | 0,951429                        | 0,974973                      | 391,880618         | 0,968                               | 0,978                              | 1,7417                         | 0,3105                       |

Cálculo de error para el ELV – Agua acético/Ácido propiónico

*Nota.* Se muestra de manera cuantitativa la aproximación entre los datos experimentales y teóricos para las curvas de equilibrio entre la mezcla ácido acético/ácido propiónico, a través del porcentaje de error.

A pesar de que existe un buen acercamiento, la aproximación deducida a partir de la **figura 21,** con la **tabla 8** se rechaza en cierta medida esta hipótesis, ya que tal y como se evidencia registrado, los porcentajes de error para el comportamiento de ambas fases superan el 60% de error. Para la fase líquida se aprecia un mayor grado de error, con un valor máximo del 75% y un valor mínimo del 2% aproximadamente, en contraste con la fase vapor, la cual presenta un porcentaje de error del 64% máximo y 1% mínimo. Lo

anterior quiere decir que el modelo se ajusta con mayor precisión para la fase vapor que para la líquida, para la cual también se precisa un buen acercamiento, en menor medida.

3.2.4.f ELV Ácido propiónico – Ácido butírico. Ahora, se estudia la mezcla binaria ácido propiónico/ácido butírico, la cual fue evaluada bajo condiciones isobáricas, con una presión de 101320  $\frac{N}{m^2}$  (1,01320 bar) para un rango de temperatura entre

# Figura 22

Diagrama T-xy Ácido propiónico/ Ácido butírico. Fuente: Tatsievskaya, G. I.; Kushner, T. M. Sb. Nauch. Tr., Ivanov. Energ. Inst., 1972, No. 14, 256-7 Equilibrio líquido- vapor en los sistemas ácido propiónico + ácido isobutírico y ácido butírico + ác



*Nota.* Se aprecia la representación gráfica del comportamiento de la mezcla en estado de equilibrio, tanto para la fase líquida como para la fase vapor del ácido propiónico y el ácido isobutírico. Datos experimentales tomados de Aspen Plus.

Según la **figura 22**, se deduce una predicción del comportamiento para la mezcla con buena aproximación, ya que en términos generales se aprecia la misma tendencia tanto para los datos teóricos como experimentales. Sin embargo, también es posible apreciar una ligera dispersión entre los datos, lo cual será validado a partir del porcentaje de error correspondiente a cada uno de los puntos graficados. Cabe destacar que las diferencias entre las temperaturas evaluadas pueden representar impacto perturbador frente al resultado del equilibrio líquido – vapor de la mezcla binaria.

## Tabla 9

|               | TEORICO                         |                               | E                  | XPERIMENTA                          | L                                  | % Error                     |                              |  |
|---------------|---------------------------------|-------------------------------|--------------------|-------------------------------------|------------------------------------|-----------------------------|------------------------------|--|
| TOTAL<br>TEMP | LIQUID1<br>MOLEFRAC<br>PROPI-01 | VAPOR<br>MOLEFRAC<br>PROPI-01 | Temperature<br>(K) | Liquid mole<br>fraction<br>PROPI-01 | Vapor mole<br>fraction<br>PROPI-01 | LIQUID1 MOLFRAC<br>PROPI-01 | VAPOR<br>MOLFRAC<br>PROPI-01 |  |
| 427,565       | 0,00285714                      | 0,0130469                     | 427,51349          | 0                                   | 0                                  | -                           |                              |  |
| 422,421       | 0,07                            | 0,208717                      | 422,41451          | 0,21                                | 0,23                               | 200,0000                    | 10,1971                      |  |
| 421,281       | 0,0957142                       | 0,251964                      | 421,31473          | 0,284                               | 0,314                              | 196,7167                    | 24,6210                      |  |
| 418,813       | 0,185714                        | 0,351685                      | 418,81523          | 0,486                               | 0,506                              | 161,6927                    | 43,8788                      |  |
| 417,619       | 0,26                            | 0,408444                      | 417,61547          | 0,6                                 | 0,621                              | 130,7692                    | 52,0404                      |  |
| 416,611       | 0,348571                        | 0,467636                      | 416,61567          | 0,7                                 | 0,727                              | 100,8199                    | 55,4628                      |  |
| 415,512       | 0,485714                        | 0,55943                       | 415,51589          | 0,8                                 | 0,818                              | 64,7060                     | 46,2203                      |  |
| 414,612       | 0,667143                        | 0,696527                      | 414,61607          | 0,9                                 | 0,909                              | 34,9036                     | 30,5046                      |  |
| 413,998       | 1                               | 1                             | 413,91621          | 1                                   | 1                                  | 0,0000                      | 0,0000                       |  |

Cálculo de error para el ELV – Agua propiónico /Ácido butírico

*Nota.* Se muestra de manera cuantitativa la aproximación entre los datos experimentales y teóricos para las curvas de equilibrio entre la mezcla ácido propiónico/ácido isobutírico, a través del porcentaje de error.

De la **tabla 9** se puede establecer una relación proporcional para las fases implicadas en la mezcla, es decir, que los errores son medianamente cercanos, lo que implica una dispersión similar frente a los datos teóricos. Para la fase líquida se generó un error máximo del 72% aproximadamente y un mínimo del 16%, por otro lado, para la fase vapor se calculó un porcentaje de error del 71% como punto máximo, y un mínimo del 21%.

De lo anterior es posible concluir que el modelo presenta una buena adaptación para predecir el comportamiento de la fase líquida y vapor en equilibrio.

3.2.4.g ELV Agua – Etanol. Finalmente se procede a validar la efectividad del modelo termodinámico sobre la mezcla binaria de agua con etanol. Se realizó en condiciones isobáricas, con un valor para la presión de 101320  $\frac{N}{m^2}$  (1,01320 bar) bajo un rango de temperaturas entre 351 - 373 K aproximadamente. Es importante resaltar que es el estudio del cual fue posible extraer la mayor cantidad de datos experimentales, sin embargo, se descartaron los daos que presentaban porcentajes de error por encima de 200%.

Diagrama T-xy Agua/ Etanol. Fuente: Stabnikov, V. M.; Metyushev, B. D.; Protsyuk, T. B.; Yushchenko, N. M. Pishch. Prom-st. (Kiev), 1972, No. 15, 49-56 Equilibrio en el sistema alcohol etílico + agua a presión atmosférica.



*Nota.* Se aprecia la representación gráfica del comportamiento de la mezcla en estado de equilibrio, tanto para la fase líquida como para la fase vapor del agua y el etanol. Datos experimentales tomados de Aspen Plus.

De la **figura 23** es oportuno destacar que la tendencia para los datos teóricos y experimentales es muy próxima entre sí, por lo cual se puede especular de un buen acercamiento del modelo termodinámico sobre el comportamiento de la mezcla binaria, tanto para la fase líquida como para la fase vapor, sin embargo, esto será validado a través del cálculo del porcentaje de error.

El porcentaje de error se calculó para 81 puntos de los 104 disponibles de forma experimental, debido a que algunos de los datos generaban una dispersión supremamente abrupta con porcentajes de error por encima de los 1000%, perturbando significativamente la percepción para la validación del modelo sobre la mezcla.

# Tabla 10

| TEORICO   |            | E        | KPERIMENTAI      | %Error      |            |         |         |
|-----------|------------|----------|------------------|-------------|------------|---------|---------|
| TOTAL     | LIQUID1    | VAPOR    |                  | Liquid mole | Vapor mole | LIQUID1 | VAPOR   |
| TOTAL     | MOLEFRAC   | MOLEFRAC | Temperature      | fraction    | fraction   | MOLFRAC | MOLFRAC |
| TEMP      | WATER      | WATER    | (K)              | WATER       | WATER      | WATER   | WATER   |
| 351,439   | 0,144286   | 0,136794 | 351,439562       | 0,15        | 0,144      | 3,9602  | 5,2678  |
| 351,457   | 0,157143   | 0,147205 | 351,469553       | 0,16        | 0,153      | 1,8181  | 3,9367  |
| 351,497   | 0,178571   | 0,163981 | 351,499544       | 0,17        | 0,1615     | 4,7998  | 1,5130  |
| 351,529   | 0,192857   | 0,174779 | 351,529535       | 0,18        | 0,17       | 6,6666  | 2,7343  |
| 351,568   | 0,208571   | 0,18631  | 351,569523       | 0,19        | 0,1775     | 8,9039  | 4,7287  |
| 351,596   | 0,218571   | 0,193463 | 351,599514       | 0,2         | 0,1845     | 8,4966  | 4,6329  |
| 351,626   | 0,228571   | 0,200476 | 351,629505       | 0,21        | 0,192      | 8,1248  | 4,2279  |
| 351,658   | 0,238571   | 0,207352 | 351,659496       | 0,22        | 0,1985     | 7,7843  | 4,2691  |
| 351,697   | 0,25       | 0,215045 | 351,699484       | 0,23        | 0,205      | 8,0000  | 4,6711  |
| 351,727   | 0,258571   | 0,220701 | 351,729475       | 0,24        | 0,211      | 7,1822  | 4,3955  |
| 351,787   | 0,274286   | 0,230823 | 351,789457       | 0,25        | 0,217      | 8,8543  | 5,9886  |
| 351,839   | 0,287143   | 0,238872 | 351,839442       | 0,26        | 0,223      | 9,4528  | 6,6446  |
| 351,888   | 0,298571   | 0,245855 | 351,889427       | 0,27        | 0,229      | 9,5692  | 6,8557  |
| 351,926   | 0,307143   | 0,250989 | 351,929415       | 0,28        | 0,235      | 8,8373  | 6,3704  |
| 351,985   | 0,32       | 0,258527 | 351,989397       | 0,29        | 0,241      | 9,3750  | 6,7796  |
| 352,019   | 0,327143   | 0,262631 | 352,019388       | 0,3         | 0,247      | 8,2970  | 5,9517  |
| 352,075   | 0,338571   | 0,269078 | 352,07937        | 0,31        | 0,2525     | 8,4387  | 6,1610  |
| 352,126   | 0,348571   | 0,274599 | 352,129355       | 0,32        | 0,258      | 8,1966  | 6,0448  |
| 352,178   | 0,358571   | 0,28001  | 352,17934        | 0,33        | 0,2635     | 7,9680  | 5,8962  |
| 352,224   | 0,367143   | 0,284563 | 352,229325       | 0,34        | 0,269      | 7,3930  | 5,4691  |
| 352,279   | 0,377143   | 0,289777 | 352,27931        | 0,35        | 0,2745     | 7,1970  | 5,2720  |
| 352,327   | 0,385714   | 0,294165 | 352,329295       | 0,36        | 0,28       | 6,6666  | 4,8153  |
| 352,393   | 0,397143   | 0,299899 | 352,399274       | 0,37        | 0,2855     | 6,8346  | 4,8013  |
| 352,426   | 0,402857   | 0,302718 | 352,429265       | 0,38        | 0,291      | 5,6737  | 3,8709  |
| 352,478   | 0.411429   | 0,306887 | 352,47925        | 0.39        | 0,297      | 5,2084  | 3,2217  |
| 352,521   | 0,418571   | 0,310308 | 352,529235       | 0,4         | 0,302      | 4,4368  | 2,6773  |
| 352,565   | 0,425714   | 0,313681 | 352,569223       | 0.41        | 0,308      | 3,6912  | 1,8111  |
| 352,627   | 0,435714   | 0,318325 | 352,629205       | 0,42        | 0,3135     | 3,6065  | 1,5157  |
| 352,673   | 0,442857   | 0,321588 | 352,67919        | 0,43        | 0,319      | 2,9032  | 0,8048  |
| 352,728   | 0,451429   | 0,325444 | 352,729175       | 0.44        | 0,324      | 2,5317  | 0,4437  |
| 352,737   | 0,452857   | 0,326081 | 352,77916        | 0,45        | 0,329      | 0,6309  | 0,8952  |
| 352,775   | 0,458571   | 0,32861  | 352,839142       | 0,46        | 0,334      | 0,3116  | 1,6402  |
| 352,88    | 0.474286   | 0.335426 | 352,87913        | 0.47        | 0.339      | 0,9037  | 1.0655  |
| 352,899   | 0,477143   | 0,336644 | 352,899124       | 0,48        | 0,3435     | 0,5988  | 2,0366  |
| 352,968   | 0,48/143   | 0,340858 | 352,969103       | 0,49        | 0,348      | 0,5865  | 2,0953  |
| 353,017   | 0,494286   | 0,343821 | 353,019088       | 0.5         | 0,3524     | 1,1560  | 2,4952  |
| 353,087   | 0,504286   | 0,347907 | 353,089067       | 0,51        | 0,3565     | 1,1331  | 2,4699  |
| 353,159   | 0,514286   | 0.351923 | 353,159046       | 0.52        | 0,3605     | 1,1111  | 2,4372  |
| 353,221   | 0.522857   | 0.355311 | 353,229025       | 0,53        | 0,3645     | 1,3001  | 2,5862  |
| 353,305   | 0,534286   | 0.359757 | 353,309001       | 0.54        | 0,300      | 1,0695  | 2,2913  |
| 353,38    | 0.544286   | 0.363583 | <u>353,37898</u> | 0.55        | 0.372      | 1,0498  | 2,3150  |
| 252,412   | 0,548571   | 0.270042 | 252,418908       | 0.50        | 0.3705     | 2,0834  | 2,0190  |
| 253,511   | 0.501429   | 0.370013 | 252,010938       | 0.57        | 0.303      | 1,5200  | 2,3040  |
| 252.60    | 0.512051   | 0.270266 | 252 600004       | 0,58        | 0.305      | 1,2409  | 2,3400  |
| 252 702   | 0,004200   | 0.323465 | 252,090004       | 0,58        | 0,2000     | 0,9779  | 2,1490  |
| 353 879   | 0.090714   | 0,302403 | 353 97992        | 0.0         | 0,3030     | 0,7190  | 1,3170  |
| 353 000   | 0.007143   | 0,300322 | 353 009704       | 10,0        | 0,3952     | 0,4700  | 1 2/12  |
| 354 072   | 0,021429   | 0,591540 | 254 07977        | 0.02        | 0,5800     | 0,2300  | 1,5415  |
| 354.073   | 0.05       | 0.334340 | 354,07077        | 10.00       | 0,4000     | 0,0000  | 1.3031  |
| 354 279   | 0.652857   | 0.402523 | 354 27871        | 0.65        | 0.408      | 0,2220  | 13607   |
| 1 001,210 | 1 0,002001 | 0,402020 | 004,21011        | . 0,00      | 0,700      | 0,7010  | 1,00001 |

# Cálculo de error para el ELV – Agua /Etanol. Parte 1

*Nota.* Se muestra de manera cuantitativa la aproximación entre los datos experimentales y teóricos para las curvas de equilibrio entre la mezcla agua/etanol, a través del porcentaje de error.

# Tabla 11

| TEORICO                   |           |          | EXPERIMENTAL   | % Error     |            |           |         |  |
|---------------------------|-----------|----------|----------------|-------------|------------|-----------|---------|--|
| TOTAL                     | LIQUID1   | VAPOR    | Temperature    | Liquid mole | Vapor mole | LIQUID1   | VAPOR   |  |
| TEMP                      | MOLEFRAC  | MOLEFRAC | (K)            | fraction    | fraction   | MOLFRAC   | MOLFR   |  |
|                           | WATER     | WATER    | (7             | WATER       | WATER      | WATER     | WATE    |  |
| 354,372                   | 0,662857  | 0,406022 | 354,37868      | 0,66        | 0,412      | 0,4310    | 1,472   |  |
| 354,469                   | 0,672857  | 0,409541 | 354,468653     | 0,67        | 0,416      | 0,4246    | 1,577   |  |
| 354,569                   | 0,682857  | 0,41309  | 354,57862      | 0,68        | 0,4195     | 0,4184    | 1,551   |  |
| 354,672                   | 0,692857  | 0,416681 | 354,67859      | 0,69        | 0,4235     | 0,4124    | 1,636   |  |
| 354,764                   | 0,701429  | 0,419804 | 354,768563     | 0,7         | 0,4275     | 0,2037    | 1,833   |  |
| 354,874                   | 0.711429  | 0.423511 | 354,87853      | 0.71        | 0,432      | 0,2009    | 2,004   |  |
| 354,973                   | 0.72      | 0,426757 | 354,9785       | 0,72        | 0,4365     | 0,0000    | 2,283   |  |
| 300,009                   | 0.725714  | 0,429517 | 300,068473     | 0.73        | 0,441      | 0,3929    | 2,673   |  |
| 300,166                   | 0,730714  | 0,432909 | 300,17844      | 0,74        | 0,4400     | 0,0826    | 2,908   |  |
| 055 445                   | 0,744200  | 0,4364   | 300,200407     | 0,70        | 0,4495     | 0,7677    | 3,001   |  |
| 300,410                   | 0,754286  | 0,44062  | 355,408371     | 0,76        | 0,454      | 0,7575    | 3,036   |  |
| 300,061                   | 0,764286  | 0,445026 | 355,558326     | 0.70        | 0,458      | 0,7476    | 2,915   |  |
| <u>300,671</u><br>966,000 | 0.795714  | 0.446303 | 300,67629      | 0.70        | 0.4620     | 0.5455    | 3,100   |  |
| <u>300,909</u><br>966,011 | 0.701/14  | 0.455253 | 250,900221     | 0,79        | 0,467      | 1,0920    | 2,000   |  |
| 300,011<br>966,119        | 0,791429  | 0,4002   | 256 129165     | 0,0         | 0,472      | 0.0056    | 2,011   |  |
| 356.23                    | 0,757143  | 0,461237 | 356 248119     | 0,000       | 0,4745     | 0,3030    | 2,071   |  |
| 356 378                   | 0,002007  | 0,404433 | 356 37808      | 0,01        | 0,477      | 0,0037    | 2,700   |  |
| 356.471                   | 0.81/1286 | 0,471192 | 356498044      | 0,010       | 0,40       | 0,017     | 2390    |  |
| 356,634                   | 0.014200  | 0475729  | 356 628005     | 0,02        | 0,4020     | 0,7017    | 2,055   |  |
| 356 773                   | 0.827143  | 0479555  | 356 77796      | 0.83        | n488       | 0 3454    | 1 761   |  |
| 356,919                   | 0.832857  | 0,483574 | 356,907921     | 0.835       | 0,491      | 0.2573    | 1 535   |  |
| 357,034                   | 0,837143  | 0,486727 | 357,047879     | 0,84        | 0,4945     | 0,3413    | 1.597   |  |
| 357.281                   | 0.845714  | 0,493425 | 357,287807     | 0.845       | 0.4998     | 0.0844    | 1.292   |  |
| 357,324                   | 0,847143  | 0,494596 | 357,327795     | 0.85        | 0.502      | 0,3373    | 1,497   |  |
| 357,457                   | 0,851429  | 0,498213 | 357,487747     | 0,855       | 0,506      | 0,4194    | 1,563   |  |
| 357,645                   | 0,857143  | 0,503291 | 357,67769      | 0,86        | 0,51       | 0,3333    | 1,333   |  |
| 357,845                   | 0,862857  | 0,508687 | 357,847639     | 0,865       | 0,5145     | 0,2484    | 1,142   |  |
| 358,058                   | 0,868571  | 0,514437 | 358,027585     | 0,87        | 0,52       | 0,1645    | 1,081   |  |
| 358,228                   | 0,872857  | 0,519003 | 358,227525     | 0,875       | 0,526      | 0,2455    | 1,348   |  |
| 358,406                   | 0,877143  | 0,523806 | 358,407471     | 0,88        | 0,5325     | 0,3257    | 1,659   |  |
| 358,659                   | 0,882857  | 0,530614 | 358,627405     | 0,885       | 0,5395     | 0,2427    | 1,674   |  |
| 358,86                    | 0,887143  | 0,536051 | 358,857336     | 0,89        | 0,5472     | 0,3220    | 2,079   |  |
| 359,057                   | 0,89      | 0,542791 | 359,087267     | 0,895       | 0,555      | 0,5618    | 2,249   |  |
| 359,355                   | 0,895714  | 0,550985 | 359,327195     | 0,9         | 0,563      | 0,4785    | 2,180   |  |
| 359,594                   | 0,9       | 0,557555 | 359,587117     | 0,905       | 0,5717     | 0,5556    | 2,537   |  |
| 359,846                   | 0,904286  | 0,564524 | 359,897024     | 0,91        | 0,581      | 0,6319    | 2,918   |  |
| 360,3                     | 0,911429  | 0,577124 | 360,22695      | 0,915       | 0,5909     | 0,3918    | 2,387   |  |
| 360,090                   | 0,915714  | 0,080343 | 360,57688      | 0,92        | 0,601      | 0,4681    | 2,674   |  |
| 360,907                   | 0,92      | 0,594114 | 360,886818     | 0,925       | 0,6115     | 0,5435    | 2,926   |  |
| 361,239                   | 0.924286  | 0.60349  | 361,256744     | 0,93        | 0,6225     | 0,6182    | 3,150   |  |
| 361,032                   | 0,920071  | 0,013032 | 361,62667      | 0,930       | 0.634      | 0,0924    | 0,000   |  |
| 362,033                   | 0,334200  | 0.020070 | 362,040300     | 0,34        | 0.0400     | 0,6110    | 3 1 3 2 |  |
| 363,099                   | 0,944286  | 0.657249 | 363 02639      | 0,040       | 0.6755     | 0,0000    | 2776    |  |
| 363 577                   | 0.948571  | 0.671459 | 363 596276     | 0.955       | 0.6925     | 0.6778    | 3 1 3 3 |  |
| 364,09                    | 0,952857  | 0,686863 | 364,17616      | 0,96        | 0,7095     | 0,7496    | 3.295   |  |
| 364,831                   | 0,958571  | 0,709514 | 364,976        | 0,965       | 0,7305     | 0,6707    | 2.957   |  |
| 366,085                   | 0,967143  | 0,748862 | 366,02579      | 0,97        | 0,7558     | 0,2954    | 0,926   |  |
| 366,547                   | 0,97      | 0,763663 | 366,545686     | 0,972       | 0,7673     | 0,2062    | 0,476   |  |
| 367,032                   | 0,972857  | 0,779433 | 367,065582     | 0,974       | 0,7795     | 0,1175    | 0,008   |  |
| 367,283                   | 0,974286  | 0,787708 | 367,585478     | 0,976       | 0,792      | 0,1759    | 0,544   |  |
| 367,768                   | 0,977143  | 0,802753 | 368,105374     | 0,978       | 0,8057     | 0,0877    | 0,367   |  |
| 368,043                   | 0,978571  | 0,812052 | 368,62527      | 0,98        | 0,82       | 0,1460    | 0,978   |  |
| 368,324                   | 0,98      | 0,821675 | 369,145166     | 0,982       | 0,8345     | 0.2041    | 1,560   |  |
| 368,614                   | 0,981429  | 0,831635 | 369,665062     | 0,984       | 0,8491     | 0.2620    | 2,100   |  |
| 368,911                   | 0,982857  | 0,84195  | 370,184958     | 0,986       | 0,864      | 0.3198    | 2,618   |  |
| 369,216                   | 0,984286  | 0,852633 | 370,704854     | 0,988       | 0,88       | 0,3773    | 3,209   |  |
| 369,53                    | 0,985714  | 0,863704 | 3/1,22475      | 0,99        | 0,896      | 0,4348    | 3,739   |  |
| <u>369,852</u>            | 0,987143  | 0,875178 | 3/1,414/12     | 0,991       | 0,9042     | 0,3907    | 3,316   |  |
| 370,183                   | 0,988571  | 0.887075 | 3/1,6046/4     | 0,992       | 0.9142     | 0,3469    | 3,057   |  |
| 370,524                   | 0,99      | 0,899414 | 371,794636     | 0,993       | 0.9247     | 0,3030    | 2,811   |  |
| <u>370,874</u><br>271,205 | 0,991429  | 0.912216 | 371,984598     | 0.005       | 0.9356     | 0.2593    | 2,563   |  |
| 371,230                   | 0.992857  | 0,920001 | 373364600      | 0,990       | 0,9468     | 0.2108    | 1 001   |  |
| 371 605                   |           |          |                | L U.33D     | 1 0,5079   | 1 0,1724  | 1.301   |  |
| 371,605                   | 0,994200  | 0,000202 | 372 55 4 4 8 4 | 0 007       | 0.9699     | 0 1 2 9 2 | 1.500   |  |
| 371,605<br>371,986        | 0,994200  | 0,953613 | 372,554484     | 0,997       | 0,9688     | 0,1292    | 1,592   |  |

# Cálculo de error para el ELV – Agua /Etanol. Parte 2

*Nota.* Se muestra de manera cuantitativa la aproximación entre los datos experimentales y teóricos para las curvas de equilibrio entre la mezcla agua/etanol, a través del porcentaje de error.

De acuerdo con la **tabla 10 y 11**, se evidencia que en términos generales hay un buen acercamiento entre los datos teóricos y experimentales, variando con un poco más de notoriedad en la distribución de los datos que caracterizan a la fase de vapor con un porcentaje de error máximo del 96% y un valor mínimo del 0.11%. Sin embargo, esto puede explicarse de acuerdo a criterios como las condiciones operativas, posibles fallos experimentales o alta inestabilidad de la fase vapor para establecer equilibrio.

Es importante destacar que el porcentaje de error disminuye conforme incrementa la temperatura, es decir, que presenta una mayor adaptación a la mezcla frente a temperatura por encima de los 355 K. De hecho, los valores mínimos se obtienen en la **tabla 11**, la cual contiene los mínimos valores de temperatura bajo los cuales fue evaluada la mezcla binaria.

### 3.3 Modelamiento Matemático

### 3.3.1 Descripción del proceso general

Teniendo en cuenta las reacciones que se desencadenan en la digestión anaerobia, se observa que en la hidrolisis los polímeros complejos reacciona con agua y se convierten en monómeros simples, posteriormente con ayuda de las bacterias acidogénicas se convierten en productos intermedios críticos del proceso como los son el ácido butírico, propiónico y acético, estos compuestos alimentan a las bacterias acetogénicos que producen ácido acético, Hidrógeno y dióxido de carbono, el cual es el alimento para las bacterias metanogénicas para la producción de metano.

En este proyecto los carbohidratos son las macromoléculas que serán representativas en el balance de masa y cinética de este proceso, ya que estas son las que se convierten en azucares y posteriormente en los productos intermedios críticos del proceso, los ácidos grasos volátiles, también se produce Hidrógeno y dióxido de carbono, este proceso de desarrollar en biorreactor 1. Por último, con ayuda de las bacterias metanogénicas se produce metano y dióxido de carbono consumiendo el ácido acético existente, este proceso se desarrolla en el biorreactor 2.

### 3.3.2 Suposiciones

69

 Las reacciones que se tienen en cuenta no son todas las que se desarrollan en la digestión anaerobia, para mayor facilidad de desarrollo se utilizan las asociadas a los principales componentes de la pulpa de café, como lo es la celulosa y la Hemicelulosa en la etapa de la hidrolisis y acidogénesis, luego de estas etapas se tienen en cuenta tres compuestos intermedios como el ácido propiónico, el ácido butírico y el ácido acético, estos ácidos serán los compuestos iniciales de la últimas etapas de acetogénesis y metanogénesis.

• La pulpa de café se representa con su composición en términos de celulosa y Hemicelulosa.

• Se asumen condiciones estables de temperatura de 55°C a una presión de 1 bar a lo largo de todo el proceso.

• Se realizan los análisis respecto a la composición de celulosa y la tasa de dilución en los biorreactores 1 y 2.

• Se parte como referencia de [43] para desarrollar el modelo matemático

• Este proyecto se desarrolla en condiciones estacionarias

### 3.3.3 Reactores

3.3.3.a Ecuaciones Biorreactor 1 (BR1). Como se puede observar en la **figura 33** En el primer biorreactor (BR1) los gases producidos principalmente el Hidrógeno y dióxido de carbono por volatilidad irán a la parte superior del biorreactor y serán extraídos a un gasómetro que esta anexa al biorreactor por otro lado el digestato seguirá su camino a él biorreactor 2 donde producirá principalmente metano el cual será extraído a otro gasómetro en la parte superior del biorreactor (BR2).

Los carbohidratos representativos en el proceso de la digestión anaerobia y en la pulpa de café es la celulosa y la Hemicelulosa, en el balance de masa del biorreactor 1 (BR1)

se muestran como ecuaciones no lineales (Ec. (1 y 2), la celulosa se representa como  $S_0$  y su compuestos hidrolizado llamado celobiosa se representa como  $S_1$ .

# Figura SEQ Figura \\* ARABIC 24

Diagrama de proceso básico



*Nota.* Se presenta el diagrama de proceso básico, con sus respectivas entradas y salidas.

La ecuación 3 describe el estado estacionario de la concentración de la biomasa, la ecuación 4 a la 6 hace referencia a la formación de los compuestos intermedios críticos del proceso, ácido propiónico, ácido butírico y ácido acético, respectivamente, por último, la ecuación algebraica 7 especifica la tasa de flujo del Hidrógeno en fase gaseosa en BR1.

Todos los valores cinéticos necesarios para desarrollar la cinética y el balance de masa se encuentran en el **anexo 1.** 

### **Ecuaciones no lineales**

$$\frac{dS_0}{dt} = -D_1 S_0 - \beta X_1 S_0 + D_1 S_0^{in} = 0 \qquad [Ec. 2]$$

$$\frac{dS_1}{dt} = -D_1 S_1 + \beta X_1 S_0 - \frac{\mu_1 X_1}{Y_1} = 0 \qquad [Ec.3]$$

$$\frac{dX_1}{dt} = \mu_1 X_1 - D_1 X_1 = 0$$
 [Ec. 4]

$$\frac{dPr_1}{dt} = \frac{\mu_1 X_1}{Y_{Pr1}} - D_1 Pr_1 = 0 \qquad [Ec.5]$$

$$\frac{dBut_1}{dt} = \frac{\mu_1 X_1}{Y_{But1}} - D_1 But_1 = 0$$
 [Ec. 6]

$$\frac{dAc_1}{dt} = \frac{\mu_1 X_1}{Y_{Ac1}} - D_1 A C_1 = 0 \qquad [Ec.7]$$

#### **Ecuaciones auxiliares**

$$Q_{H2} = Y_{H2} \,\mu_1 \,X_1 \qquad [Ec.8]$$

Donde,

•  $D_1$  = Dilution rates = Tasas de dilución  $[h^{-1}]$ 

•  $S_0^{in}$  = Inlet cellulose concentration in BR1 = Concentración de celulosa de entrada en BR1  $\left[\frac{g}{dm^3}\right]$ 

- $S_0 = \text{Cellulose concentration} = \text{Concentración de celulosa} \frac{g}{dm^3}$
- $S_1$  = Cellobiose substrate concentration = Concentración de sustrato de celobiosa  $\left[\frac{g}{dm^3}\right]$
- $X_1$  = Acidogenic bacteria concentration = Concentración de bacterias acidógenas  $\left[\frac{g}{dm^3}\right]$

•  $\mu_1$  = Specific growth rate of propionate degrading bacteria = Tasa de crecimiento específico de bacterias acidogénicas  $[h^{-1}]$ 

- $Pr_1 = Propionate concentration = Concentración de ácido propiónico[\frac{g}{dm^3}]$
- $Ac_1$  = Acetate concentration = Concentración de ácido acético  $\left[\frac{g}{dm^3}\right]$
- $But_1$  = Butyrate concentration = Concentración de ácido butírico  $\left[\frac{g}{dm^3}\right]$
- $Q_{H2}$  = Hydrogen flow rate = Caudal de hidrógeno  $\left[\frac{g}{dm^3}\right]$
•  $\beta = 1 = \text{Coefficient of biodegradability} = \text{Coeficiente de biodegradabilidad } \left[\frac{L}{a_h}\right]$ 

•  $Y_1 = 0.08 =$  Yield coefficient for acidogenic bacteria = Coeficiente de rendimiento para bacterias acidogénicas

- $Y_{Pr1} = 4.2 =$  Yield coefficient for propionate = Coeficiente de rendimiento para ácido propiónico
- $Y_{But1} = 2.1 =$  Yield coefficient for butyrate = Coeficiente de rendimiento para ácido butírico
- $Y_{Ac1} = 1.1 =$  Yield coefficient for butyrate = Coeficiente de rendimiento para ácido acético

Teniendo en cuenta que la hidrolisis es una etapa estequiometria no depende de la cinética como los otros balances de masa, la ecuación 3 a la 8 depende de la cinética, el modelo cinético que más se aproxima al proceso biológico de la digestión anaerobia es el modelo de Monod ya que describe la interacción entre el crecimiento de microorganismos en un cultivo por lotes y la utilización del sustrato limitativo del crecimiento en aquellos sistemas donde prácticamente todo el sustrato es transformado en biomasa

$$u_1 = \frac{\mu_{1max}S_1}{KS_1 + S_1}$$
 [*Ec*. 9]

Donde,

- $S_1$  = Cellobiose substrate concentration = Concentración de sustrato de celobiosa  $\left[\frac{g}{dm^3}\right]$
- $\mu_1$  = Specific growth rate of propionate degrading bacteria = Tasa de crecimiento específico de bacterias acidogénicas  $[h^{-1}]$

- Model parameters = Parámetros del modelo
- Coeficientes  $[h^{-1}]$
- $\mu_{1max} = 0.568 \ [h^{-1}]$

•  $Ks_1 = 3.914 =$  Saturation coefficient for acidogenic bacteria = Coeficiente de saturación para bacterias acidogénicas  $\left[\frac{g}{dm^3}\right]$ 

3.3.3.b Resolución Biorreactor 1 (BR1).



Diagrama asociado a las ecuaciones del BR1



Se desarrollan ecuaciones 1 a la 6, con ayuda de la 8 y por último se obtiene el resultado de la 7, referente al flujo de hidrógeno al gasómetro. Entra la celulosa, reacciona a su hidrolizado celobiosa y se observan los primeros compuestos intermedios, ácido propiónico y butírico. Por me dio de las bacterias hidrolíticas y acidogénicas se produce hidrógeno.

*Nota.* Se presenta el diagrama de proceso para el biorreactor 1, con sus respectivas entradas y salidas.

La ecuación 2 a 7 se resuelven simultáneamente con ayuda del solver del software de Octave, estas ecuaciones hacen referencia a la celulosa que entra al reactor ( $S_0$ ), su hidrolizado, celobiosa ( $S_1$ ), la concentración de biomasa (hace referencia los microrganismos que están dentro del biorreactor) representada como ( $X_1$ )y la concentración de los compuestos intermedios, como el ácido propiónico, el ácido butírico y el ácido acético ( $Pr_1$ ,  $But_1$ ,  $Ac_1$  respectivamente), para resolver las ecuaciones se necesita fijar la concentración de celulosa inicial ( $S_0^{in}$ ), y el valor de la tasa de dilución  $D_1$ , estas variables se modifican conforme se desea observar la variación del flujo de Hidrógeno ( $Q_{H2}$ ), los otros parámetros se fijan, como se muestra en la tabla 12 .Por otro lado la ecuación 9 que es una cinética tipo Monod y hace referencia a la tasa de crecimiento especifica de bacteria, se necesita para resolver las ecuaciones 3, 4, 5 6, 7 y 8, esta depende la concentración de celobiosa ( $S_1$ ) y del coeficiente de saturación para bacterias acidogénicas ( $Ks_1$ ) el cual es constante. Una vez resueltas las ecuaciones 1 a 6, los resultados de las variables  $\mu_1 y X_1$  y con el valor de la constante  $Y_{H2}$  se obtiene el resultado de la ecuación 8 (caudal producido de Hidrógeno) que hace referencia a  $Q_{H2}$ es decir flujo gaseoso de salida por la parte superior del biorreactor 1 al gasómetro de hidrógeno como se observa en la **Figura 34**.

### Tabla 12

| VARIABLES             | SIGNIFICADO                               | VALOR | UNIDADES                       | ESTADO         |
|-----------------------|-------------------------------------------|-------|--------------------------------|----------------|
| <i>D</i> <sub>1</sub> | Tasas de dilución                         | -     | $h^{-1}$ ]                     | Variable       |
| S <sub>0</sub>        | Concentración Celulosa                    |       | $\left[\frac{g}{dm^3}\right]$  | Valor a hallar |
| <i>S</i> <sub>1</sub> | Concentración de sustrato<br>de celobiosa | -     | $\left[\frac{g}{dm^3}\right]$  | Valor a hallar |
| β                     | Coeficiente de biodegradabilidad          | 1     | $\left[\frac{L}{g \ h}\right]$ | Constante      |
| X <sub>1</sub>        | Concentración de<br>bacterias acidógenas  | -     | $\left[\frac{g}{dm^3}\right]$  | Valor a hallar |
| Y <sub>P</sub>        | Coeficiente                               | 1     | -                              | Constante      |

Variables BR1 Parte 1

| $S_0^{in}$ | Concentración de        | $- \left[\frac{g}{dm^3}\right]$ |            | Variable,         |  |
|------------|-------------------------|---------------------------------|------------|-------------------|--|
|            | celulosa inicial en BR1 |                                 |            | depende de la     |  |
|            |                         |                                 |            | biomasa utilizada |  |
| $\mu_1$    | Tasa de crecimiento     | -                               | $[h^{-1}]$ | Valor a hallar    |  |
|            | específico de bacterias |                                 |            |                   |  |
|            | acidogénicas            |                                 |            |                   |  |
|            |                         |                                 |            |                   |  |

**Nota.** Se presentan todas las variables que se utilizan en las ecuaciones y en el biorreactor 1.

# Tabla 13

Variables BR1 Parte 2

| Y <sub>Pr1</sub>              | Coeficiente de         | 4.2 | -                             | Constante      |
|-------------------------------|------------------------|-----|-------------------------------|----------------|
|                               | rendimiento para ácido |     |                               |                |
|                               | propiónico             |     |                               |                |
| Pr <sub>1</sub>               | Coeficiente de         | -   | $\left[\frac{g}{dm^3}\right]$ | Valor a hallar |
|                               | rendimiento para ácido |     | $am^3$                        |                |
|                               | propiónico             |     |                               |                |
| Y <sub>But1</sub>             | Coeficiente de         | 2.1 | -                             | Constante      |
|                               | rendimiento para ácido |     |                               |                |
|                               | butírico               |     |                               |                |
| But <sub>1</sub>              | Concentración de ácido | -   | $\left[\frac{g}{1-2}\right]$  | Valor a hallar |
|                               | butírico               |     | <sup>c</sup> dm <sup>32</sup> |                |
| Y <sub>Ac1</sub>              | Coeficiente de         | 1.1 | -                             | Constante      |
|                               | rendimiento para ácido |     |                               |                |
|                               | acético                |     |                               |                |
| AC <sub>1</sub>               | Concentración de ácido | -   | $\left[\frac{g}{dm^2}\right]$ | Valor a hallar |
|                               | acético                |     | <sup>-</sup> am <sup>3-</sup> |                |
| <i>Q</i> <sub><i>H</i>2</sub> | Caudal de hidrógeno    | -   | $\left[\frac{g}{dm^3}\right]$ | Valor a hallar |

| $\mu_{1max}$    | -                         | 0.568 | [h <sup>-1</sup> ] | Constante |
|-----------------|---------------------------|-------|--------------------|-----------|
| Ks <sub>1</sub> | Coeficiente de saturación | 3.914 | -                  | Constante |
|                 | para bacterias            |       |                    |           |
|                 | acidogénicas              |       |                    |           |

*Nota.* Se presentan todas las variables que se utilizan en las ecuaciones y en el biorreactor 1.

3.3.3.c Ecuaciones Biorreactor 2 (BR2). Después de que reaccionan los monómeros y se producen los compuestos intermedios (ácidos grasos volátiles como el ácido butírico, ácido propiónico y acético), por la parte superior del biorreactor se extraen los gases producidos principalmente Hidrógeno, el digestato pasa al siguiente biorreactor 2 (BR2), como se observa en la **figura 33**.

El biorreactor 2 tendrá condiciones diferentes respecto al primer biorreactor, las cuales son óptimas para las bacterias acetogénicos y metanogénicas que son críticas en el proceso, por lo que se tendrá en cuenta en el balance de masa de biorreactor 2 las ecuaciones de degradación de los 3 ácidos grasos volátiles principales con sus respectivos balances de masa.

La ecuación 11, 12 y 14 representan la degradación de cada uno de los compuestos con sus respectivas concentraciones  $X_{Pr}$ ,  $X_{But}$  y  $X_{Ac}$ , respectivamente. Las ecuaciones 11, 13 y 15 representan los balances de los sustratos correspondientes de los compuestos intermedios con sus respectivas concentraciones  $X_{Pr}$ ,  $X_{But}$  y  $X_{Ac}$ , respectivamente. Por último, la ecuación algebraica 15 representa la tasa de flujo de metano en fase gaseosa en el BR2.

Todos los valores cinéticos necesarios para desarrollar la cinética y el balance de masa se encuentran en el **anexo 1.** 

### **Ecuaciones no lineales**

$$\frac{dX_{Pr}}{dt} = \mu_{Pr}X_{Pr} - D_2X_{Pr} = 0$$
[Ec. 10]
$$\frac{dPr_2}{dt} = -\frac{\mu_{Pr}X_{Pr}}{Y_{Pr2}} + D_2(Pr_1 - Pr_2) = 0$$
[Ec. 11]

$$\frac{dX_{But}}{dt} = \mu_{But} X_{But} - D_2 X_{But} = 0$$
 [Ec. 12]

$$\frac{dBut_2}{dt} = -\frac{\mu_{But}X_{But}}{Y_{But2}} + D_2 (But_1 - But_2) = 0$$
 [Ec.13]

$$\frac{dX_{Ac}}{dt} = \mu_{Pr} X_{Pr} - D_2 X_{Pr} = 0$$
 [Ec. 14]

$$\frac{dPr_2}{dt} = -\frac{\mu_{Ac}X_{Ac}}{Y_{Ac2}} + \frac{\mu_{Pr}X_{Pr}}{Y_{Pr2}} + \frac{\mu_{But}X_{But}}{Y_{But2}} + D_2 (Ac_1 - Ac_2) = 0 \qquad [Ec. 15]$$

#### **Ecuaciones auxiliares**

. . .

$$Q_{CH4} = \mu_{Ac} Y_{CH4} X_{Ac} \qquad [Ec. 16]$$

#### Donde,

•  $D_2 = \text{Dilution rates} = \text{Tasas de dilución } [h^{-1}]$ 

•  $X_{Pr}$  = Propionate degrading bacteria concentration = Concentración de bacterias degradantes de ácido propiónico  $\left[\frac{g}{dm^3}\right]$ 

•  $X_{But}$  = Butyrate degrading bacteria concentration = Concentración de bacterias degradantes de ácido butírico  $\left[\frac{g}{dm^3}\right]$ 

•  $X_{Ac}$  = Methanogenic bacteria concentration = Concentración de bacterias metanogénicas  $\left[\frac{g}{dm^3}\right]$ 

•  $\mu_{Pr}$  = Specific growth rate of propionate degrading bacteria = Tasa de crecimiento específico de bacterias que degradan ácido propiónico  $[h^{-1}]$ 

•  $\mu_{But}$  = Specific growth rate of propionate degrading bacteria = Tasa de crecimiento específico de bacterias que degradan ácido butírico  $[h^{-1}]$ 

•  $\mu_{Ac}$  = Specific growth rate of methanogenic bacteria = Tasa de crecimiento específico de bacterias metanogénicas  $[h^{-1}]$ 

•  $Pr_2 = Propionate concentration = Concentración de ácido propiónico <math>\frac{g}{dm^3}$ ]

- $Ac_2$  = Acetate concentration = 2 Concentración de ácido acético  $\frac{g}{dm^3}$ ]
- $But_2$  = Butyrate concentration = Concentración de ácido butírico  $\frac{g}{dm^3}$ ]
- $Q_{CH4}$  = Methane flow rate = Caudal de metano  $\left[\frac{g}{dm^3}\right]$

•  $Y_{Pr2} = 1.5 =$  Yield coefficient for butyrate = Coeficiente de rendimiento para ácido propiónico

•  $Y_{But2} = 1.5 =$  Yield coefficient for butyrate = Coeficiente de rendimiento para ácido butírico

•  $Y_{Ac2} = 0.5 =$  Yield coefficient for butyrate = Coeficiente de rendimiento para ácido acético

•  $Y_{CH4} = 142$  = Yield coefficient for butyrate = Coeficiente de rendimiento para metano  $\left[\frac{dm^3}{a}\right]$ 

Al igual que en biorreactor 1, se necesitan las tasas de crecimiento específicas de todas las poblaciones es decir de las bacterias degradantes de los tres ácidos grasos volátiles (ácido propiónico, ácido butírico y acético) como funciones tipo Monod, las ecuaciones 17, 18 y 19

$$u_{Pr} = \frac{\mu_{Prmax} Pr_2}{Ks_{Pr} + Pr_2} \qquad [Ec. 17]$$

$$u_{But} = \frac{\mu_{Butmax}But_2}{Ks_{but} + But_2} \qquad [Ec. 18]$$

$$u_{Ac} = \frac{\mu_{Acmax}Ac_2}{Ks_{Ac} + Ac_2}$$
 [Ec. 19]

Donde,

- Model parameters = Parámetros del modelo
- Coeficientes  $[h^{-1}]$

- $\mu_{1Prmax} = 0.05 \ [h^{-1}]$
- $\mu_{1Butmax} = 0.05 \ [h^{-1}]$
- $\mu_{1Acmax} = 0.025 \ [h^{-1}]$

•  $Ks_{Pr} = 0.22 = \text{Saturation coefficient for propionate} = \text{Coeficiente de saturación de}$ ácido propiónico  $\left[\frac{g}{dm^3}\right]$ 

•  $Ks_{But} = 0.22 =$ Saturation coefficient for butyrate = Coeficiente de saturación para ácido butírico  $\left[\frac{g}{dm^3}\right]$ 

•  $Ks_{Ac} = 0.8$  = Saturation coefficient for acetate = Coeficiente de saturación para ácido acético  $\left[\frac{g}{dm^3}\right]$ 

3.3.3.d Resolución Biorreactor 2 (BR2).



#### BR2

Se desarrollan las ecuaciones 9 a la 14, con ayuda de las ecuaciones 16, 17 y 18, se obtiene el resultado de la ecuación 15 referente al flujo de metano del gasómetro. Los primeros compuestos intermedios, ácido propiónico y butírico reaccionan, se crea y reacciona el último de estos compuestos intermedios, el ácido acético que reacciona con las bacterias acetogénicos y metanogénicas produciendo metano y trazas como el dióxido de carbono y vapor de agua

*Nota.* Se presenta el diagrama de proceso para el biorreactor 2, con sus respectivas entradas y salidas.

La ecuación 10 a 15 se resuelven simultáneamente con ayuda del solver del software de Octave, utilizando la ecuaciones 17, 18 y 19, que son de tipo Monod y hacen referencia a la tasa de crecimiento especifica de bacterias, una vez resueltas, los resultados de las variables  $\mu_{Ac}Y_{CH4}X_{Ac}$  se remplazan en la ecuación 16 para encontrar el valor de  $Q_{CH4}$  (caudal producido de metano), que es el flujo que ingresa al gasómetro de metano por la parte superior del biorreactor 2 (BR2), como se observa en la **figura 36**.

La ecuación 9 a 14 se resuelven simultáneamente con ayuda del solver del software de Octave, estas ecuaciones hacen referencia a la concentración que entra al reactor de los compuestos intermedios como el ácido propiónico, el ácido butírico y el ácido acético (Pr2, But2, Ac2 respectivamente), por otro lado están las concentraciones de las bacterias que degradan los compuestos intermedios como el ácido propiónico, el ácido butírico y el ácido acético y están representados como  $X_{Pr}, X_{But}, X_{Ac}$  respectivamente, estas ecuaciones depende de ciertos valores que se obtiene en el primer grupo de ecuaciones del primer biorreactor (BR1), como se muestra en la tabla 14. Para resolver las ecuaciones se necesita fijar el valor de la tasa de dilución  $D_2$ , esta variable se modifican conforme se desea observar la variación del flujo de metano (Q<sub>CH4</sub>). Por otro lado las ecuaciones 17, 18 y 19 que hacen referencia a la cinética tipo Monod y a la tasa de crecimiento especifica de las bacterias, estas se necesitan para resolver las ecuaciones 10,11,12,13,14,15 y 16, estas depende la concentración de los compuestos intermedios ácido propiónico, butírico el ácido como el el ácido acético V  $(Pr_2, But_2, Ac_2 respectivamente)$  y ) y de las constantes referentes al coeficiente de saturación de los ácidos intermedios. Una vez resueltas las ecuaciones 10 a 15, los resultados de las variables  $\mu_{Ac} y X_{Ac}$  y con el valor de la constante  $Y_{CH4}$  se obtiene el resultado de la ecuación 16 (caudal producido de metano) que hace referencia a Q<sub>CH4</sub> es decir flujo gaseoso de salida por la parte superior del biorreactor 2 al gasómetro de metano como se observa en la figura 36.

| VARIABLES        | SIGNIFICADO                                         | VALOR | UNIDADES                      | ESTADO                        |
|------------------|-----------------------------------------------------|-------|-------------------------------|-------------------------------|
| Pr <sub>1</sub>  | Coeficiente de rendimiento<br>para ácido propiónico | -     | $\left[\frac{g}{dm^3}\right]$ | Valor hallado<br>en el<br>BR1 |
| But <sub>1</sub> | Concentración de ácido<br>butírico                  | -     | $\left[\frac{g}{dm^3}\right]$ | Valor a hallar                |
| Ac <sub>1</sub>  | Concentración de ácido<br>acético                   | -     | $\left[\frac{g}{dm^3}\right]$ | Valor hallado<br>en el<br>BR1 |

Variables de las ecuaciones del BR2-Parte 1

Nota. Se presentan todas las variables que se utilizan en las ecuaciones y en el biorreactor 2.

# Tabla 15

# Variables de las ecuaciones del BR2- Parte 2

| D2               | Tasas de dilución                                               | -   | [h <sup>-1</sup> ]            | Variable                       |
|------------------|-----------------------------------------------------------------|-----|-------------------------------|--------------------------------|
| Y <sub>Pr2</sub> | Coeficiente de rendimiento<br>para ácido propiónico             | 1.5 |                               | Constante                      |
| Pr <sub>2</sub>  | Concentración de ácido<br>propiónico                            | -   | $\left[\frac{g}{dm^3}\right]$ | Valor a hallar                 |
| μ <sub>But</sub> | Tasa de crecimiento<br>específico de bacterias<br>metanogénicas | -   | $h^{-1}]$                     | Valor a hallar.<br>Ec auxiliar |

| X <sub>But</sub> | Concentración de bacterias | -   | $\left[\frac{g}{dm^3}\right]$ | Valor a hallar  |
|------------------|----------------------------|-----|-------------------------------|-----------------|
|                  | degradantes de acido       |     |                               |                 |
|                  | butírico                   |     |                               |                 |
| $Y_{But2}$       | Coeficiente de rendimiento | 1.5 | -                             | Constante       |
|                  | para ácido butírico        |     |                               |                 |
| $\mu_{Ac}$       | Tasa de crecimiento        | -   | $[h^{-1}]$                    | Valor a hallar. |
|                  | específico de bacterias    |     |                               | Ec auxiliar     |
|                  | metanogénicas              |     |                               |                 |
| Y <sub>Ac2</sub> | Coeficiente de rendimiento | 0.5 |                               | Constante       |
|                  | para ácido acético         |     |                               |                 |

Nota. Se presentan todas las variables que se utilizan en las ecuaciones y en el biorreactor 1.

# Tabla 16

Variables de las ecuaciones del BR2- Parte 3

| X <sub>Ac</sub>     | Concentración de                          | -    | $\left[\frac{g}{dm^3}\right]$ | Valor a hallar               |
|---------------------|-------------------------------------------|------|-------------------------------|------------------------------|
|                     | bacterias metanogénicas                   |      |                               |                              |
| Q <sub>CH4</sub>    | Caudal de metano                          | -    | $\left[\frac{g}{dm^3}\right]$ | Valor a hallar               |
| Y <sub>CH4</sub>    | Coeficiente de rendimiento<br>para metano | 142  | $\left[\frac{dm^3}{g}\right]$ | Constante                    |
| μ <sub>Prmax</sub>  | -                                         | 0.05 | $[h^{-1}]$                    | Constante de<br>Ec. auxiliar |
| μ <sub>Butmax</sub> | -                                         | 0.05 | $[h^{-1}]$                    | Constante de<br>Ec. auxiliar |
| $\mu_{Acmax}$       | -                                         | 0.25 | $[h^{-1}]$                    | Constante de<br>Ec. auxiliar |

| Ks <sub>Pr</sub>  | Coeficiente de saturación de                     | 0.22 | $\left[\frac{g}{dm^3}\right]$ | Constante                 | de |
|-------------------|--------------------------------------------------|------|-------------------------------|---------------------------|----|
|                   | ácido propiónico                                 |      |                               | Ec. auxiliar              |    |
| Ks <sub>but</sub> | Coeficiente de saturación<br>para ácido butírico | 0.22 | $\left[\frac{g}{dm^3}\right]$ | Constante<br>Ec. auxiliar | de |
|                   |                                                  |      |                               |                           |    |
| Ks <sub>Ac</sub>  | Coeficiente de saturación                        | 0.8  | $\left[\frac{g}{dm^3}\right]$ | Constante                 | de |
|                   | para ácido acético                               |      |                               | Ec. auxiliar              |    |

Nota. Se presentan todas las variables que se utilizan en las ecuaciones y en el biorreactor 2.

3.3.3.e Resolución simultanea de biorreactor 1 y 2. Para desarrollar y dar solución al modelo matemático presentado anteriormente es necesario analizar dos datos, el primero es conocer el porcentaje de celulosa que contiene la biomasa a utilizar en este caso la pulpa de café, según bibliografía varía entre 17 y 18  $\frac{g}{L}$  [11]. Por otro lado, se debe analizar la tasa de dilución conocida como  $D_1$  y  $D_2$  que dependen de la alimentación del proceso y del volumen del reactor, como se muestra en la ecuación 20, también depende indirectamente de la entrada de celulosa. Transformándola se convierte en la ecuación 21 y se crea una nueva variable llamada  $\gamma$  que hace referencia a la proporción y relación entre los volúmenes de los biorreactores 1 y 2.

$$D_1 = \frac{F}{V_1} \qquad [Ec. 20]$$
$$V_2 = \frac{D_1}{D_2} V_1 = \gamma V_1$$
$$\gamma = \frac{V_2}{V_1} = \frac{D_1}{D_2} \qquad [Ec. 21]$$

La ecuación 20 es vital para desarrollar la mayoría de ecuaciones anteriores, teniendo en cuenta la proporción entre las tasas de dilución 1 y 2 dependerán los resultados del proyecto. Conociendo que las reacciones biológicas en el primer biorreactor son más rápidas, se puede intuir que las velocidades de reacción son mayores que las del BR2, esto se conoce por el metabolismo de las bacterias que se utilizan en los reactores, según [43] existe una relación llamada  $\gamma$ , cuyo valor ronda entre 26 a 29, según la celulosa que posea la biomasa, utilizando el software Octave se desarrollaron todas las ecuaciones, sin embargo no se obtuvo producción de metano en el proceso, a pesar de que el flujo de alimentación de celulosa estaba en el rango de [43].

Por otro lado, utilizando la ecuación 20 se puede obtener el resultado del volumen del biorreactor 1 (BR1), este cálculo se desarrolla más adelante.

# 3.3.4 Resultados

Una vez se resolvieron las ecuaciones se graficaron los resultados en las gráficas 1 a 8. En las gráficas se observan dos tendencias, la primera es la rotulada con "e" que hace referencia a los puntos que se obtiene en [43], estos puntos se obtuvieron con ayuda del programa IM2GRAPH, inicialmente se sube como imagen la gráfica que se desea leer al programa, posteriormente se definen los ejes "X" y "Y" según corresponda la gráfica, en el programa y por último, el cursor se ubica en el punto de la gráfica que se desea leer y el programa arroja los valores aproximados, por cada grafica se tomaron alrededor de 15 a 20 puntos para tener una mejor tendencia.

Por otro lado, en las grafica se encuentra otra rotulación "P", esta hace referencia a los resultados propios de este proyecto.

A continuación se presentan los resultados graficados de las variables  $X_1 \left[\frac{g}{dm^3}\right]$ ,  $D_1 \left[h^{-1}\right]$ ,  $S_0 \left[\frac{g}{dm^3}\right]$  y  $Q_{H2} \left[\frac{g}{dm^3}\right]$  correspondientes a la Ec. 1, 3 y 7 respectivamente.

**Nota**: Todas las gráficas se desarrollan a diferentes concentraciones de celulosa inicial, 15, 25 y 35 g/L, ya que son las concentraciones utilizadas en [43], con el fin de tener un mejor punto de comparación visible en las gráficas, además se incluye la concentración de 17 g/L, que hace referencia a la que contiene la pulpa de café

Concentración de bacterias acetogénicos en el reactor BR1 Vs Tasa de Dilución D1, a diferentes concentraciones de celulosa inicial



**Nota**.  $X_1$  = Acidogenic bacteria concentration = Concentración de bacterias acidogénicas  $\left[\frac{g}{dm^3}\right]$ .  $D_1$  = Dilution rates = Tasas de dilución  $[h^{-1}]$ 

### Figura 28

Concentración de celulosa en el reactor BR1 Vs Tasa de Dilución D1, a diferentes concentraciones de celulosa inicial



**Nota.**  $D_1$  = Dilution rates = Tasas de dilución  $[h^{-1}]$ .  $S_0$  = Cellulose concentration = Concentración de celulosa  $\frac{g}{dm^3}$ ]





**Nota**. Nota:  $D_1$  = Dilution rates = Tasas de dilución  $[h^{-1}]$ .  $Q_{H2}$  = Hydrogen flow rate = Caudal de hidrógeno  $[\frac{g}{dm^3}]$ 

Como se puede observar en las gráficas 9 a la 11 la producción de los compuestos intermedios y de Hidrógeno en el primer reactor (BR1) depende de la concentración inicial de celulosa que ingrese al biorreactor, entre más alta la concentración de celulosa más alta la producción. Por otro lado se evidencia que después de 0,4 en la tasa de dilución ( $D_1$ ), en el eje x de todas las gráficas, las concentraciones y los resultados comienzan a disminuir esto se debe a que las concentraciones comienzan a diluirse y pierden capacidad de reacción.

Tasa de flujo de Hidrógeno producida en el reactor BR1 Vs Tasa de Dilución D1 con una concentración de 17g/L de celulosa inicial equivalente a la que contiene la pulpa de café



**Nota**. Nota:  $D_1$  = Dilution rates = Tasas de dilución  $[h^{-1}]$ .  $Q_{H2}$  = Hydrogen flow rate = Caudal de hidrógeno  $\left[\frac{g}{dm^3}\right]$ 

La pulpa de café al tener una concentración inicial de celulosa de 17g/L y con una tasa de dilución máxima de 25 tiene una producción máxima de Hidrógeno de 0,049 L/h

### BR2

En el segundo biorreactor los resultados no fueron parecidos a los del artículo, se realizaron varias simulaciones variando  $\gamma$  sin embargo no fue posible encontrar los valores. A continuación, se presentan los resultados, en la columna experimental se encuentran los valores encontrados con ayuda de la aplicación IM2GRAPH y en la columna con valores propios se encuentran los valores hallados con el programa desarrollado en Octave.

| $S_0^{in}$ | <i>D</i> <sub>1</sub> | <i>D</i> <sub>2</sub> | X <sub>Pr</sub> TEORICO (P) | X <sub>Pr</sub> EXPERIMENTAL |
|------------|-----------------------|-----------------------|-----------------------------|------------------------------|
|            |                       |                       |                             |                              |
| 15         | 0,0040392             | 0,00015               | -0,0014456                  | 0,2539                       |
| 15         | 0,0255816             | 0,00097               | 4,85E-19                    | 0,25062                      |
| 15         | 0,0792                | 0,003                 | -7,48E-11                   | 0,2373                       |
| 15         | 0,126456              | 0,00479               | -4,36E-05                   | 0,2207                       |
| 15         | 0,17424               | 0,0066                | -2,39E-04                   | 0,2074                       |
| 15         | 0,2194632             | 0,00831               | 0,1926                      | 0,1908                       |
| 15         | 0,27192               | 0,0103                | 0,08451                     | 0,1777                       |
| 15         | 0,32472               | 0,0123                | 2,06E-03                    | 0,151                        |
| 15         | 0,359568              | 0,01362               | 2,01E-04                    | 0,1278                       |
| 15         | 0,38016               | 0,0144                | -0,1335                     | 0,111                        |
| 15         | 0,4356                | 0,0165                | -0,1625                     | 0,0979                       |

Concentración de bacterias degradadoras de ácido propiónico en el reactor BR2 Vs Tasa de Dilución D2, con concentración inicial de 15L/h

**Nota.**  $D_2$  = Dilution rates = Tasas de dilución  $[h^{-1}]$ .  $X_{Pr}$  = Propionate degrading bacteria

concentration = Concentración de bacterias degradantes de ácido propiónico  $\left[\frac{g}{dm^3}\right]$ 

Únicamente existen tres valores que son razonables y tienen concordancia con los resultados del articulo [43], que son los que tienen una tasa de dilución de 0,008 a 0,01.

### Tabla 18

Concentración de bacterias degradadoras de ácido propiónico en el reactor BR2 Vs Tasa de Dilución D2, con concentración inicial de 25L/h

| $S_0^{in}$ | <i>D</i> <sub>1</sub> | <i>D</i> <sub>2</sub> | X <sub>Pr</sub> TEORICO (P) | X <sub>Pr</sub> EXPERIMENTAL |
|------------|-----------------------|-----------------------|-----------------------------|------------------------------|
|            |                       |                       |                             |                              |
| 15         | 25                    | 0,0066                | 0,00025                     | -1,07E-07                    |
| 15         | 25                    | 0,044352              | 0,00168                     | -3,40E-16                    |
| 15         | 25                    | 0,100848              | 0,00382                     | -4,42E-09                    |
| 15         | 25                    | 0,13596               | 0,00515                     | -4,66E-08                    |
| 15         | 25                    | 0,198                 | 0,0075                      | -1,00E-09                    |
| 15         | 25                    | 0,238392              | 0,00903                     | 0,4628                       |
| 15         | 25                    | 0,3165                | 0,011989                    | 0,3188                       |
| 15         | 25                    | 0,378312              | 0,01433                     | 0,08531                      |

| 15            | 25               | 0,448272      | 0,01698                           | -0,1697                     |
|---------------|------------------|---------------|-----------------------------------|-----------------------------|
| 15            | 25               | 0,505032      | 0,01913                           | 2,26E-14                    |
| 15            | 25               | 0,577632      | 0,02188                           | -0,256                      |
| Nota. $D_2 =$ | Dilution rates = | Tasas de dilu | ución $[h^{-1}]$ . $X_{Pr}$ = Pro | ppionate degrading bacteria |

concentration = Concentración de bacterias degradantes de ácido propiónico  $\left[\frac{g}{dm^3}\right]$ 

Únicamente existen tres valores que son razonables y tienen concordancia con los resultados del artículo [43], que son los que tienen una tasa de dilución de 0,23 a 0,37

### Tabla 19

Concentración de bacterias degradadoras de ácido propiónico en el reactor BR2 Vs Tasa de Dilución D2, con concentración inicial de 35L/h

| $S_0^{in}$ | <i>D</i> <sub>1</sub> | <i>D</i> <sub>2</sub> | X <sub>Pr</sub> TEORICO (P) | X <sub>Pr</sub> EXPERIMENTAL |
|------------|-----------------------|-----------------------|-----------------------------|------------------------------|
|            |                       |                       |                             |                              |
|            |                       |                       |                             |                              |
| 35         | 0,0040                | 0,0002                | -3,97E-09                   | 0,6887                       |
| 35         | 0,0358255             | 0,0014                | -3,41E-11                   | 0,6688                       |
| 35         | 0,0947153             | 0,0036                | -2,48E-07                   | 0,6589                       |
| 35         | 0,153239              | 0,0059                | -6,81E-07                   | 0,6423                       |
| 35         | 0,196125              | 0,0075                | -4,18E-04                   | 0,6224                       |
| 35         | 0,258885              | 0,0099                | -1,12E-05                   | 0,5991                       |
| 35         | 0,308047              | 0,0118                | 0,6373                      | 0,5792                       |
| 35         | 0,3721145             | 0,0142                | 0,4787                      | 0,5526                       |
| 35         | 0,438797              | 0,0168                | 0,0619                      | 0,5161                       |
| 35         | 0,489528              | 0,0187                | 1,43E-03                    | 0,4829                       |
| 35         | 0,546535              | 0,0209                | 1,06E-11                    | 0,44315                      |

**Nota**.  $D_2$  = Dilution rates = Tasas de dilución  $[h^{-1}]$ .  $X_{Pr}$  = Propionate degrading bacteria

concentration = Concentración de bacterias degradantes de ácido propiónico  $\left[\frac{g}{dm^3}\right]$ 

Únicamente existen tres valores que son razonables y tienen concordancia con los resultados del articulo [43], que son los que tienen una tasa de dilución de 0,011 a 0,016

Concentración de bacterias degradadoras de ácido propiónico en el reactor BR2 Vs Tasa de Dilución D2, con diferentes concentraciones iniciales



**Nota.**  $D_2$  = Dilution rates = Tasas de dilución  $[h^{-1}]$ .  $X_{Pr}$  = Propionate degrading bacteria concentration = Concentración de bacterias degradantes de ácido propiónico  $[\frac{g}{dm^3}]$ 

Respecto a las variables referentes a la concentración de bacterias degradadoras de ácido propiónico se observa un pico en una tasa de dilución dependiendo de la entrada de celulosa inicial.

#### Tabla 20

| S <sub>0</sub> <sup>in</sup> | <i>D</i> <sub>1</sub> | D <sub>2</sub> | XA <sub>C</sub> TEORICO<br>(P) |           |
|------------------------------|-----------------------|----------------|--------------------------------|-----------|
| 15                           | 0,01538               | 0,00058        | 0,604                          | 2,02E-21  |
| 15                           | 0,0238656             | 0,0009         | 0,5677                         | 4,11E-21  |
| 15                           | 0,049632              | 0,00188        | 0,5384                         | 2,11E-22  |
| 15                           | 0,070224              | 0,00266        | 0,5238                         | -8,60E-21 |
| 15                           | 0,09504               | 0,0036         | 0,4945                         | -9,17E-22 |

Concentración de bacterias metanogénicas Vs Tasa de Dilución D2, con concentración inicial de 15L /h

| 15 | 0,123288  | 0,00467 | 0,4871   | 5,61E-21  |
|----|-----------|---------|----------|-----------|
| 15 | 0,15312   | 0,0058  | 0,4139   | 1,99E-20  |
| 15 | 0,175296  | 0,00664 | 0,406    | 5,01E-21  |
| 15 | 0,2107776 | 0,00798 | 3,63E-01 | 8,95E-21  |
| 15 | 0,2376    | 0,009   | 3,19E-01 | 1,93E-20  |
| 15 | 0,26664   | 0,0101  | 2,53E-01 | -8,27E-21 |

**Nota**.  $D_2$  = Dilution rates = Tasas de dilución  $[h^{-1}]$ .  $X_{Ac}$  = Methanogenic bacteria concentration = Concentración de bacterias metanogénicas  $[\frac{g}{dm^3}]$ 

No se produce en ningún momento una concentración de bacterias metanogénicas para esta entrada de celulosa inicial

### Tabla 21

Concentración de bacterias metanogénicas Vs Tasa de Dilución D2, con concentración inicial de 25L /h

| S <sub>0</sub> <sup>in</sup> | <i>D</i> <sub>1</sub> | <i>D</i> <sub>2</sub> | XA <sub>C</sub> TEORICO<br>(P) | XA <sub>C</sub> EXPERIMENTAL |
|------------------------------|-----------------------|-----------------------|--------------------------------|------------------------------|
| 25                           | 0,00475               | 0,00018               | 1,065                          | -5,93E-22                    |
| 25                           | 0,02249               | 0,000852              | 1,0512                         | 1,12E-21                     |
| 25                           | 0,05251               | 0,001989              | 1,0293                         | -7,45E-21                    |
| 25                           | 0,07418               | 0,00281               | 1,0073                         | -5,58E-22                    |
| 25                           | 0,10296               | 0,0039                | 0,9633                         | -1,76E-21                    |
| 25                           | 0,13966               | 0,00529               | 0,9276                         | -1,42E-20                    |
| 25                           | 0,16896               | 6,40E-03              | 0,8974                         | 1,24E-22                     |
| 25                           | 0,21463               | 8,13E-03              | 0,8315                         | 1,22E-21                     |
| 25                           | 0,24489               | 9,28E-03              | 0,7728                         | -2,12E-20                    |
| 25                           | 0,27984               | 1,06E-02              | 0,7069                         | -3,04E-20                    |
| 25                           | 0,33792               | 0,0128                | 0,5677                         | 9,22E-21                     |

**Nota**.  $D_2$  = Dilution rates = Tasas de dilución [ $h^{-1}$ ].  $X_{Ac}$  = Methanogenic bacteria concentration =

Concentración de bacterias metanogénicas  $\left[\frac{g}{dm^3}\right]$ 

No se produce en ningún momento una concentración de bacterias metanogenicas para esta entrada de celulosa inicial

| Concentración    | de    | bacterias   | metanogénicas | Vs | Tasa | de | Dilución | D2, | con |
|------------------|-------|-------------|---------------|----|------|----|----------|-----|-----|
| concentración il | nicia | l de 35L /h | -             |    |      |    |          |     |     |

| $S_0^{in}$ | <i>D</i> <sub>1</sub> | <i>D</i> <sub>2</sub> | XA <sub>C</sub> TEORICO<br>(P) | XA <sub>c</sub> EXPERIMENTAL |
|------------|-----------------------|-----------------------|--------------------------------|------------------------------|
|            |                       |                       |                                |                              |
| 35         | 0,006080              | 0,0002                | 1,5494                         | 8,25E-14                     |
| 35         | 0,03311               | 0,0013                | 1,5201                         | 6,90E-22                     |
| 35         | 0,065375              | 0,0025                | 1,4908                         | -1,79E-21                    |
| 35         | 0,101985              | 0,0039                | 1,4615                         | -1,28E-19                    |
| 35         | 0,1519315             | 0,0058                | 1,4102                         | -8,13E-21                    |
| 35         | 0,185665              | 0,0071                | 1,3589                         | -8,13E-21                    |
| 35         | 0,232735              | 0,0089                | 1,271                          | 2,46E-20                     |
| 35         | 0,27719               | 0,0106                | 1,1978                         | -4,44E-19                    |
| 35         | 0,321645              | 0,0123                | 1,0879                         | 2,86E-20                     |
| 35         | 0,3653155             | 0,014                 | 9,63E-01                       | -2,79E-19                    |
| 35         | 0,410032              | 0,0157                | 0,7802                         | 1,87E-19                     |

**Nota**.  $D_2$  = Dilution rates = Tasas de dilución  $[h^{-1}]$ .  $X_{Ac}$  = Methanogenic bacteria concentration = Concentración de bacterias metanogénicas  $[\frac{g}{dm^3}]$ 

No se produce en ningún momento una concentración de bacterias metanogenicas para esta entrada de celulosa inicial

Concentración de bacterias metanogénicas Vs Tasa de Dilución D2, con diferentes concentraciones iniciales



**Nota**.  $D_2$  = Dilution rates = Tasas de dilución  $[h^{-1}]$ .  $X_{Ac}$  = Methanogenic bacteria concentration = Concentración de bacterias metanogénicas  $[\frac{g}{dm^3}]$ 

No se produce en ningún momento una concentración de bacterias metanogenicas para ninguna de los flujos de celulosa inicial.

### Tabla 23

Concentración de bacterias metanogénicas Vs Tasa de Dilución D2, con concentración inicial de 15L /h

| $S_0^{in}$ | <i>D</i> <sub>1</sub> | <i>D</i> <sub>2</sub> | Ac <sub>2</sub> TEORICO (P) | Ac <sub>2</sub> EXPERIMENTAL |
|------------|-----------------------|-----------------------|-----------------------------|------------------------------|
|            |                       |                       |                             |                              |
|            |                       |                       |                             |                              |
| 15         | 0,0066264             | 0,00025               | 1,6453                      | 1,17                         |
| 15         | 0,04356               | 0,00165               | 1,5459                      | 1,1702                       |
| 15         | 0,101904              | 0,00386               | 1,3709                      | 1,1418                       |
| 15         | 0,133848              | 0,00507               | 1,2626                      | 1,113                        |
| 15         | 0,2056032             | 0,00779               | 0,9642                      | 1,0992                       |
| 15         | 0,26664               | 0,0101                | 0,6368                      | 1,0709                       |
| 15         | 0,34848               | 0,0132                | -0,1972                     | 1,0141                       |
| 15         | 0,417648              | 0,01582               | -0,1016                     | 0,9716                       |
| 15         | 0,52008               | 0,0197                | 1,01E-07                    | 0,8865                       |

| 15 | 0,57816 | 0,0219 | -2,65E-07 | 0,8297 |
|----|---------|--------|-----------|--------|
| 15 | 0,67056 | 0,0254 | 1,62E-09  | 0,7163 |

**Nota**.  $D_2$  = Dilution rates = Tasas de dilución  $[h^{-1}]$ .  $Ac_2$  = Acetate concentration = 2 Concentración de ácido acético  $\frac{g}{dm^3}$ ]

Respecto a concentración de ácido acético, no existe un buen acercamiento a los resultados de [43], aunque existen puntos comunes.

#### Tabla 24

Concentración de bacterias metanogénicas Vs Tasa de Dilución D2, con concentración inicial de 25L /h

| $S_0^{in}$ | $D_1$   | $D_2$    | $Ac_2$ <b>TEORICO (P)</b> | $Ac_2$ <b>EXPERIMENTAL</b> |
|------------|---------|----------|---------------------------|----------------------------|
| 0          | -       | -        | ,                         | -                          |
|            |         |          |                           |                            |
|            |         |          |                           |                            |
| 25         | 0,00927 | 0,000351 | 2,7455                    | 2,1347                     |
| 25         | 0,06758 | 0,00256  | 2,5868                    | 2,1063                     |
| 25         | 0,15761 | 0,00597  | 2,2958                    | 2,0638                     |
| 25         | 0,25072 | 0,009497 | 1,8927                    | 2,0212                     |
| 25         | 0,34346 | 0,01301  | 1,3787                    | 1,9645                     |
| 25         | 0,43824 | 0,0166   | -0,382                    | 1,92199                    |
| 25         | 0,55704 | 0,0211   | -1,35E-06                 | 1,8368                     |
| 25         | 0,63624 | 0,0241   | -8,94E-07                 | 1,7234                     |
| 25         | 0,72811 | 0,02758  | -7,30E-06                 | 1,6099                     |
| 25         | 0,81576 | 0,0309   | -2,73E-09                 | 1,4397                     |
| 25         | 0,88202 | 0,03341  |                           | 1,2978                     |

**Nota.**  $D_2$  = Dilution rates = Tasas de dilución  $[h^{-1}]$ .  $Ac_2$  = Acetate concentration = 2 Concentración de ácido acético  $\frac{g}{dm^3}$ ]

Respecto a concentración de ácido acético, no existe un buen acercamiento a los resultados de [43], aunque existen puntos comunes.

| $S_0^{in}$ | <i>D</i> <sub>1</sub> | <i>D</i> <sub>2</sub> | $Ac_2$ <b>TEORICO (P)</b> | Ac <sub>2</sub> EXPERIMENTAL |
|------------|-----------------------|-----------------------|---------------------------|------------------------------|
|            |                       |                       |                           |                              |
|            |                       |                       |                           |                              |
| 35         | 0,003941              | 0,0002                | 3,8686                    | 3,12766                      |
| 35         | 0,04861               | 0,0019                | 3,7491                    | 3,0992                       |
| 35         | 0,122905              | 0,0047                | 3,5266                    | 3,0709                       |
| 35         | 0,200832              | 0,0077                | 3,2445                    | 3,0141                       |
| 35         | 0,279805              | 0,0107                | 2,868                     | 3                            |
| 35         | 0,363485              | 0,0139                | 2,5748                    | 2,9574                       |
| 35         | 0,436705              | 0,0167                | 0,6988                    | 2,8865                       |
| 35         | 0,541305              | 0,0207                | -0,3823                   | 2,787                        |
| 35         | 0,640675              | 0,0245                | -0,2                      | 2,687                        |
| 35         | 0,776655              | 0,0297                | 1,11E-05                  | 2,4609                       |
| 35         | 0,85249               | 0,0326                |                           | 2,2907                       |

Concentración de bacterias metanogénicas Vs Tasa de Dilución D2, con concentración inicial de 35L /h

**Nota**.  $D_2$  = Dilution rates = Tasas de dilución  $[h^{-1}]$ .  $Ac_2$  = Acetate concentration = 2 Concentración de ácido acético  $\frac{g}{dm^3}$ ]

Respecto a concentración de ácido acético, no existe un buen acercamiento a los resultados de [43], aunque existen puntos comunes.

Concentración de ácido acético Vs Tasa de Dilución D2, con diferentes concentraciones



**Nota**.  $D_2$  = Dilution rates = Tasas de dilución  $[h^{-1}]$ .  $Ac_2$  = Acetate concentration = 2 Concentración de ácido acético $[\frac{g}{dm^3}]$ 

Como se observa en la gráfica 15 después de 0,013 de taza de dilución, la concentración del ácido acético comienza a disminuir drásticamente, al igual que las variables del BR1.

| S <sub>0</sub> <sup>in</sup> | <i>D</i> <sub>1</sub> | <i>D</i> <sub>2</sub> | Q <sub>CH4</sub> TEORICO<br>(P) | <i>Q<sub>CH4</sub></i> EXPERIMENTAL |
|------------------------------|-----------------------|-----------------------|---------------------------------|-------------------------------------|
|                              |                       |                       |                                 |                                     |
| 15                           | 0                     | 0                     | 0                               | 0                                   |
| 15                           | 0,0210672             | 0,0008                | 4,05E-22                        | 0,00593                             |
| 15                           | 0,041448              | 0,00157               | 9,81553-22                      | 0,114                               |
| 15                           | 0,063096              | 0,00239               | 2,86E-20                        | 0,1779                              |
| 15                           | 0,097152              | 0,00368               | -2,78E-23                       | 0,25091                             |
| 15                           | 0,124344              | 0,00471               | -3,44E-20                       | 0,3239                              |
| 15                           | 0,151536              | 0,00574               | 1,29E-19                        | 0,3786                              |
| 15                           | 0,19272               | 0,0073                | -2,96E-19                       | 0,3968                              |
| 15                           | 0,2238456             | 0,00848               | -1,91E-20                       | 0,406                               |
| 15                           | 0,261888              | 0,00992               | 8,77E-20                        | 0,3786                              |
| 15                           | 0,2904                | 0,011                 | 2,79E-20                        | 0,3239                              |

*Methane flow rate = Caudal de metano Vs Tasa de Dilución D2, con concentración inicial de 15L /h* 

**Nota.**  $D_2 = \text{Dilution rates} = \text{Tasas de dilución } [h^{-1}]$ .  $Q_{CH4} = \text{Methane flow rate} = \text{Caudal de metano}$  $\left[\frac{g}{dm^3}\right]$ 

No se produce en ningún momento caudal o flujo de metano, esto es debido a que la concentración de bacterias metanogenicas para este flujo de alimentación de celulosa existe.

### Tabla 27

Concentración de bacterias metanogénicas Vs Tasa de Dilución D2, con concentración inicial de 18L /h

| • <i>S</i> <sup><i>in</i></sup> <sub>0</sub> | <i>D</i> <sub>1</sub> | <i>D</i> <sub>2</sub> | Q <sub>CH4</sub> TEORICO<br>(P) |
|----------------------------------------------|-----------------------|-----------------------|---------------------------------|
| 18                                           | 0,00000               | 0                     | 0                               |
| 18                                           | 0,02107               | 0,000798              | 7,35E-22                        |
| 18                                           | 0,04145               | 0,00157               | 4,75E-22                        |
| 18                                           | 0,06310               | 0,00239               | 6,30E-21                        |
| 18                                           | 0,09715               | 0,00368               | 2,46E-19                        |
| 18                                           | 0,12434               | 0,00471               | 1,42E-20                        |

| 18 | 0,15154                               | 0,00574  | 1,50E-20    |
|----|---------------------------------------|----------|-------------|
| 18 | 0,19272                               | 0,0073   | 2,05E-21    |
| 18 | 0,22385                               | 0,008479 | 3,16E-19    |
| 18 | 0,26189                               | 0,00992  | -6,30E-21   |
| 18 | 0,29040                               | 0,011    | 4,03E-19    |
|    | · · · · · · · · · · · · · · · · · · · |          | •• 1• • • • |

**Nota**.  $D_2$  = Dilution rates = Tasas de dilución  $[h^{-1}]$ .  $Ac_2$  = Acetate concentration = 2 Concentración de ácido acético $[\frac{g}{dm^3}]$ 

No se produce en ningún momento caudal o flujo de metano, esto es debido a que la concentración de bacterias metanogenicas para este flujo de alimentación de celulosa existe.

#### Tabla 28

Concentración de bacterias metanogénicas Vs Tasa de Dilución D2, con concentración inicial de 25L /h

| S <sub>0</sub> <sup>in</sup> | <i>D</i> <sub>1</sub> | <i>D</i> <sub>2</sub> | Q <sub>CH4</sub> TEORICO<br>(P) | <i>Q<sub>CH4</sub>EXPERIMENTAL</i> |
|------------------------------|-----------------------|-----------------------|---------------------------------|------------------------------------|
| 25                           | 0                     | 0                     | 0                               | 0                                  |
| 25                           | 0,01973               | 0,000747              | -1,09E-21                       | 0,114                              |
| 25                           | 0,04409               | 0,00167               | 7,24E-20                        | 0,2509                             |
| 25                           | 0,066                 | 0,0025                | -9,90E-22                       | 0,3512                             |
| 25                           | 0,08184               | 0,0031                | 2,86E-22                        | 0,4607                             |
| 25                           | 0,132                 | 0,005                 | -2,33E-20                       | 0,688                              |
| 25                           | 0,16397               | 0,006211              | 2,22E-21                        | 0,7892                             |
| 25                           | 0,20592               | 0,0078                | -3,47E-20                       | 0,926                              |
| 25                           | 0,24816               | 0,0094                | 1,25E-20                        | 1,044                              |
| 25                           | 0,305448              | 0,01157               | -1,66E-19                       | 1,081                              |
| 25                           | 0,35112               | 0,0133                | -1,27E-19                       | 0,999                              |

**Nota.**  $D_2$  = Dilution rates = Tasas de dilución  $[h^{-1}]$ .  $Ac_2$  = Acetate concentration = 2 Concentración de ácido acético  $[\frac{g}{dm^3}]$ 

No se produce en ningún momento caudal o flujo de metano, esto es debido a que la concentración de bacterias metanogenicas para este flujo de alimentación de celulosa existe.

| S <sub>0</sub> <sup>in</sup> | <i>D</i> <sub>1</sub> | <i>D</i> <sub>2</sub> | <i>Q<sub>CH4</sub></i> TEORICO<br>(P) | <i>Q<sub>CH4</sub></i> EXPERIMENTAL |
|------------------------------|-----------------------|-----------------------|---------------------------------------|-------------------------------------|
| 35                           | 0                     | 0                     | 0                                     | 0                                   |
| 35                           | 0,002615              | 0,0001                | -6,43E-22                             | 0,2144                              |
| 35                           | 0,0206585             | 0,0008                | -2,71E-21                             | 0,35767                             |
| 35                           | 0,0342565             | 0,0013                | -1,02E-20                             | 0,4274                              |
| 35                           | 0,080019              | 0,0031                | -1,22E-20                             | 0,7523                              |
| 35                           | 0,10983               | 0,0042                | -4,28E-21                             | 0,898                               |
| 35                           | 0,149055              | 0,0057                | -2,65E-21                             | 1,1542                              |
| 35                           | 0,1608225             | 0,0062                | 2,92E-19                              | 1,318                               |
| 35                           | 0,2001521             | 0,0077                | 1,56E-18                              | 1,4461                              |
| 35                           | 0,233781              | 0,0089                | 2,33E-19                              | 1,656                               |
| 35                           | 0,27719               | 0,0106                | 1,44E-19                              | 1,802                               |

Concentración de bacterias metanogénicas Vs Tasa de Dilución D2, con concentración inicial de 35L /h

**Nota**.  $D_2$  = Dilution rates = Tasas de dilución  $[h^{-1}]$ .  $Ac_2$  = Acetate concentration = 2 Concentración de ácido acético $\frac{g}{dm^3}$ ]

No se produce en ningún momento caudal o flujo de metano, esto es debido a que la concentración de bacterias metanogenicas para este flujo de alimentación de celulosa existe.

Tasa de flujo de metano producida en el reactor BR2 Vs Tasa de Dilución D2 con una concentración de 17g/L de celulosa inicial equivalente a la que contiene la pulpa de café



**Nota**.  $D_2$  = Dilution rates = Tasas de dilución  $[h^{-1}]$ ..  $Q_{CH4}$  = Methane flow rate = Caudal de metano  $\left[\frac{g}{dm^3}\right]$ 

No se produce en ningún momento caudal o flujo de metano, esto es debido a que la concentración de bacterias metanogenicas para este flujo de alimentación de celulosa existe.

Tasa de flujo de metano producida en el reactor BR1 Vs Tasa de Dilución D1 con una concentración de 17g/L de celulosa inicial equivalente a la que contiene la pulpa de café



**Nota.**  $D_2$  = Dilution rates = Tasas de dilución  $[h^{-1}]$ .  $Q_{CH4}$  = Methane flow rate = Caudal de metano

No se produce en ningún momento caudal o flujo de metano, esto es debido a que la concentración de bacterias metanogenicas para este flujo de alimentación de celulosa existe.

Como se observa en las gráficas 13 a la 17 y conociendo las ecuaciones todos los parámetros dependen de la relación que existe entre las tasas de dilución, el flujo de alimentación inicial de celulosa y la producción de metano, unas relaciones adecuadas entre estas tres variables permiten aumentar la producción de metano. Sin embargo, en este caso no se produjo flujo de metano, ya que no se desarrollan las bacterias metanogenicas en este proceso.

### 4 DISEÑO CONCEPTUAL

En este capítulo se desarrolla el diseño conceptual del proceso, se presenta el esquema del proceso con su respectivo diagrama de flujo básico, mostrando cada una de las operaciones unitarias necesarias para desarrollar el proyecto, enfatizando en las materias primas, las reacciones, la seguridad y en los sistemas de reacción y separación.

#### 4.1 Diseño Conceptual

A continuación, se describe el diseño del proceso a escala conceptual, donde se define el diagrama básico del proceso, analizando su nivel de producción y por lo tanto el tipo de proceso, su etapa reactiva y de separación, analizando las materias primas y la seguridad de ellas, y por ultimo si son necesarias Todo esto con la ayuda de la metodología de cebolla de Douglas, que plantea una estrategia jerárquica que evoluciona por niveles en la que primero se diseñan los reactores, a los reactores los alimentan los reactivos que provienen de corrientes de alimentación fresca o recirculaciones o una mezcla de ambas, posterior a esto se desarrolla el sistema de separación, el sistema de intercambio térmico y por último los equipos de servicio, en este proyecto se delimita hasta la segunda fase de la metodología, el corazón del proceso el sistema reactivo, y se describen formas de separación para la purificación de los gases producidos

### 4.1.1 Seguridad y toxicidad de materias primas y productos

En este proceso las materias primas no son peligrosas ni tóxicas, el agua es una sustancia incolora, inodora, no tiene peligros asociados a la ingesta, inhalación o contacto, por otro lado. La pulpa de café es un subproducto orgánico del fruto del café no es tóxico ni peligroso y no tiene peligros asociados a la ingesta, inhalación o contacto. Respecto los productos principales como el hidrógeno y biometano hay unas consideraciones, el hidrógeno es un gas extremadamente inflamable se debe mantener alejado del calor y superficies calientes, de chispas, de llamas abiertas y otras fuentes de ignición, sin embargo, no es tóxico, pero puede actuar como asfixiante, puede ocasionar quemaduras por congelamiento. El metano es un alcano en forma de gas

altamente inflamable, puede formar mezclas explosivas con el aire se debe mantener alejado de fuentes de ignición, no es tóxico, pero puede ser asfixiante.

Por otro lado, existen trazas de subproductos que se generan en el proceso como el amoniaco, ácido sulfhídrico, dióxido de carbono y vapor de agua. El amoniaco es difícil de encender, en particular en espacios abiertos. En espacio confinado, las mezclas de amoníaco y aire dentro de ciertos límites (16-27%), pueden causar explosión si fueran encendidas. Una nube fría y densa de amoníaco puede deteriorar la visibilidad, por otro lado, el amoníaco es tóxico por inhalación, corrosivo en todas las partes del cuerpo y las salpicaduras líquidas pueden causar quemaduras severas. El ácido sulfhídrico o sulfuro de hidrógeno es un gas extremadamente inflamable, por lo que se debe mantener alejado de cualquier fuente de ignición, es mortal en caso de inhalación, puede causar quemaduras. El dióxido de carbono comprimido tiene peligro se explosión en caso de calentamiento, aunque no es tóxico, pero puede producir congelaciones y asfixia Es importante resaltar que el almacenamiento de los productos debe ser en equipos de bronce apropiados para la presión y temperatura que se maneje, y siempre alejados de puntos calientes o fuentes de ignición, además de siempre contar con todos los equipos de protección personal.

#### 4.1.2 Química verde

Los últimos años la comunidad científica se ha enfocado en el impacto que tienen los proceso industriales en el medio ambiente, por lo que en 1991 el químico Paul Anastas designo doce principios para la química verde, entre los cuales se destacan la prevención de residuos, económica del átomo, síntesis de sustancias químicas menos peligrosas, diseño de productos químicos mas seguros, disolventes y auxiliares más seguros, diseño para la eficiencia energética, uso de materias primas renovables, reducir derivados, catálisis, diseño para la degradación, análisis en tiempos real para la prevención de la contaminación y química intrínsecamente más segura para la prevención de residuos, la económica del átomo, el no uso de disolventes y el diseño para la eficiencia energética

ya que se está utilizando un residuo agroindustrial que normalmente se dispone de manera inadecuada para producir energía, dicha producción energética sería útil en el mismo método de beneficiado húmedo del café donde se produce el subproducto, reduciendo costos en gastos energéticos.

### 4.1.3 Reacciones de la digestión anaerobia

En primera instancia es preciso establecer las reacciones que intervienen en las etapas para la digestión anaerobia, esto teniendo presente la composición de la pulpa de café.

4.1.3.a Fase hidrogénica y acidogénica. Como se ha mencionado previamente, en las etapas de hidrólisis y acidogénesis se producen moléculas más sencillas, dentro de los cuales destacan en el caso del hidrólisis, el ácido acético ( $C_2H_4O_2$ ), la ribosa ( $C_5H_{10}O_5$ ), la fructosa ( $C_6H_{12}O_6$ ) y trazas de cases como dióxido de carbono ( $CO_2$ ) y sulfuro de hidrógeno ( $H_2S$ ). En el proceso de la acidogénesis se obtienen como productos principalmente ácido acético ( $C_2H_4O_2$ ), oxígeno ( $O_2$ ) y agua ( $H_2O$ ). Como se observa en la **tabla 27** 

| Hidrólisis |              |                                                                                                                                                                                     |                       |         |  |  |
|------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|--|--|
| No         | Compuesto    | Reacción                                                                                                                                                                            | Avance de la reacción | Reactor |  |  |
| 1          | Celulosa     | $(C_6H_{12}O_6) \; n \; \textbf{+} \; H_2O \rightarrow n \; C_6H_{12}O_6$                                                                                                           | 0,4 ± 0,1             | 1       |  |  |
| 2          | Hemicelulosa | $C_5H_8O_4 \textbf{+} H_2\textbf{0} \rightarrow \textbf{2,5} \ C_2H_4O_2$                                                                                                           | 0,5 ± 0,2             | 1       |  |  |
| 3          | Hemicelulosa | $C_5H_8O_4 + H_20 \rightarrow C_5H_{10}O_5$                                                                                                                                         | $0,6 \pm 0,0$         | 1       |  |  |
| 4          | Trioleína    | $C_{57}H_{104}O_6 \textbf{ + 3 } H_2O \rightarrow C_3H_8O_3 \textbf{ + 3 } C_{18}H_{34}O_2$                                                                                         | 0.5 ± 0.2             | 1       |  |  |
| 5          | Keratina     | $C_{13}H_{25}O_7N_3S$ + 6 H <sub>2</sub> O $\rightarrow$ 6,5 CO <sub>2</sub> + 6,5 CH <sub>4</sub> + 3H <sub>3</sub> N + H <sub>2</sub> S                                           | 0,5 ± 0,2             | 1       |  |  |
|            |              | Acidogénesis                                                                                                                                                                        |                       |         |  |  |
| No         | Compuesto    | Reacción                                                                                                                                                                            | Avance de la reacción | Reactor |  |  |
| 6          | Dextrosa     | $\begin{split} & C_6H_{12}O_6 + 0.1115 \ H_3N \to 0.1115 \ C_5H_7NO_2 + 0.744 \\ & C_2H_4O_2 + 0.5 \ C_3H_6O_2 + 0.4409 \ C_4H_8O_2 + 0.6909 \\ & CO_2 + 1.0254 \ H_2O \end{split}$ | 0,4 ± 0,1             | 1       |  |  |
| 7          | Glicerol     | $C_3H_8O_3$ + 0.4071 $H_3N$ + 0.0291 $CO_2$ + 0.0005 $H_2$<br>→ 0.04071 $C_5H_7NO_2$ + 0.94185 $C_3H_6O_2$ + 1.09308<br>$H_2O$                                                      | 0,5 ± 0,1             | 1       |  |  |

Reacciones de las etapas de hidrólisis y acidogénesis.

*Nota.* La tabla expone las reacciones correspondientes para las dos primeras etapas de la digestión anaerobia. Tomado de: Moreno Clavijo, N., & Romero Jiménez, A. A. (2016). Evaluación de diferentes métodos para la transformación de la pulpa de café en abono orgánico en fincas cafeteras.

Durante estas dos primeras etapas también se presentan reacciones simultáneas de degradación, en las cuales los aminoácidos producidos por las fases de hidrólisis y acidogénesis, se reducen para producir ácido acético e hidrógeno, en cantidades considerables. En la **tabla 28** se describen las reacciones correspondientes a los aminoácidos presentes en el proceso de digestión anaerobia, de acuerdo con la composición de la pulpa de café.

#### Reacciones Aminoácidos

| No | Compuesto          | Reacción                                                                                                                                                                                                                                                             | Avance de reacción | Reactor |
|----|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------|
| 8  | Aspártico          | $C_4H_7NO_4 + 2H_2O \rightarrow C_2H_4O_2 + NH_3 + 2CO_2$<br>+ 2H <sub>2</sub>                                                                                                                                                                                       | 0.6 ± 0.1          | 1       |
| 9  | Arginina           | $\begin{array}{l} C_{6}H_{14}N_{4}O_{2}+2H_{2}O\rightarrow 2C_{2}H_{4}O_{2}+4NH_{3}+\ 2\\ CO_{2}+3H_{2} \end{array}$                                                                                                                                                 | 0.5 ± 0.1          | 1       |
| 10 | Valina             | $C_5H_{11}NO2 + 2 H_2O \rightarrow C_4H_8O_2 + NH_3 + CO_2 + 2$<br>$H_2$                                                                                                                                                                                             | 0.5 ± 0.1          | 1       |
| 11 | Alanina            | $C_3H_7NO_2 + 2 H_2O \rightarrow C_2H_4O_2 + NH_3 + CO_2 + 2$<br>$H_2$                                                                                                                                                                                               | 0.4 ± 0.1          | 1       |
| 12 | Ácido<br>glutámico | $\label{eq:c5H9NO4} \begin{array}{l} \textbf{C}_5\textbf{H}_9\textbf{NO}_4 \textbf{+} \textbf{2} \ \textbf{H}_2\textbf{O} \rightarrow \textbf{C}_2\textbf{H}_4\textbf{O}_2 \textbf{+} \textbf{NH}_3 \textbf{+} \textbf{CO}_2 \textbf{+} \\ \textbf{H}_2 \end{array}$ | 0.5 ± 0.1          | 1       |
| 13 | Treonina           | $\textbf{C}_4\textbf{H}_9\textbf{N}\textbf{O}_3\textbf{+}\textbf{H}_2\textbf{O}\rightarrow\textbf{C}_3\textbf{H}_6\textbf{O}_2\textbf{+}\textbf{N}\textbf{H}_3\textbf{+}\textbf{H}_2\textbf{+}\textbf{C}\textbf{O}_2$                                                | 0.6 ± 0.1          | 1       |
| 14 | Serina             | $\mathbf{C}_3\mathbf{H}_7\mathbf{NO}_3 + \mathbf{H}_2\mathbf{O} \rightarrow \mathbf{C}_2\mathbf{H}_4\mathbf{O}_2 + \mathbf{NH}_3 + \mathbf{CO}_2 + \mathbf{H}_2$                                                                                                     | 0.4 ± 0.1          | 1       |

*Nota.* La tabla expone las reacciones correspondientes para la degradación de los aminoácidos en la primera etapa. Tomado de: Moreno Clavijo, N., & Romero Jiménez, A. A. (2016). Evaluación de diferentes métodos para la transformación de la pulpa de café en abono orgánico en fincas cafeteras.

|    | Acetogénesis     |                                                                                                                                                                                                                                                                                                                                                                                  |                          |                                     |         |  |
|----|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------|---------|--|
| No | Compuesto        | Reacción                                                                                                                                                                                                                                                                                                                                                                         | Avance de la<br>reacción | Velocidad de<br>reacción<br>(M/s)   | Reactor |  |
| 2  | Ácido propiónico | $\begin{split} & C_3 H_8 O_2 \texttt{+} 0.06198 \ \texttt{NH}_3 \texttt{+} 0.314336 \ \texttt{H}_2 O \rightarrow 0.06198 \\ & C_5 H_7 \texttt{NO}_2 \texttt{+} 0.9345 \ \texttt{C}_2 \texttt{H}_4 O_2 \texttt{+} 0.660412 \ \texttt{CH}_4 \texttt{+} 0.160688 \\ & \texttt{1.95 \texttt{*} 10^{\texttt{-}07}} \\ & \texttt{CO}_2 \texttt{+} 0.000552 \ \texttt{H}_2 \end{split}$ |                          | C <sub>pr</sub> *K <sub>pr</sub>    | 2       |  |
| 3  | Ácido butírico   | $\begin{array}{l} C_4 H_8 O_2 + 0.0653 \ \text{NH}_3 \text{+} \ 0.8038 \ \text{H}_2 O + 0.0006 \ \text{H}_2 + 0.5543 \\ CO_2 \rightarrow 0.0653 \ C_5 H_7 NO_2 + 1.8909 \ C_2 H_4 O_2 + 0.446 \ \text{CH}_4 \end{array}$                                                                                                                                                         | 5.88 *10 <sup>-06</sup>  | C <sub>but</sub> * K <sub>but</sub> | 2       |  |
|    |                  | <br>Metanogénesis                                                                                                                                                                                                                                                                                                                                                                |                          |                                     |         |  |
| No | Compuesto        | Reacción                                                                                                                                                                                                                                                                                                                                                                         | Avance de la<br>reacción | Velocidad de<br>reacción<br>(M/s)   | Reactor |  |
| 2  | Metano           | 14.4976 H₂ + 3.8334 CO₂ + 0.0836 NH₃→ 0.0836<br>C₅H7NO₂ + 3.4154 CH₄ + 7.4996 H₂O                                                                                                                                                                                                                                                                                                | 2.39 * 10 <sup>-03</sup> | С <sub>СН4</sub> * К <sub>СН4</sub> | 2       |  |

#### Fase acetogénica y metanogénica

*Nota.* La temperatura de reacción a las cuál ocurren las reacciones es en régimen termofílico, con un valor de 55°C a presión atmosférica (1 bar). Tomado de: Moreno Clavijo, N., & Romero Jiménez, A. A. (2016). Evaluación de diferentes métodos para la transformación de la pulpa de café en abono orgánico en fincas cafeteras.

### 4.1.4 Criterios de la materia prima

Teniendo en cuenta la variabilidad de la materia prima y de los procesos biológicos como lo es la digestión anaerobia, se debe tomar un muestreo en el inicio del proceso de la biomasa a utilizar es decir de la pulpa de café. Los siguientes análisis son los recomendados para poder determinar cómo se comportará el lote de biomasa que ingresa al biorreactor: El primero debe ser el potencial de biometano, este parámetro consiste en mezclar el sustrato orgánico con un inóculo anaerobio en un reactor cerrado, el cual se incubará a una temperatura específica, con el contenido mezclado, durante un período de tiempo determinado, donde la muestra se digiere y se produce biogás [45]. Por otra parte, se debe cuantificar la composición de Celulosa y Hemicelulosa que posee ese lote de biomasa.

Al mismo tiempo es necesario conocer la composición de los azúcares estructurales, solubles, proteínas totales y la grasa total, esto permite comprender cómo las materias primas pasarán por las 4 etapas del proceso. El contenido de nitrógeno es otra variable critica, ya que permite equilibrar la relación C/N y evitar niveles tóxicos de amoníaco. Por
último, es importante conocer la concentración de compuestos tóxicos como ácidos, amoníaco y metales pesados.

Enlistando estos parámetros aproximadamente deben tener los valores que se muestran en la **tabla 30.** 

### Tabla 33

Parámetros de muestreo de biomasa

| Variables              | Unidades | Valor Objetivo | Referencia |  |  |  |
|------------------------|----------|----------------|------------|--|--|--|
| % de celulosa          | цо       | >18            | [46]       |  |  |  |
| Potencial de biometano | %        | >80            | [46]       |  |  |  |
| C/N                    |          | 20-30          | [47]       |  |  |  |
| Amoniaco               | mg/L     | <80            | [47]       |  |  |  |
| Metalespesados         |          |                |            |  |  |  |
| Magnesio               | mg/L     | 300-720        | [47]       |  |  |  |
| Cobre mg/L             |          | 5-300          | [47]       |  |  |  |
| Zinc                   | mg/L     | 3-400          | [47]       |  |  |  |

*Nota.* La tabla expone las condiciones bajo las cuales se realiza el muestreo de la biomasa. Tomado de:Torres, A. D. (1996). Evaluación de los parámetros cinéticos de la ecuación de Monod. *Ingeniería e investigación*, (33), 123-138.

Por otro lado, es importante destacar que la pulpa de café en condiciones ambientales no tiene una descomposición rápida, según [52] el tiempo de descomposición tarda aproximadamente 90 días, sin embargo, para evitar vectores o perdida de componentes importantes en su composición se recomienda utilizar lo más rápido posible.

## 4.1.5 Tipo de proceso (Continuo vs discontinuo)

Es importante definir si el proceso es de carácter por lotes, continuo o semicontinuo. Para ello, de acuerdo con la metodología de Douglas, se debe tener en cuenta los siguientes criterios:

4.1.5.a Nivel de producción. Para los procesos continuos se recomienda una producción mayor a 10 \*  $10^{6} \frac{lb}{a n o} (5000 \frac{ton}{a n o}) (5*10^{6} \frac{kg}{a n o})$ . Para los procesos por lotes se utiliza generalmente para una producción menor a 1\*10<sup>6</sup>  $\frac{lb}{a n o} (500 \frac{ton}{a n o}) (5*10^{6} \frac{kg}{a n o})$ .

Para este caso en particular, se proyecta la producción de 80 ton al año, es decir, aproximadamente  $29.200 \frac{ton}{año}$ , es decir, de acuerdo a lo descrito previamente, se ajusta mejor a un proceso continuo.

4.1.5.b Factor de mercado. Algunos productos como los fertilizantes que son estacionales, es decir, que solo se producen en la época en que se consumen. Si se producen durante todo el año. Se produce un inventario excesivo que produce costos extra.

Por otro lado, algunos productos solo tienen un periodo de vida corto (2-3 años), para este tipo de procesos se recomienda una planta por lotes por su gran flexibilidad para los productos de corta vida útil.

El biogás demanda de una producción continua, ya que se procesa en periodos selectivos de consumo.

#### 4.1.6 Operaciones unitarias

El proceso de la digestión anaerobia comprende las siguientes operaciones y procesos unitarios. Este se puede observar en la **figura 14** 

4.1.6.a Mezclado. Se utiliza un mezclador industrial con capacidad de procesar 25L diarios, esto con el fin de homogenizar la solución acuosa de biomasa que ingresa al proceso.

4.1.6.b Reacción 1. En el primer reactor se llevan a cabo las etapas de hidrólisis y acidogénesis, en el cual se produce la mayor cantidad de hidrógeno en el proceso, que será depositado en un tanque de almacenamiento.

4.1.6.c Reacción 2. En el segundo reactor se llevan a cabo las 2 últimas etapas de la digestión anaerobia: acetogénesis y metanogénesis, del cual se obtendrá el biogás, constituido principalmente por metano y trazas de otros gases, como metano.

## Figura SEQ Figura \\* ARABIC 36

H2 H2 BR1 BR2 BR2

Diagrama de bloques con gasómetros

*Nota.* A continuación, se presenta el diagrama con sus respectivas entradas y salidas.

#### 4.1.5 Reactores

4.1.5.a Biorreactor 1 (BR1). Los microorganismos de crecimiento relativamente rápido y microorganismos productores de  $H_2$  se desarrollan en el biorreactor hidrogénico de la primera etapa (BR1) con volumen de trabajo (V1) y participan en la producción de ácido acético, ácido propiónico, ácido butírico (acidogénesis) y de  $H_2$  [5] (Nota: el cálculo del volumen se desarrolla más adelante) . En esta etapa ocurre la fermentación oscura, proceso por medio del cual se genera la mayor cantidad de hidrógeno en la digestión anaerobia. Por lo general, si se llevara a cabo el proceso de digestión anaerobia en una sola etapa, el hidrógeno que es producido por los microorganismos acetogénicos e

hidrogénicos, serían aprovechados por las bacterias metanogénicas hidrogenófilas para producir biogás [6]. En este caso, se separa la etapa hidrogénica de la metanogénica con el fin de extraer el hidrógeno producido de la primera etapa y de esta manera se aumenta el potencial energético de la digestión anaerobia en residuos agroindustriales.

La unidad de operación simula la etapa de hidrólisis para los procesos de digestión anaerobia y la fermentación oscura. Calcula los flujos de masa de los carbohidratos, las proteínas y los ácidos grasos, basándose en las reacciones de hidrólisis y las conversiones parciales [7]. Este reactor puede evidenciarse de forma gráfica en la figura 1.

4.1.5.b Biorreactor 2 (BR2). Los acetógenos y metanógenos de crecimiento lento se desarrollan en el biorreactor metanogénicos de segunda etapa (BR2 con volumen de trabajo  $V_2$ ), en el que el ácido propiónico y el ácido butírico producidos ácido propiónico y ácido butírico producidos se convierten en ácido acético (acetogénesis) y después en  $CH_4$  y  $CO_2$  (metanogénesis) [5]. Este segundo biorreactor puede apreciarse en la figura 1.

#### 4.1.6 Volumen de los reactores

Utilizando la ecuación 19 se puede obtener el resultado del volumen del biorreactor 1 y 2 (BR1-BR2)

$$D_1 = \frac{F}{V_1} \qquad [Ec. 19]$$

Teniendo en cuenta que el flujo de alimentación de pulpa de café es de 25L de biomasa, y 2,7L de agua existe un flujo total de alimentación de 27,5L de alimentación. Despejando el  $V_1$  de la ecuación 19, obtenemos la ecuación 21

$$V_1 = \frac{F}{D_1} \qquad [Ec. 21]$$

Resolviendo la ecuación 21

$$V_1 = \frac{27.5 \frac{L}{h}}{0.25 h^{-1}}$$
$$V_1 = 110 L$$

#### 4.1.7 Purgas y Reciclos

Teniendo en cuenta que una de las principales inhibiciones es el amoniaco se propone una purga en los lodos del biodigestor, el agua que entra al equipo solubiliza el amoniaco en forma de ion amonio a la temperatura de, el amoniaco solubilizado afecta directamente el pH del digestato afectando el rendimiento de los microorganismos metanogénicos especialmente disminuyendo la producción de metano. La purga de lodos está relacionada con el tiempo de residencia celular, esta no puede afectar el digestato en el reactor, por lo que según datos bibliográficos [22] para un tiempo de retención de 12 días la purga no puede superar el 0.5% del volumen total del digestato en el biorreactor.

Por otro lado, existe la purga de seguridad que debe tener los sistemas de almacenamiento de gases las cuales deben estar ubicadas en la tubería que comunica la salida del biorreactor con el gasómetro, y debe existir otra en la parte superior de los biorreactores en caso de que la presión del gas en el recipiente exceda el límite permitido esta se debe abrir. Estas adecuaciones se pueden observar en la figura 15.

#### Diagrama de proceso con válvulas



*Nota.* A continuación, se presenta el diagrama con sus respectivas entradas y salidas junto con sus respectivas válvulas de seguridad.

Por último, en este proceso no se realiza una recirculación ni del digestato, ni de agua, ni de los gases, porque en cada reactor es necesario mantener unas condiciones diferentes propicias para las bacterias. [12]

#### 4.1.7 Operaciones de separación

Es necesario mencionar este ítem porque el gas que se produce en la digestión anaerobia en el reactor BR1 y BR2 está contaminado con elementos trazas, especialmente dióxido de carbono y el ácido sulfhídrico. Para escoger el tipo de separador primero se deben conocer las propiedades físicas de la mezcla, como sus volatilidades o propiedades de absorción, también se deben tener en cuenta los métodos se separación que se podrían utilizar para mezclas vapor- vapor como lo son, condensación parcial, destilación, absorción de gases, adsorción de gases, permeación de gases con una membrana y desublimacion. [22]

Para ciertos componentes existen formas de eliminar los porcentajes de los gases contaminantes como el  $CO_2$  y el  $H_2S$ , estos se eliminan realizando un lavado a presión contracorriente con agua [22] por medio de una columna rellena, es decir se utiliza la absorción de gases en este caso. Esto se puede observar en figura 16.

#### Figura 38

Diagrama de proceso con posibles métodos de separación



*Nota.* A continuación, se presenta el diagrama con sus respectivas entradas y salidas., válvulas de seguridad y la posible ruta de separación.

### 4.2 Alternativas para la captura y reutilización del dióxido de carbono

#### 4.2.1 Carbonatación

$$C_a(OH)_2 + CO_2 \rightarrow C_aCO_3 + CO_2 \qquad [Ec. 22]$$

Teniendo en cuenta que la corriente de vapor que se obtiene de la torre de adsorción por la parte inferior es rica en dióxido de carbono, se debe pasar por un proceso de captura

y reutilización, teniendo en cuenta que este proyecto está enfocado en el uso de subproductos agrícolas, se opta por el proceso en el cual se desarrolla la ecuación 22 el cual hace referencia a la carbonatación, en la que el hidróxido de calcio reacciona con el dióxido de carbono y forma carbonato cálcico insoluble, se han desarrollado varios estudios experimentales donde se utilizan las cenizas de lodos con diferentes solventes para llevar a cabo este procedimiento. El proceso básico de la reacción indirecta se lleva a cabo en dos etapas: en la primera etapa, la materia prima se lixivia con ácidos o bases y en la segunda etapa el material lixiviado y el  $CO_2$  reaccionan para formar carbonatos termodinámicamente estables. Es importante destacar que la ceniza de lodo debe tener un alto contenido de Ca, y un tamaño de partícula pequeño, lo que indica que es una excelente materia prima que puede usarse en carbonatación indirecta sin pretratamiento como la molienda. En [48] utilizan la carbonatación mineral, usando las cenizas y utilizando variedad de solventes (mejor rendimiento: ácido acético), luego de esto teniendo en cuenta las interacciones el ácido, se debe modificar el pH del lixiviado, por lo que este se aumenta agregando hidróxido de sodio y por último se inyecta dióxido de carbono en el lixiviado para realizar la carbonatación, el sólido blanco que se precipita es el calcio sólido (carbonato de calcio). Para desarrollar este proyecto se debe tener un reactor con agitador, y se desarrolla a temperatura ambiente y presión atmosférica. Se tiene un resultado de 324 kg  $CO_2$ / (ton cenizas de lodo). Sin embargo, se deben realizar estudios sobre la reutilización de los disolventes utilizados, y también se debe tener en cuenta la cantidad energética que se debe utilizar para producir las cenizas de los lodos, especialmente si es una gran producción de dicho residuo. Por otro lado, en [49] también desarrollan la carbonatación indirecta con lodo de papel y agentes quelantes como solventes, el CO2 máximo secuestrado usando lodos papeleros fue de 142 kg CO2/toncenizas de lodo cuando se usó citrato trisódico deshidratado. En [50] se utiliza las cenizas lodo papelero y agua de mar, estos componentes se mezclan en un reactor continuo en 1/10 para eluir el calcio, posteriormente se inyecta el vapor cargado con dióxido de carbono, produciendo 110 a 120 (kg  $CO_2$ /ton cenizas de lodo). En [51] desarrollan la carbonatación acuosa de residuos alcalinos de fábricas de papel (aprox. 55 % en peso en portlandita ( $Ca(OH_2)$ ) para la captura de  $CO_2$ , produciendo 218 Kg  $CO_2$ /Ton cenizas de lodo.

# 4.3 Elaboración metodológica de la simulación

La operación tradicional de digestores anaerobios se puede mejorar a través del uso de modelos matemáticos y de la simulación del proceso. El modelado y simulación de procesos puede ser útil en los siguientes aspectos [10]:

- Mejorar el entendimiento del proceso.
- Analizar diferentes escenarios de operación del proceso en forma preliminar a realizarlos en el proceso real.

• Validar y formular las suposiciones e hipótesis planteadas en la derivación del modelo.

• Abordar problemas de diseño, optimización y control de procesos.

# 4.3.1 Ingreso de los componentes involucrados en el proceso

En primer lugar, es importante introducir en el simulador los componentes que tendrán lugar a lo largo de la digestión anaerobia, esto se realiza de acuerdo a la **tabla 2** en la cual se especifican los componentes que integran a la materia prima, y con las **tablas 27, 28 y 29** las cuales contienen las reacciones del proceso, de manera que también brindan información con respecto a los componentes que presuntamente se formarán.

Para ello, tras haber creado un nuevo documento en el simulador Aspen Plus, se ingresa en la pestaña "specifications", se selecciona la opción "found" y se busca consecuentemente el componente en cuestión, ya sea a través de su nombre o fórmula química. A continuación, se evidencia los componentes ingresados para la simulación del proceso de digestión anaerobia.

## Tabla 34

Componentes ingresados a la simulación

| Componente | Fórmula química  | Nombre en Aspen |
|------------|------------------|-----------------|
| Agua       | H <sub>2</sub> O | WATER           |

| Glicerol                       | $C_3H_8O_3$                   | GLYCEROL           |
|--------------------------------|-------------------------------|--------------------|
| Ácido oleico                   | $C_{18}H_{34}O_2$             | OLEIC-ACID         |
| Dextrosa                       | $C_6 H_{12} O_6$              | DEXTROSE           |
| Ácido acético                  | $C_2 H_4 O_2^{-1}$            | ACETIC-ACID        |
| Ácido propiónico               | $C_3 H_6 O_2^{-1}$            | PROPIONIC-ACID     |
| Ácido butírico                 | $C_4 H_8 O_2^{-4}$            | ISOBUTYRIC-ACID    |
| Amoniaco                       | $H_3N$                        | AMMONIA            |
| Dióxido de<br>carbono          | <i>CO</i> <sub>2</sub>        | CARBON-DIOXIDE     |
| Cianoácido<br>acético de etilo | $C_5H_7NO_2$                  | ETHYL-CYANOACETATE |
| Arginina                       | $C_6 H_{14} N_4 O_2^{-1} N_2$ | ARGININE           |
| Treonina                       | $C_4H_9NO_3$                  | THREONINE          |
| Serina                         | $C_3H_7NO_3$                  | SERINE             |
| Valina                         | $C_5H_{11}NO_2$               | VALINE             |
| Ácido glutámico                | $C_5H_9NO_4$                  | L-GLUTAMIC-ACID    |
| Ácido aspártico                | $C_4H_7NO_4$                  | ASPARTIC-ACID      |
| Alanina                        | $C_3H_7NO_2$                  | ALANINE            |
| Hidrógeno                      | $H_2$                         | HYDROGEN           |
| Metano                         | $CH_4$                        | METHANE            |
| Celulosa                       | $C_6 H_{10} O_5$              | CELLULOSE          |
| Hemicelulosa                   | $C_5H_8O_4$                   | GLUTARIC-ACID      |
| Trioleína                      | $C_{57}H_{104}O_6$            | TRIOLEIN           |
| Xilosa                         | $C_6 H_{10} O_5$              | D-XYLOSE           |
| Etanol                         | $C_2 H_6 O^{-2}$              | ETHANOL            |
| Keratina                       | $C_{4.39}H_8NO_2$             | C4.39H8NO2.1       |

*Nota.* En la tabla se expresan los componentes que intervienen en las reacciones del proceso de la digestión anaerobia, junto con su fórmula molecular.

## 4.3.2 Especificación de pseudocomponentes

Para definir un componente que no está disponible en la base de datos en Aspen Plus, es necesario precisar los parámetros de propiedades básicas requeridas para estos componentes, los cuales corresponden a la estructura molecular, peso molecular, y el punto de ebullición.

Se requiere el peso molecular en todas las simulaciones. El punto de ebullición normal no es necesario en los cálculos de propiedades, pero se utiliza para estimar otros parámetros tales como, la temperatura crítica y presión crítica; si no se cuenta con esta información.

En el proceso de la digestión anaerobia, participa un pseudocomponente clave, que se identifica como el contenido proteico de la pulpa de café, el cual se denota como "Keratina". Este componente es clave en el proceso de simulación ya que contiene todos los aminoácidos de la biomasa en cuestión

Para ingresarlo a la base de Aspen, es preciso hacerlo como un pseudocomponente, especificando la mayor cantidad de propiedades conocidas, las cuales se evidencian a continuación.

## Tabla 35

| Propiedades de la keratina |              |  |
|----------------------------|--------------|--|
| Parámetro                  | Valor        |  |
| Nombre                     | Keratina     |  |
| Fórmula molecular          | C4.39H8NO2.1 |  |
| Densidad (kg/m3)           | 1430         |  |
| Peso molecular (g/mol)     | 116,3949     |  |

Propiodadas da la karatina

Nota. En la tabla se evidencian los parámetros fundamentales para caracterizar el pseudocomponente en la mezcla. Tomado de: Moreno Clavijo, N., & Romero Jiménez, A. A. (2016). Evaluación de diferentes métodos para la transformación de la pulpa de café en abono orgánico en fincas cafeteras.

De acuerdo con los datos descritos en la tabla ##, se ingresa en la interfaz "properties", como nuevo pseudocomponente.

Una vez ingresado el sistema termodinámico de NRTL-HOC en el simulador, se verifica la disponibilidad de parámetros de interacción binaria para la mezcla global desglosada en sus especies.

Es importante destacar que el simulador Aspen Plus tiene la capacidad de proporcionar información límite por medio del modelo NRTL, sin embargo, a través de la ecuación 22 se puede determinar la cantidad de mezclas binarias para las cuales se debería disponer de información:

$$bin = \frac{(n*n) - n}{2} \qquad [Ec. 23]$$

Donde n corresponde al número de componentes en la mezcla, teniendo en consideración que existen 25 sustancias en el proceso, entonces:

$$bin = \frac{(25 * 25) - 25}{2}$$

Con base en esta ecuación, se concluye que hay 300 posibles mezclas binarias entre los componentes que integran el proceso, sin embargo, tal y como se aprecia en la **tabla 31**, el simulador solamente determinó 14 binarios en la mezcla global, lo cual constituye aproximadamente el 5% del total de interacciones. Para poder determinar las demás mezclas binarias, es preciso indicar dentro de la herramienta de simulación que las estime utilizando el modelo de UNIFAC. La lista de parámetros de interacción completa se encuentra en el **Anexo 3**.

# Tabla 36

| Componente i | Componente j | Fuente           | Unidades de temperatura | AIJ     | AJI     | BIJ      | BJI      | CIJ    |
|--------------|--------------|------------------|-------------------------|---------|---------|----------|----------|--------|
| WATER        | GLYCEROL     | APV100 VLE-HOC   | С                       | -1,1513 | -0,6068 | 237,724  | 136,791  | 0,3    |
| WATER        | ISOBU-01     | APV100 LLE-ASPEN | С                       | 9,5626  | -8,8951 | -1198,39 | 2034,58  | 0,2    |
| WATER        | NH3          | APV100 VLE-HOC   | С                       | 12,5209 | -3,4282 | -3799,51 | 516,32   | 0,3    |
| WATER        | CO2          | APV100 ENRTL-RK  | С                       | 10,064  | 10,064  | -3268,14 | -3268,14 | 0,2    |
| WATER        | ACETI-AC     | APV100 VLE-HOC   | С                       | 3,3293  | -1,9763 | -723,888 | 609,889  | 0,3    |
| WATER        | PROPI-01     | APV100 VLE-HOC   | С                       | 3,273   | -1,9109 | -505,457 | 712,094  | 0,3    |
| ACETI-AC     | PROPI-01     | APV100 VLE-HOC   | С                       | -3,0776 | 2,4452  | 1247,89  | -966,961 | 0,3    |
| PROPI-01     | ISOBU-01     | APV100 VLE-HOC   | С                       | 0       | 0       | -275,122 | 814,413  | 0,3    |
| WATER        | ETHANOL      | APV100 VLE-LIT   | С                       | 0       | 0       | 670,444  | -55,1698 | 0,3031 |
| GLYCEROL     | ETHANOL      | APV100 VLE-LIT   | С                       | 0       | 0       | 208,732  | 384,169  | 0,6145 |
| OLEIC-AC     | ETHANOL      | APV100 VLE-LIT   | С                       | 0       | 0       | -172,878 | 490,981  | 0,2988 |
| ACETI-AC     | ETHANOL      | APV100 VLE-HOC   | С                       | 0       | 0       | -252,482 | 225,476  | 0,3    |
| PROPI-01     | ETHANOL      | APV100 VLE-HOC   | С                       | 0       | 0       | -383,871 | 281,232  | 0,3    |
| NH3          | ETHANOL      | APV100 VLE-RK    | С                       | 0       | 0       | -311,188 | 13,1784  | 0,3    |
|              |              |                  |                         |         |         |          |          |        |

Parámetros de interacción binaria por el modelo NRTL-HOC

*Nota.* Se aprecian los parámetros de interacción binaria calculados por medio del método NRTL-HOC. Tomado de: Aspen Plus V10.

Es importante destacar que se especifican las reacciones con la ley de potencias (POWERLAW) para su cinética, ya que de acuerdo con los recursos que brinda el simulador, es el modelo cinético que presenta una mayor aproximación con el modelo de MONOD, el cuál describe los procesos con microorganismos involucrados.

## 4.3.3 Construcción del Flowsheet

Para elaborar el esquema del proceso en el simulador, se introdujeron dos corrientes a la unidad de mezclado, la primera que contiene biomasa húmeda de la pulpa de café, y la segunda que constituye una corriente netamente de agua. La finalidad de la etapa de mezclado es diluir la biomasa, con el fin de hacerla material procesable para la digestión anaerobia. Al realizar esto se reduce en cierta medida los valores de composición que tiene la biomasa, de manera que se ve reflejado en el producto final.

A continuación, se especifica la composición y condiciones operativas de las corrientes de entrada a la unidad de mezclado.

| Nombre de la corriente Unidades |             | BIOMASA | AGUA         |  |
|---------------------------------|-------------|---------|--------------|--|
| Fase                            |             | -       | Fase líquida |  |
| Temperatura °C                  |             | 23      | 23           |  |
| Presión bar                     |             | 1,01    | 1,01         |  |
|                                 | Fracción ma | ásica   |              |  |
| Agua                            |             | 0       | 1            |  |
| Dextrosa                        | 0,09165     | 0       |              |  |
| Ácido acético                   | 0           | 0       |              |  |
| Amoniaco                        |             | 0,01018 | 0            |  |
| Celulosa                        |             | 0,10081 | 0            |  |
| Hemicelulosa                    |             | 0,01018 | 0            |  |
| Trioleina                       |             | 0,04073 | 0            |  |
| Keratina                        | 0,33727     | 0       |              |  |

Caracterización de las corrientes de alimentación al MIXER

*Nota.* Se evidencian las condiciones de operación y composición para el contenido de la pulpa de café como corriente de alimentación.

En la **figura 17** se evidencia que el componente con mayor predominancia es la Keratina, el cual a su vez constituye la producción de los aminoácidos que la biomasa que serán degradados en el primer biorreactor por microorganismos acidogénicos.

4.3.3.a Unidad de mezclado. Con el fin de garantizar la homogeneidad de la mezcla, se inserta un mezclador, el cual tendrá como objetivo maximizar el contacto entre la solución acuosa y la biomasa. Como se observa en la **figura 18** 

Para la unidad de mezclado se utilizará un mezclador industrial para procesar compuestos de mediana viscosidad, con capacidad de 25 L.

Mezclador industrial



*Nota.* Imagen correspondiente a un mezclador industrial, el cual permite homogeneizar mezclas viscosas. Tomado de: Gräber, W. D. & Hüttinger, K. J. 1982. Chemistry of methane formation in hydrogasification of aromatics. 1. Non-substituted aromatics. Fuel, 61(6): 499-504.

4.3.3.b Reactor estequiométrico (BR1). Para el primer biorreactor (**Figura 19)** se utilizó uno de modelo estequiométrico, el cual se utiliza cuando:

- La cinética de las reacciones son desconocidas o poco importantes.
- La estequiometria es conocida.
- Se puede especificar el grado de reacción o conversión.
- Se tienen las condiciones de operación del reactor.

En aspen se distingue con el siguiente ícono

Reactor estequiométrico BR1



*Nota.* Imagen correspondiente a un reactor estequiométrico en la interfaz de Aspen Plus. Tomado de: Gräber, W. D. & Hüttinger, K. J. 1982. Chemistry of methane formation in hydrogasification of aromatics. 1. Non-substituted aromatics. Fuel, 61(6): 499-504.

Para este reactor se especificaron tanto las corrientes de salida como de entrada junto con la temperatura de operación en **la tabla 32.** 





*Nota.* Imagen correspondiente a un reactor de mezcla completa CSTR. Tomado de: Wooley, R., Ruth, M., Glassner D., Sheehan, J. Process Design and Costing of Bioethanol Technology: A Tool for Determining the Status and Direction of Research and Development. Biotechnol. Prog. 15: 794-803, 1999.

Corriente entrada y salida BR2

| Corriente de entrada | Descripción                                              | Corriente de salida | Descripción                                                                                      |
|----------------------|----------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------|
|                      | Componentes<br>intermedios, producto<br>de la hidrólisis | BIOGÁS              | Corriente en estado de<br>vapor, rico en metano,<br>CO2 y trazas de otros<br>gases               |
| 5                    |                                                          | LODOS               | Fluido en suspensión<br>acuosa, rico en<br>microorganismos y<br>especies que no<br>reaccionaron. |

*Nota.* Se presenta información con respecto a las corrientes de entrada y salida para el segundo biorreactor (BR2).

## Figura 44

Condiciones de operación BR1

| Temperatura (°C) | 55    |
|------------------|-------|
| Presión (bar)    | 1,023 |

*Nota.* Se presentan las condiciones de operación para el primer biorreactor, en régimen termofílico a una temperatura de 55°C.

## Tabla 37

Parámetros de Temperatura y presión BR2

| Temperatura (°C)         | 55      |
|--------------------------|---------|
| Presión (bar)            | 1,01325 |
| Tiempo de residencia (h) | 360     |

*Nota.* Se presentan las condiciones de operación para el segundo biorreactor, en régimen termofílico a una temperatura de 55°C.

4.3.3.c Reactor de mezcla completa (BR2). Para llevar a cabo las dos primeras etapas, es decir, la hidrólisis y la acidogénesis, se utiliza un reactor RStoic (reactor estequiométrico), el cual se observa en la **figura 20**, el cual se utiliza debido a que, caso contrario a las dos últimas etapas, se desconocen los valores que describen la cinética de las reacciones, sin embargo, se dispone de datos como la estequiometria y el grado de conversión de cada una.

## 4.4 Resultados y discusión

De acuerdo con la metodología empleada previamente, en síntesis, se obtuvo un esquema detallado para la simulación del proceso de la digestión anaerobia, sobre el cuál se realizaron aproximadamente 6 pruebas, modificando variables como la temperatura, el tiempo de residencia y el caudal, esto con el fin de visualizar la cantidad máxima permisible de biogás e hidrógeno. Cabe destacar que, para fines de la simulación, no sé incluyeron algunos pseudocomponentes como la fracción insoluble de la proteína e inertes, esto debido a que hacía la descripción de la cinética mucho más compleja. De manera que se obtuvieron los siguientes resultados con una temperatura de 55°C y 5 L/día y de alimentación

## Tabla 38

| Nombre de la corriente | Unidades | BIOMASA | AGUA         | H2           | 5      | 6      | BIOGAS     | LIQUID       |
|------------------------|----------|---------|--------------|--------------|--------|--------|------------|--------------|
| Fase                   |          | -       | Fase líquida | Fase líquida | -      | -      | Fase vapor | Liquid Phase |
| Temperatura            | °C       | 23      | 23           | 55           | 21,14  | 55     | 55         | 55           |
| Presión                | bar      | 1,01    | 1,01         | 1,02         | 1      | 1,02   | 1,01       | 1,01325      |
| Fracción másica        |          |         |              |              |        |        |            |              |
| Hidrógeno              |          | 0,0000  | 0,0000       | 0,0000       | 0,0000 | 0,0012 | 0,0057     | 0,0000       |
| Metano                 |          | 0,0000  | 0,0000       | 0,0000       | 0,0000 | 0,0041 | 0,0513     | 3,79E-05     |
| Dióxido de carbono     |          | 0,0000  | 0,0000       | 0,0000       | 0,0000 | 0,0376 | 0,2137     | 0,0007       |
| Agua                   |          | 0,4092  | 1,0000       | 1,0000       | 0,8969 | 0,0180 | 0,0172     | 0,0185       |
| Ácido acético          |          | 0       | 0            | 0            | 0      | 0,0674 | 0,0151     | 0,0617       |

## Resultados en Aspen Plus

*Nota.* Se presentan los resultados calculados a partir de la simulación estructurada en el software Aspen Plus.

De acuerdo con la **tabla 33**, es posible apreciar que la máxima cantidad obtenida de hidrógeno sale por la corriente de BIOGÁS con una representación del 0.57% aproximadamente, sin embargo, también se verifica la presencia de hidrógeno en la corriente 6 con una composición del 0.12% aproximadamente, es decir, refleja evidencia

de la producción de hidrógeno en el reactor BR1, a pesar de su baja fracción másica. Sin embargo, no fue posible separarlo directamente del reactor, de hecho, tal y como se evidencia en la ilustración, por la corriente designada como "H<sub>2</sub>", se tenía prevista para la separación del hidrógeno, no obstante, esta corriente solamente contiene vapor de agua con una composición del 100%. Esto quiere decir que debe estudiarse un proceso de separación más a fondo que permita extraer el hidrógeno de la corriente 6, la cual a su vez tiene trazas de otros gases como metano, dióxido de carbono, entre otros, lo cual dificulta en una mayor medida la separación.

Es importante resaltar que la producción de hidrógeno depende directamente del contenido de aminoácidos de la biomasa, ya que es la fuente principal por medio de la cual se recupera el hidrógeno del primer biorreactor, de manera que, para lograr producir mayor cantidad de hidrógeno, es importante concentrar los aminoácidos.

En cuanto a la corriente de biogás, es posible evidenciar que se están produciendo 5.13% de metano, 0.57% de hidrógeno, 1.51% de ácido acético y trazas de otros gases que se especifican en el balance de masa y energía contenido en el **Anexo 2.** 

## 4.4.1 Reactores

Para el biorreactor BR2 fue posible obtener el dimensionamiento del equipo, ya que este modelo de reactor en Aspen opera bajo un modelo riguroso, contrario a lo que sucede con el BR1, que es estequiométrico y solo fue posible calcular el flujo de calos y la fracción vaporizada del reactor.

## Tabla 34

Flujo de calor reactores

| Reactor | Flujo de calor<br>(J/sec) | Volumen<br>(L)      | Tiempo de residencia<br>(sec) |
|---------|---------------------------|---------------------|-------------------------------|
| BR1     | 0,085666196               | 760                 | 1.321.540,74                  |
| BR2     | -4,27173946               | Fracción vaporizada | 0,00789748                    |

*Nota.* Se presentan los resultados en términos energéticos y métricos de los reactores utilizados para la simulación.

De acuerdo con la **tabla 34** es posible concluir que el volumen que requiere el reactor real es de 760 L para cumplir con la meta de producción, adicionalmente, es importante destacar que para el reactor tiene un bajo consumo energético de 0.085  $\frac{J}{seg}$  aproximadamente, lo que constituye una gran ventaja en costos operativos.

#### 5. CONCLUSIONES

Se logra validar el modelo termodinámico que describe completamente el comportamiento de la mezcla, tanto para la fase líquida (NRTL) como para la de vapor (Hayden ) dentro del proceso de la digestión anaerobia, esto a partir de un árbol de selección y posteriormente contrastado con datos experimentales, lo cual confirma un buen acercamiento en términos generales del modelo NRTL-HOC para las posibles interacciones binarias entre las especies que constituyen la mezcla global, presentando mayores dispersiones para las mezclas de Agua/dióxido de carbono y Agua/etanol para temperaturas superiores a 355 K.

Se desarrollaron los balances de masa y cinéticos para el proceso de la digestión anaerobia utilizando la pulpa de café (con una concentración inicial de celulosa de  $17\frac{g}{L}$ ) con ayuda del programa de Octave, obteniéndose como resultados una tasa de producción de 0,049L/h de Hidrógeno y sin flujo de metano

Las reacciones de balance de masa y la cinética del proceso dependen directamente del volumen de los reactores y el flujo de alimentación de celulosa inicial.

El diseño conceptual se concreta con un mezclador industrial donde llega el flujo de alimentación de pulpa de café y agua, posteriormente pasa al primer 1 reactor estequiométrico (BR1), se produce Hidrógeno y se extrae por la parte superior donde se almacena en un gasómetro, la corriente de lodos y biomasa sigue su camino al segundo reactor de mezcla completa (BR2) donde se produce biogás, con trazas de otros gases, estos igualmente se extraen por la parte superior y se almacenan en un gasómetro. El proceso tiene purgas en cada reactor, válvulas de control y seguridad y un proceso de separación y purificación de la corriente de biometano del biorreactor 2.

Se determinaron las condiciones de operación que favorecen a la producción de metano, las cuales corresponden a una temperatura en régimen termofílico (>50°C) y un tiempo de retención de 15 días.

130

## BIBLIOGRAFÍA

- [1] A. Orgaz, "Energía renovable: la biomasa," *EPEC*, 2020.
- [2] S. Vergara, "Partes del fruto de Café," Jul. 27, 2020. https://www.inceptioncoffee.com/partes-del-fruto-de-cafe/ (accessed May 27, 2022).
- [3] A. Aguirre, "Análisis del proceso de beneficiado húmedo ," Universidad Rafael Landívar, Guatemala, 2014. Accessed: May 27, 2022. [Online]. Available: http://infocafes.com/portal/wp-content/uploads/2017/06/Morales-Mario.pdf
- [4] Novelec, "Sistemas de aprovechamiento de la biomasa Grupo Novelec," 2020. https://blog.gruponovelec.com/energias-renovables/sistemas-aprovechamientola-biomasa/ (accessed May 31, 2022).
- [5] B. Velázquez, "Aprovechamiento de la biomasa para uso energético Académicos," Editorial Universidad Politécnica de Valencia, 2018.
- [6] F. Valladares, "Modelamiento del proceso de digestión anaeróbica de estiércol vacuno y cáscara de cacao," Universidad de Piura, Puira, 2017.
- [7] Tatoma, "El biogás, una fuente de energía." http://www.grupotatoma.com/noticia.php/es/El-biogas,-una-fuente-deenergia/182 (accessed May 27, 2022).
- [8] A. González, "Producción, almacenamiento y distribución de hidrógeno," Madrid, 2019.
- [9] E. Carlson, "Reciente -Don't Gamble With Physical Properties For Simulations Google Drive," 1996. Accessed: May 31, 2022. [Online]. Available: https://drive.google.com/drive/u/0/recent
- [10] A. P. García, "Simulación rigurosa del proceso de digestión anaerobia," 2014. doi: 10.24275/uama.6746.7558.

- [11] Rodríguez, N., & Zambrano, D. A. (2013). Los subproductos del café: fuente de energía renovable. Centro Nacional de Investigaciones de Café (Cenicafé).
- [12] Cabeza de Vaca I. Francisco. (2008). Digestión anaerobia de lodos residuales usando un reactor de manto de lodos no convencional (Tipo UASB). Tesis para maestría en ingeniería ambiental. Universidad Nacional Autónoma De México
- [13] Rudniak, L., Piotr, M., Milewska, A. CFD modelling of stirred tank chemical reactors: homogeneous and heterogeneous reaction systems. Chemical Engineering Science 59: 5233–5239, 2004.
- [14] Sahu, J.N., Rama-Krishna, V.S., Hussain, S., Patwardhan, A.V., Meikap, V.C. Optimization of ammonia production from urea in continuous process using Aspen Plus and computational fluid dynamics study of the reactor used for hydrolysis process. Journal of Industrial and Engineering Chemistry 16: 577–586, 2010.
- [15] Satyawali, Y., Balakrishnan, M. Wastewater treatment in molasses based alcohol distilleries for cod and color removal: a review. Journal of Environmental Management 86 (3): 481–497, 2008.
- [16] Serrano, R.P. Biogas process simulation using Aspen Plus. In: Chemical Engineering, Syddansk Universitet, Denmark, pp. 86, 2011.
- [17] Siegrist, H., Batstone, D. Free amomonia ang pH inhibition of acetotrophic methanogenesis at meso and thermophilic conditions. In: 9th World Congress Anaerobic Digestion 2001. Technologisch Instituut VZW, pp. 395–400, 2001.
- [18] Vavilin, V. A., Vasiliev, V. B., and Rytov, S. V. Modelling of gas pressure effects on anaerobic digestion. Bioresource Technology, 52 (1): 25-32, 1995.
- [19] Vesvikar M.S., Al-Dahhan, M.H. Flow pattern visualization in a mimic anaerobic digester using CFD. Biotechnology and Bioengineering, Vol. 89, No. 6, march 20, 2005.
- [20] Wooley, R.J., Putsche, V. Development of an Aspen plus physical property database for biofuels components. National renewable energy laboratory golden, CO, USA, 1996.

- [21] Wooley, R., Ruth, M., Glassner D., Sheehan, J. Process Design and Costing of Bioethanol Technology: A Tool for Determining the Status and Direction of Research and Development. Biotechnol. Prog. 15: 794-803, 1999.
- [22] Teresa, M. (2010). Manual de biogás. MINENERGIA/PNUD/FAO/GEF. Chile: Editado por Proyecto CHI/00/G32 Chile: Remoción de Barreras para la Electrificación Rural con Energías Renovables.
- [23] Andree Blesgen and Volker C.Hass 2010. Efficient Biogas Production through Process Simulation. Energy Fuels 2010, 4721-4727.
- [24] Angelidaki, I., Ellegaard, L., & Ahring, B. K. 1999. A comprehensive model of anaerobic bioconversion of complex substrates to biogas. Biotechnology and Bioengineering, 63(3): 363-372.
- [25] Benner, R. & Hodson, R. E. 1985. Thermophilic Anaerobic Biodegradation of [14C] Lignin, Cellulose, and [14C] Lignocellulose Preparations. Applied and environmental microbiology, 50(4): 971-976.
- [26] Bruni, E., Jensen, A. P., & Angelidaki, I. 2010. Steam treatment of digested biofibers for increasing biogas production. Bioresource Technology, 101(19): 7668-7671.
- [27] Converti, A., Borghi, A. D., Arni, S., & Molinari, F. 1999. Linearized Kinetic Models for the Simulation of the Mesophilic Anaerobic Digestion of Pre-hydrolyzed Woody Wastes. Chemical Engineering & Technology, 22(5): 429-437.
- [28] D.J.Batstone, J. Keller\* I. Angelidaki S. V. Kalyuzhnyi S. G. Pavlostathis A. Rozzi W.
   T. M. Sanders H. Siegrist and V. A. Vavilin. The IWA Anaerobic Digestion Model No 1. IWA Anaerobic Digestion
- [29] Modelling Task Group, Advanced Wastewater Management Centre The University of Queensland St. Lucia Australia. 2002. Ref Type: Conference Proceeding
- [30] Deublein, D. & Steinhauser, A. 2008. Biogas from Waste and Renewable Resources. Wiley-VCH Verlag GmbH & Co. KGaA.

- [31] Gräber, W. D. & Hüttinger, K. J. 1982. Chemistry of methane formation in hydrogasification of aromatics. 1. Non-substituted aromatics. Fuel, 61(6): 499-504.
- [32] Gräber, W. D. & Hüttinger, K. J. 1982. Chemistry of methane formation in hydrogasification of aromatics. 2. Aromatics with aliphatic groups. Fuel, 61(6): 505-509.
- [33] Gräber, W. D. & Hüttinger, K. J. 1982. Chemistry of methane formation in hydrogasification of aromatics. 3. Aromatics with heteroatoms. Fuel, 61(6): 510-515.
- [34] Harwood, C. S., Burchhardt, G., Herrmann, H., & Fuchs, G. 1998. Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiology Reviews, 22(5): 439-458.
- [35] Heider, J. & Fuchs, G. 1997. Microbial anaerobic aromatic metabolism. Anaerobe, 3(1): 1-22.
- [36] J.B.HEALY, JR. a. L. Y. Y. 1979. Anaerobic Biodegradation of Eleven Aromatic Compounds to Methane. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 38(1): 84-89.
- [37] Jay Cheng 2009. Biomass to Renewable Energy Processes. CRC Press.
- [38] Luo, G., Talebnia, F., Karakashev, D., Xie, L., Zhou, Q., & Angelidaki, I. 2011. Enhanced bioenergy recovery from rapeseed plant in a biorefinery concept. Bioresource Technology, 102(2): 1433-1439.
- [39] Ramsay, I. R. & Pullammanappallil, P. C. 2001. Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation, 12(4): 247-256.
- [40] Ronald Benner, A. E. M. a. R. E. H. 2011. Anaerobic Biodegradation of the Lignin and Polysaccharide Components of Lignocellulose and Synthetic Lignin by Sediment Microflora. Applied and environmental microbiology, 47(5): 998-1004.

- [41] Shengli, G., Mian, J., Sanping, C., Rongzu, H., & Qizhen, S. 2001. The Thermokinetics of the Formation Reaction of Cobalt Histidine Complex. Journal of Thermal Analysis and Calorimetry, 66(2): 423-429.
- [42] Fierro-cabrales, N., et al. caracterización química y nutrimental de la pulpa de café (Coffea arabica L.). Agroproductividad, 2018, vol. 11, no 4, p. 9-14.
- [43]. Chorukova, E., & Simeonov, I. (2020). Mathematical modeling of the anaerobic digestion in two-stage system with production of hydrogen and methane including three intermediate products. *International Journal of Hydrogen Energy*, 45(20), 11550-11558.
- [44]. Montoya Rendón, M., Ramírez García, J., Restrepo Montoya, F., Zapata Saldarriaga, P., Agudelo Cadavid, R., & Aguirre Ramírez, N. (2015). Salud ambiental en la subcuenca La Chaparrala, Colombia 2015. Revista de Salud Pública Volumen 19, Número 3, p. 325- 331. 2539-3596. Recuperado el 02 de 06 de 2020, de

https://revistas.unal.edu.co/index.php/revsaludpublica/article/view/53380/67972

- [45] López Aguirre, A. M., & Ruíz Restrepo, C. (2014). Evaluación de la producción de biogás a partir del buchón de agua mediante codigestión anaerobia con estiércol bovino (Bachelor's thesis, Universidad EAFIT).
- [46] Sánchez-Reyes, C., Patiño-Iglesias, M. E., Alcántara-Flores, J. L., Reyes-Ortega, Y., Pérez-Cruz, M. A., & Ortíz-Muñoz, E. (2016). Determinación del potencial bioquímico de metano (PBM) de residuos de frutas y verduras en hogares. Revista internacional de contaminación ambiental, 32(2), 191-198.
- [47] Peris Serrano, R. (2010). Biogas process simulation using Aspen Plus.
- [48] Kim, M.-J., & Kim, D. (2018). Maximization of CO2 storage for various solvent types in indirect carbonation using paper sludge ash. Environmental Science and Pollution Research. doi:10.1007/s11356-018-2970-6

- [49] Kim, M.-J., & Jeon, J. (2020). Effects of Ca-ligand stability constant and chelating agent concentration on the CO2 storage using paper sludge ash and chelating agent. Journal of CO2 Utilization, 40, 101202. doi:10.1016/j.jcou.2020.101202
- [50] Kim, Dami & Kim, Myoung-Jin. (2016). Study on Carbon Dioxide Storage through Mineral Carbonation using Sea Water and Paper Sludge Ash. Journal of the Korean Society for Marine Environment & Energy. 19. 18-24. 10.7846/JKOSMEE.2016.19.1.18.
- [51] Perez-Lopez, R., Montes-Hernandez, G., Nieto, J. M., Renard, F., & Charlet, L. (2008). Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas emissions into the atmosphere. Applied Geochemistry, 23(8), 2292-2300.
- [52] Moreno Clavijo, N., & Romero Jiménez, A. A. (2016). Evaluación de diferentes métodos para la transformación de la pulpa de café en abono orgánico en fincas cafeteras.

#### GLOSARIO

**Acetogénesis:** los compuestos intermedios resultantes de la etapa acidogénica van a ser transformados por las bacterias acetogénicas, obteniéndose como principales productos hidrógeno, dióxido de carbono y ácido acético.

**Acidogénesis:** Los compuestos solubles resultantes de la etapa hidrolítica van a ser transformados por la acción de microorganismos y bacterias fermentativas a través de un proceso de fermentación, dando como resultado ácido acético (CH3-COOH), hidrógeno (H2) y dióxido de carbono (CO2) principalmente.

**Biogás:** Combustible que se genera en medios naturales o en dispositivos específicos, por las reacciones de biodegradación de la materia orgánica

**Digestión anaerobia:** Conversión biológica en ausencia de oxígeno por acción de microorganismos, para degradar la materia orgánica en biogás y una fracción no digerible conocida como digestato.

**Fermentación:** La fermentación se puede definir como la transformación que sufren ciertas materias orgánicas bajo la acción de enzimas segregadas por microorganismos.

**Hidrólisis:** En esta primera etapa se da una degradación de los compuestos orgánicos complejos como lípidos, proteínas hidratos de carbono y compuestos inorgánicos. Estos son despolimerizados por la acción de enzimas hidrolíticas en moléculas solubles y fácilmente degradables como ácidos grasos, aminoácidos, monosacáridos y compuestos inorgánicos.

**Metanogénesis:** Con la presencia del ácido acético, hidrógeno y dióxido de carbono aparecen en el medio los microorganismos responsables de la metanogénesis o formación del metano.

ANEXOS

## ANEXO 1.

# NOMENCLATURA REACCIONES BALANCE DE MASA Y CINÉTICA

- $\gamma$  = Ratio between bioreactor volumes = Relación entre los volúmenes del biorreactor
- $D_1 y D_2 = \text{Dilution rates} = \text{Tasas de dilución } [h^{-1}]$
- $S_0^{in}$  = Inlet cellulose concentration in BR1 = Concentración de celulosa de entrada en BR1  $\left[\frac{g}{dm^3}\right]$
- $S_0 = \text{Cellulose concentration} = \text{Concentración de celulosa} \frac{g}{dm^3}$ ]
- $S_1$  = Cellobiose substrate concentration = Concentración de sustrato de celobiosa  $\left[\frac{g}{dm^3}\right]$
- $X_1$  = Acidogenic bacteria concentration = Concentración de bacterias acidogénicas  $\left[\frac{g}{dm^3}\right]$
- $X_{Pr}$  = Propionate degrading bacteria concentration = Concentración de bacterias degradantes de ácido propiónico  $\left[\frac{g}{dm^3}\right]$
- $X_{But}$  = Butyrate degrading bacteria concentration = Concentración de bacterias degradantes de ácido butírico  $\left[\frac{g}{dm^3}\right]$
- $X_{Ac}$  = Methanogenic bacteria concentration = Concentración de bacterias metanogénicas  $\left[\frac{g}{dm^3}\right]$

•  $\mu_1$  = Specific growth rate of propionate degrading bacteria = Tasa de crecimiento específico de bacterias acidogénicas  $[h^{-1}]$ 

- $\mu_{Pr}$  = Specific growth rate of propionate degrading bacteria = Tasa de crecimiento específico de bacterias que degradan ácido propiónico  $[h^{-1}]$
- $\mu_{But}$  = Specific growth rate of propionate degrading bacteria = Tasa de crecimiento específico de bacterias que degradan ácido butírico [ $h^{-1}$ ]
- $\mu_{Ac}$  = Specific growth rate of methanogenic bacteria = Tasa de crecimiento específico de bacterias metanogénicas  $[h^{-1}]$ 
  - 139

- $Pr_1 y Pr_2$  = Propionate concentration = Concentración de ácido propiónico  $\frac{g}{dm^3}$ ]
- $Ac_1 y Ac_2$  = Acetate concentration = 2 Concentración de ácido acético  $\frac{g}{dm^3}$ ]
- $But_1 y But_2$  = Butyrate concentration = Concentración de ácido butírico  $\frac{g}{dm^3}$ ]
- $Q_{H2}$  = Hydrogen flow rate = Caudal de hidrógeno  $\left[\frac{g}{dm^3}\right]$
- $Q_{CH4}$  = Methane flow rate = Caudal de metano  $\left[\frac{g}{dm^3}\right]$
- Model parameters = Parámetros del modelo
- Coeficientes [h<sup>-1</sup>]
- $\mu_{1max} = 0.568 \ [h^{-1}]$
- $\mu_{1Prmax} = 0.05 \ [h^{-1}]$
- $\mu_{1Butmax} = 0.05 \ [h^{-1}]$
- $\mu_{1Acmax} = 0.025 \ [h^{-1}]$

•  $Ks_1 = 3.914 =$  Saturation coefficient for acidogenic bacteria = Coeficiente de saturación para bacterias acidogénicas  $\left[\frac{g}{dm^3}\right]$ 

•  $Ks_{Pr} = 0.22 = \text{Saturation coefficient for propionate} = \text{Coeficiente de saturación}$ de ácido propiónico  $\left[\frac{g}{dm^3}\right]$ 

•  $Ks_{But} = 0.22 =$ Saturation coefficient for butyrate = Coeficiente de saturación para ácido butírico  $\left[\frac{g}{dm^3}\right]$ 

•  $Ks_{Ac} = 0.8$  = Saturation coefficient for acetate = Coeficiente de saturación para ácido acético  $\left[\frac{g}{dm^3}\right]$ 

•  $\beta = 1 = \text{Coefficient of biodegradability} = \text{Coeficiente de biodegradabilidad } \left[\frac{L}{a_h}\right]$ 

•  $Y_P = 1 = \text{Coefficient}$ 

•  $Y_1 = 0.08 =$  Yield coefficient for acidogenic bacteria = Coeficiente de rendimiento para bacterias acidogénicas

•  $Y_{Pr1} = 4.2 =$  Yield coefficient for propionate = Coeficiente de rendimiento para ácido propiónico

•  $Y_{But1} = 2.1 =$  Yield coefficient for butyrate = Coeficiente de rendimiento para ácido butírico

- $Y_{Ac1} = 1.1 =$  Yield coefficient for butyrate = Coeficiente de rendimiento para ácido acético
- $Y_{Pr2} = 1.5 =$  Yield coefficient for butyrate = Coeficiente de rendimiento para ácido propiónico
- $Y_{But2} = 1.5 =$  Yield coefficient for butyrate = Coeficiente de rendimiento para ácido butírico
- $Y_{Ac2} = 0.5 =$  Yield coefficient for butyrate = Coeficiente de rendimiento para ácido acético
- $Y_{H2} = 0.22 =$  Yield coefficient for butyrate = Coeficiente de rendimiento para Hidrógeno  $\left[\frac{dm^3}{g}\right]$
- $Y_{CH4} = 142$  = Yield coefficient for butyrate = Coeficiente de rendimiento para metano  $\left[\frac{dm^3}{q}\right]$

#### ANEXO 2.

#### **PROGRAMA EN OCTAVE**

function y = br12(x)

 #
 1 2 3 4 5 6 7 8 9 10 11 12

- # [x] = fsolve (@br12, [0.1;0.1;0.4;0.1;0.1;0.1;0.1;0.1;0.24;0.1;0.6;1])
- **#BLOQUE 1. CONSTANTES**
- y= zeros(12,1); #vector 6 filas y 1 columna
- d1=0.0132 # tasa de dilución h-1
- B=1; #coeficiente de biodegrabilidad
- s0\_in=35 #concentración inicial de celulosa -pulpa café
- y1= 0.08; #coeficiente d rendimiento para bacterias acidogénicas
- ypr= 4.2; #coeficiente de rendimiento de propionato
- ybut= 2.1; #coeficiente de rendimiento de butirato
- yac= 1.1; #coeficiente de rendimiento del acetato
- yh2= 0.22; #coeficiente de rendimiento del Hidrógeno yh
- mmax= 0.568; #coeficiente h-1
- ks1= 3.914; #coeficiente de saturación para bacterias acetogénicos g/dm3

mprmax= 1/20; #h-1

kspr= 11/50; #coeficiente de saturación de propionato g/dm3

mbutmax= 1/20; #h-1

ksbut= 11/20; #coeficiente de saturación de butirato g/dm3

macmax= 1/40; #h-1

ksac= 8/10; # coeficiente de saturación de acetato g/dm3

142

ypr2= 3/2; # coeficiente de rendimiento para propionato d2= d1/26.4 # coeficiente de dilución ybut2= 3/2; # coeficiente de rendimiento para el butirato yac2= 1/2; # coeficiente de rendimiento del acetato ypr2= 3/2; # coeficiente de rendimiento de propionato ych4= 142; #c coeficiente e de rendimiento de metano

#BLOQUE 2. EC. AUX.

 $m1 = (mmax^{*}x (2)) / (ks1+x (2));$ 

 $mpr = (mprmax^{*}x (8)) / (kspr+x (8));$ 

 $mbut = (mbutmax^{*}x (10)) / (ksbut+x (10));$ 

 $mac = ((macmax^{*}x (12)) / (ksac^{*}x (12)));$ 

#### **#BLOQUE 3. EC. NO LINEALES**

# (s0, s1, x1, pr1, but1, ac1)

# x1 x2 x3 x4 x5 x6

 $y(3) = (m1^*x(3)) - (d1^*x(3)); # dx1_dt concentración de biomasa$ 

y (4) = ((m1\*x (3))) -(d1\*x (4)); # dpr1\_dt formación de productos intermedios propionato

y (5) = ((m1\*x (3)) /ybut) -(d1\*x (5)); # dbut1\_dt formación de productos intermedios butirato

y (6) = ((m1\*x (3)) /yac) -(d1\*x (6)); #dac1\_dt formación de productos intermedios acetato

qh2=yh2\*m1\*x (3); #caudal de h2 en fase gaseosa

# xpr, pr2, xbut, but2, xac, ac2

# x7, x8, x9, x10, x11, x12

y (7) =mpr\*x (7)-d2\*x (7); #xpr-Dinámica de la población degradante de propionato con concentración xpr

y (8) = ((-mpr\*x (7)) /ypr2) +d2\*(x (4)-x (8)); #pr2-balance de propionato con concentración spr

y (9) = (mbut\*x (9)) -(d2\*x (9)); #xbut-dinámica de la población degradante del butirato con concentración xbut

y (10) = ((-mbut\*x (9)) /ybut2) +d2\*(x (5)-x (10)); #but2-balance de butirato con concentración sbut

y (11) = (mac\*x (11)) -(d2\*x (11)); #xac-dinámica de la población metanogenica con concentración xac

y (12) =-((mac\*x (11)) /yac2) +((mpr\*x (7)) /ypr2) +((mbut\*x (9)) /ybut2) +d2\*(x (6)-x (12)); #ac2-balance de acetato con concentración Sac

qch4= ych4\*mac\*x (11) # vel de flujo del metano en fase gaseosa

x (11)

endfunction
## ANEXO 3

### **RESULTADOS ASPEN**

| Stream Name   | Units                                              | BIOMASA     | AGUA          | H2             | 5            | 6           | BIOGAS      | LIQUID       |
|---------------|----------------------------------------------------|-------------|---------------|----------------|--------------|-------------|-------------|--------------|
| Phase         |                                                    | -           | Liquid Phase  | Liquid Phase   | -            | -           | Vapor Phase | Liquid Phase |
| Temperature   | °c                                                 | 23,00       | 23, 00        | 55,00          | 21,14        | 55,00       | 55,00       | 55,00        |
| Pressure      | bar                                                | 1,01        | 1, 01         | 1,02           | 1, 00        | 1,02        | 1, 01       | 1,01         |
| Enthalpy Flow | cal/sec                                            | -15,0780213 | - 139, 728332 | -149, 560708   | - 154,806353 | -3,88689803 | -0,76740607 | -3,09903094  |
| Mass Flows    |                                                    | 0,6734      | 3,1839        | 3, 4350        | 3,8572       | 0, 3630     | 0,0758      | 0, 2871      |
| WATER         |                                                    | 0, 2755     | 3,1839        | 3, 4350        | 3,4594       | 0,0065      | 0,0013      | 0,0053       |
| GLYCEROL      |                                                    | 0,0000      | 0,0000        | 0,0000         | 0,0000       | 0,0026      | 0,0000      | 0,0026       |
| OLEIC-AC      |                                                    | 0,0000      | 0,0000        | 0,0000         | 0,0000       | 0,0236      | 0,0000      | 0,0236       |
| DEXTROSE      |                                                    | 0,0617      | 0,0000        | 0,0000         | 0,0617       | 0,0843      | 0,0000      | 0,0843       |
| ACETI-AC      |                                                    | 0, 0000     | 0,0000        | 0, 0000        | 0,0000       | 0,0245      | 0,0011      | 0,0177       |
| PROPI-01      |                                                    | 0,0000      | 0,0000        | 0,0000         | 0,0000       | 0,0017      | 0,0000      | 0,0017       |
| ISOBU-01      |                                                    | 0,0000      | 0,0000        | 0, 0000        | 0,0000       | 0, 0000     | 0,0000      | 0, 0000      |
| NHB           |                                                    | 0,0069      | 0,0000        | 0,0000         | 0,0069       | 0,0101      | 0,0092      | 0,0009       |
| CO2           |                                                    | 0,0000      | 0,0000        | 0, 0000        | 0,0000       | 0,0136      | 0,0162      | 0,0002       |
| C5H7NO2       |                                                    | 0,0000      | 0,0000        | 0,0000         | 0,0000       | 0,0000      | 0,0000      | 0,0002       |
| ARGININE      |                                                    | 0,0000      | 0,0000        | 0,0000         | 0,0000       | 0,0038      | 0,0000      | 0, 0038      |
| THREONIN      | 1                                                  | 0,0000      | 0,0000        | 0, 0000        | 0,0000       | 0,0027      | 0,0000      | 0,0027       |
| SERINE        | kg/nr                                              | 0,0000      | 0,0000        | 0, 0000        | 0,0000       | 0,0176      | 0,0000      | 0,0176       |
| VALINE        |                                                    | 0,0000      | 0,0000        | 0, 0000        | 0,0000       | 0, 0085     | 0,0000      | 0, 0085      |
| GLUTAMIC      |                                                    | 0, 0000     | 0,0000        | 0, 0000        | 0,0000       | 0, 00 58    | 0,0000      | 0,0058       |
| ASPARTIC      |                                                    | 0,0000      | 0,0000        | 0,0000         | 0,0000       | 0,0031      | 0,0000      | 0,0031       |
| ALANINE       |                                                    | 0, 0000     | 0,0000        | 0, 0000        | 0,0000       | 0, 00 20    | 0,0000      | 0, 00 20     |
| HYDROGEN      |                                                    | 0, 0000     | 0,0000        | 0, 0000        | 0,0000       | 0, 0004     | 0,0004      | 0, 0000      |
| METHANE       |                                                    | 0,0000      | 0,0000        | 0,0000         | 0,0000       | 0,0015      | 0,0039      | 0,0000       |
| CELLULOS      |                                                    | 0,0679      | 0,0000        | 0, 0000        | 0,0679       | 0, 0285     | 0,0000      | 0, 0285      |
| HEMECELL      |                                                    | 0,0069      | 0,0000        | 0,0000         | 0,0069       | 0,0031      | 0,0000      | 0,0031       |
| TRIOLEIN      |                                                    | 0,0274      | 0,0000        | 0,0000         | 0,0274       | 0,0027      | 0,0000      | 0,0027       |
| XYLOSE        |                                                    | 0,0000      | 0,0000        | 0, 0000        | 0,0000       | 0, 0004     | 0,0000      | 0,0004       |
| ETHANOL       |                                                    | 0,0000      | 0,0000        | 0,0000         | 0,0000       | 0,0022      | 0,0004      | 0,0017       |
| KERATIN       | ATIN 0,2271 0,0000 0,0000 0,2271 0,1136 0,0432 0,0 |             |               |                |              |             |             | 0,0704       |
|               |                                                    | 0.4000      | 1.0000        | Viass Fraction | 0.0000       | 0.0100      | 0.0470      | 0.0105       |
| WATER         |                                                    | 0,4092      | 1,0000        | 1,0000         | 0,8969       | 0,0180      | 0,0172      | 0,0185       |
|               |                                                    | 0,0000      | 0,0000        | 0,0000         | 0,0000       | 0,0071      | 0,0000      | 0,0009       |
| DEVTROSE      |                                                    | 0,0000      | 0,0000        | 0,0000         | 0,0000       | 0,0651      | 0,0000      | 0,0023       |
|               |                                                    | 0,0010      | 0,0000        | 0,0000         | 0,0100       | 0,2324      | 0,0000      | 0,2530       |
| PROPL-01      |                                                    | 0,0000      | 0,0000        | 0,0000         | 0,0000       | 0,0074      | 0,0131      | 0,0017       |
| ISOBU-01      |                                                    | 0,0000      | 0,0000        | 0,0000         | 0,0000       | 0,00047     | 0,0000      | 0,0000       |
| NHB           |                                                    | 0,0000      | 0,0000        | 0,0000         | 0.0018       | 0,0000      | 0,0000      | 0,0000       |
| C02           |                                                    | 0,000       | 0.0000        | 0,0000         | 0.0000       | 0,0376      | 0.2137      | 0,0007       |
| C5H7NO2       |                                                    | 0,0000      | 0.0000        | 0,0000         | 0.0000       | 0,0000      | 0.0000      | 0.0008       |
| ARGININE      |                                                    | 0,0000      | 0,0000        | 0,0000         | 0,0000       | 0,0105      | 0,0000      | 0,0133       |
| THREONIN      |                                                    | 0,0000      | 0,0000        | 0,0000         | 0,0000       | 0,0075      | 0,0000      | 0,0095       |
| SERINE        |                                                    | 0,0000      | 0,0000        | 0,0000         | 0,0000       | 0,0486      | 0,0000      | 0,0614       |
| VALINE        |                                                    | 0,0000      | 0,0000        | 0, 0000        | 0,0000       | 0, 0233     | 0,0000      | 0, 0295      |
| GLUTAMIC      |                                                    | 0, 0000     | 0,0000        | 0, 00 00       | 0,0000       | 0,0161      | 0,0000      | 0, 0204      |
| ASPARTIC      |                                                    | 0,0000      | 0,0000        | 0,0000         | 0,0000       | 0,0086      | 0,0000      | 0,0109       |
| ALANINE       |                                                    | 0,0000      | 0,0000        | 0,0000         | 0,0000       | 0,0056      | 0,0000      | 0,0071       |
| HYDROGEN      |                                                    | 0, 0000     | 0,0000        | 0, 0000        | 0,0000       | 0,0012      | 0,0057      | 0, 00 00     |
| METHANE       |                                                    | 0, 0000     | 0,0000        | 0, 0000        | 0,0000       | 0,0041      | 0,0513      | 0,0000       |
| CELLULOS      |                                                    | 0, 1008     | 0,0000        | 0, 0000        | 0,0176       | 0, 0785     | 0,0000      | 0, 0993      |
| HEMECELL      |                                                    | 0,0102      | 0,0000        | 0,0000         | 0,0018       | 0,0085      | 0,0000      | 0,0107       |
| TRIOLEIN      |                                                    | 0, 0407     | 0,0000        | 0,0000         | 0,0071       | 0,0076      | 0,0000      | 0,0096       |
| XYLOSE        |                                                    | 0,0000      | 0,0000        | 0,0000         | 0,0000       | 0,0011      | 0,0000      | 0,0014       |
| ETHANOL       |                                                    | 0, 0000     | 0,0000        | 0, 0000        | 0,0000       | 0, 0060     | 0,0058      | 0, 0060      |
| KERATIN       |                                                    | 0, 3373     | 0,0000        | 0,0000         | 0,0589       | 0, 3128     | 0,5695      | 0, 2452      |

## ANEXO 4.

## PARÁMETROS ESTIMADOS POR UNIFAC

| Componente i | Componente j       | Fuente            | Unida des de temperatura | AIJ       | AJI     | BIJ       | BJI         | cn  |
|--------------|--------------------|-------------------|--------------------------|-----------|---------|-----------|-------------|-----|
| WATER        | GLYCEROL           | AP V100 VLE-HOC   | с                        | -1,1513   | -0,6068 | 237,724   | 136,791     | 0,3 |
| WATER        | ISOBU-01           | AP V100 LLE-ASPEN | , c                      | 9,5626    | -8,8951 | -1198,390 | 2034,580    | 0,2 |
| WATER        | NH3                | AP V100 VLE -HOC  | с                        | 12,5209   | -3,4282 | -3799,510 | 516,320     | 0,3 |
| WATER        | C <b>O</b> 2       | AP V100 ENRTL-RK  | с                        | 10,064    | 10,0640 | -3268,140 | -3268,140   | 0,2 |
| WATER        | ACE TI-AC          | AP V100 VLE-HOC   | с                        | 3,3293    | -1,9763 | -723,888  | 609,889     | 0,3 |
| WATER        | PROPI-01           | AP V100 VLE -HOC  | с                        | 3,273     | -1,9109 | -505,457  | 712,094     | 0,3 |
| ACE TI-AC    | PROPI-01           | AP V100 VLE -HOC  | с                        | -3,0776   | 2,4452  | 1247,890  | -966,961    | 0,3 |
| PROPI-01     | ISOBU-01           | AP V100 VLE -HOC  | с                        | 0.0 0     |         | -275,122  | 814,413     | 0,3 |
| WATER        | ETHANOL            | AP V100 VLE -LIT  | с                        | 0.0 0     |         | 670,444   | -55,170     | 0,3 |
| GLYCEROL     | ETHANOL            | AP V100 VLE -LIT  | с                        | 0.0 0     |         | 208,732   | 384,169     | 0,6 |
| OLEIC-AC     | ETHANOL            | AP V100 VLE -LIT  | с                        | 0.0 0     |         | -172,878  | 490,981     | 0,3 |
| ACETI-AC     | ETHANOL            | AP V100 VLE -HOC  | с                        | 0.0 0     |         | -252,482  | 225,476     | 0,3 |
| PROPI-01     | ETHANOL            | AP V100 VLE -HOC  | с                        | 0.0 0     |         | -383,871  | 281,232     | 0,3 |
| NH3          | ETHANOL            | AP V100 VLE-RK    | с                        | 0.0 0     |         | -311,188  | 13,178      | 0,3 |
| WATER        | OLEIC-AC           | R-PCES            | с                        | 0.0 0     |         | 4978,860  | 537,274     | 0,3 |
| WATER        | DEXTROSE           | R-PCES            | с                        | 0.0 0     |         | -354,669  | 190,677     | 0,3 |
| WATER        | C5H7NO2            | R-PCES            | с                        | 0.0 0     |         | 1176,500  | 35,786      | 0,3 |
| WATER        | GLUTAMIC           | R-PCES            | с                        | 0.0       |         | 778,160   | -502,841    | 0,3 |
| WATER        | HYDROGEN           | R-PCES            | c<br>-                   | 0.0.0     |         | 638,345   | -449,670    | 0,3 |
| WATER        | METHANE            | R-PCES            | с                        | 0.0.0     |         | 562,113   | 1948,870    | 0,3 |
| WATER        |                    | R-PCES<br>R DCES  | C<br>C                   | 0.0.0     |         | 1010,600  | -319,112    | 0,3 |
| OLYCEROL     |                    | RECES             | c<br>c                   | 0.0.0     |         | 1904 790  | 11.00.310   | 0,5 |
| GLYCEROL     | DEXTROSE           | R-PCES            | c<br>c                   | 0.0.0     |         | -208.131  | 239.880     | 0,5 |
| GLICERGE     | ACETI AC           | RPCES             | с<br>о                   | 0.0.0     |         | -200,131  | 233,000     | 0,5 |
| GLYCEROL     | ACE TI-AC          | R-PCES            | C                        | U U.U     |         | 699,462   | -473 µ96    | U,3 |
| GLYCEROL     | PROPI-01           | R-PCES            | с                        | 0.0.0     |         | -152,065  | 259,937     | 0,3 |
| GLYCEROL     | ISOBU-01           | R-PCES            | с                        | 0.0 0     |         | -71,188   | 340,939     | 0,3 |
| GLYCEROL     | NH3                | R-PCES            | с                        | 0.0.0     |         | 8349,180  | -1654,890   | 0,3 |
| GLYCEROL     | CO2                | R-PCES            | с                        | 0.0 0     |         | 1819,850  | -855,737    | 0,3 |
| GLYCEROL     | C5H7NO2            | R-PCES            | с                        | 0.0.0     |         | 246,934   | 629,756     | 0,3 |
| GLYCEROL     | GLUTAMIC           | R-PCES            | с                        | 0.0 0     |         | 118,755   | -287,182    | 0,3 |
| GLYCEROL     | HYDROGEN           | R-PCES            | с                        | 0.0 0     |         | 30000,000 | -2518,800   | 0,3 |
| GLYCEROL     | METHANE            | R-PCES            | с                        | 0.0 0     |         | -31,409   | 3030,570    | 0,3 |
| GLYCEROL     | HEMECELL           | R-PCES            | с                        | 0.0 0     |         | 212,915   | -1 31 ,043  | 0,3 |
| GLYCEROL     | TRIOLEIN           | R-PCES            | с                        | 0.0 0     |         | 7480,100  | 2176,660    | 0,3 |
| GLYCEROL     | KERATIN            | R-PCES            | с                        | 0.0 0     |         | 1403,910  | 3312,550    | 0,3 |
| OLEIC-AC     | DEXTROSE           | R-PCES            | с                        | 0.0 0     |         | 2315,290  | 21 94 ,650  | 0,3 |
| OLEIC-AC     | ACE TI-AC          | R-PCES            | с                        | 0.0 0     |         | -282,449  | 1007,830    | 0,3 |
| OLEIC-AC     | PROPI-01           | R-PCES            | c                        | 0.0.0     |         | -296,853  | 725,332     | 0,3 |
| OLEIC-AC     | ISOBU-01           | R-PCES            | c                        | 0.0.0     |         | -285,487  | 566,569     | 0,3 |
| OLEIC-AC     | NH3                | R-PCES            | с<br>-                   | 0.0.0     |         | 30000,000 | -4779,690   | 0,3 |
| OLEIC-AC     | CU2                | R-PCES            | с<br>2                   | 0.0.0     |         | 30000,000 | -2694,400   | 0,3 |
| OLEIC-AC     | C5H7NU2            | R-PUES            | с<br>С                   | 0.0.0     |         | 177,431   | / 62 /44/   | 0,3 |
|              | GLUTANIC           | R-PCES            | с<br>с                   | 0.0.0     |         | 90000000  | 1351,960    | 0,3 |
|              | METHANE            | R-PCES            | c<br>c                   | 0.0.0     |         | 9875 270  | -6160,030   | 0,3 |
|              | METHANE            | R-FCE3            |                          | 0 0.0     |         | 30/ 5,2/0 | -17 55 /910 | 0,5 |
| OLEIC-AC     | HEMECELL           | R-PCES            | c                        | 0.0 0     |         | 219,025   | 1087,550    | 0,3 |
| OLEIC-AC     |                    | R-PCES            | с<br>2                   | 0.0.0     |         | -428,475  | 629,697     | 0,3 |
|              | ACETIAC            | R-PLES            |                          | 0.0.0     |         | -292,255  | 56/,418     | 0,3 |
| DEXTROSE     | ACETHAC<br>DECOLOI | R-PCES            | C<br>C                   | 0.0.0     |         | 1690,510  | -625,266    | 0,3 |
| DEXIRUSE     |                    | R-PLES            | с<br>-                   | U U.U<br> |         | -40,299   | -26,246     | 0,3 |
| DEXTROSE     | ISOBU-01           | R-PCES            | C                        | 0.0 0     |         | -254,522  | 634,173     | 0,3 |
| DEXTROSE     | NH3                | R-PCES            | c                        | 0.0.0     |         | 30000,000 | -3092,520   | 0,3 |
| DEXTROSE     | CO2                | R-PCES            | c                        | 0.0.0     |         | 4776,840  | -1334,540   | 0,3 |
| DEXTROSE     | CSH/NU2            | R-PLES            | с<br>С                   | 0.0.0     |         | 114,454   | 1116,620    | U,3 |
| DEXTROSE     | HYDROGEN           | R-PCES            | c                        | 00.0      |         | 30000.000 | -4479.020   | 0,3 |

| Componente i | Componente j | Fuente | Unidades de temperatura | AIJ AJI | BIJ        | BJI       | CIJ |
|--------------|--------------|--------|-------------------------|---------|------------|-----------|-----|
| DEXTROSE     | HEMECELL     | R-PCES | с                       | 0 0.0   | 661,225    | -464,439  | 0,3 |
| DEXTROSE     | TRIOLEIN     | R-PCES | С                       | 0 0.0   | 8795,750   | 4112,540  | 0,3 |
| DEXTROSE     | ETHANOL      | R-PCES | С                       | 0 0.0   | -342,688   | 537,310   | 0,3 |
| DEXTROSE     | KERATIN      | R-PCES | С                       | 0.0.0   | 1598,230   | 5958,640  | 0,3 |
| ACETHAC      | ISOBU-01     | R-PCES | С                       | 0 0.0   | 189,634    | -136,604  | 0,3 |
| ACETHAC      | NH3          | R-PCES | С                       | 0 0.0   | 1848,290   | -875,162  | 0,3 |
| ACETHAC      | CO2          | R-PCES | С                       | 0 0.0   | -334,547   | 199,003   | 0,3 |
| ACETHAC      | C5H7NO2      | R-PCES | С                       | 0 0.0   | 548,605    | -299,805  | 0,3 |
| ACETHAC      | GLUTAMIC     | R-PCES | С                       | 0.0.0   | -470,886   | 682,030   | 0,3 |
| ACETHAC      | HYDROGEN     | R-PCES | С                       | 0 0.0   | 2537,420   | -1018,880 | 0,3 |
| ACETHAC      | METHANE      | R-PCES | С                       | 0 0.0   | -173,237   | 888,457   | 0,3 |
| ACETHAC      | HEMECELL     | R-PCES | С                       | 0.0     | -413,233   | 568,225   | 0,3 |
| ACETHAC      | TRIOLEIN     | R-PCES | С                       | 0 0.0   | 1811,280   | -308,485  | 0,3 |
| ACETHAC      | KERATIN      | R-PCES | С                       | 0 0.0   | 664,617    | 333,156   | 0,3 |
| PROPI-01     | NH3          | R-PCES | С                       | 0.0     | 2723,790   | -1055,640 | 0,3 |
| PROPI-01     | CO2          | R-PCES | С                       | 0 0.0   | 1479,240   | -782,211  | 0,3 |
| PROPI-01     | C5H7NO2      | R-PCES | С                       | 0 0.0   | 548,284    | -260,928  | 0,3 |
| PROPI-01     | GLUTAMIC     | R-PCES | С                       | 0 0.0   | 270,122    | -196,894  | 0,3 |
| PROPI-01     | HYDROGEN     | R-PCES | С                       | 0.0     | 4079,030   | -1256,490 | 0,3 |
| PROPI-01     | METHANE      | R-PCES | С                       | 0 0.0   | -285,139   | 879,045   | 0,3 |
| PROPI-01     | HEMECELL     | R-PCES | С                       | 0 0.0   | 177,024    | -152,061  | 0,3 |
| PROPI-01     | TRIOLEIN     | R-PCES | С                       | 0 0.0   | 1159,400   | -402,154  | 0,3 |
| PROPI-01     | KERATIN      | R-PCES | С                       | 0 0.0   | 423,706    | 338,253   | 0,3 |
| ISOBU-01     | NH3          | R-PCES | С                       | 0 0.0   | 3902,250   | -1235,380 | 0,3 |
| ISOBU-01     | C 0 2        | R-PCES | с                       | 0 0.0   | 1910,880   | -894,220  | 0,3 |
| ISOBU-01     | C5H7NO2      | R-PCES | С                       | 0.0.0   | 519,723    | -202,276  | 0,3 |
| ISOBU-01     | GLUTAMIC     | R-PCES | С                       | 0 0.0   | 290,477    | -112,800  | 0,3 |
| ISOBU-01     | HYDROGEN     | R-PCES | С                       | 0 0.0   | 6928,040   | -1547,930 | 0,3 |
| ISOBU-01     | METHANE      | R-PCES | С                       | 0.0.0   | -360,951   | 848,812   | 0,3 |
| ISOBU-01     | HEMECELL     | R-PCES | С                       | 0 0.0   | 185,957    | -91,973   | 0,3 |
| ISOBU-01     | TRIOLEIN     | R-PCES | С                       | 0 0.0   | 835,998    | -414,430  | 0,3 |
| ISOBU-01     | ETHANOL      | R-PCES | С                       | 0 0.0   | -1,739     | -0,241    | 0,3 |
| ISOBU-01     | KERATIN      | R-PCES | С                       | 0 0.0   | 275,544    | 360,029   | 0,3 |
| NH3          | CO2          | R-PCES | С                       | 0 0.0   | 190,254    | -164,832  | 0,3 |
| NH3          | C5H7NO2      | R-PCES | С                       | 0 0.0   | -1473,370  | 6101,620  | 0,3 |
| NH3          | GLUTAMIC     | R-PCES | С                       | 0 0.0   | -1596,800  | 7568,350  | 0,3 |
| NH3          | HYDROGEN     | R-PCES | С                       | 0 0.0   | 29,590     | -26,108   | 0,3 |
| NH3          | METHANE      | R-PCES | С                       | 0 0.0   | -298,988   | 373,223   | 0,3 |
| NH3          | HEMECELL     | R-PCES | С                       | 0 0.0   | -1632,180  | 8007,170  | 0,3 |
| NH3          | TRIOLEIN     | R-PCES | С                       | 0 0.0   | -15331,500 | 30000,000 | 0,3 |
| NH3          | KERATIN      | R-PCES | С                       | 0 0.0   | -1472,170  | 6117,970  | 0,3 |
| CO2          | C5H7NO2      | R-PCES | c                       | 0 0.0   | -963,620   | 2272,180  | 0,3 |
| C02          | GLUTAMIC     | R-PCE8 | C                       | U U.U   | -978,947   | 2359,210  | 0,3 |
| CO2          | HYDROGEN     | R-PCES | С                       | 0 0.0   | -274,915   | 390,319   | 0,3 |
| CO2          | METHANE      | R-PCES | С                       | 0 0.0   | 14,263     | 43,035    | 0,3 |
| CO2          | HEMECELL     | R-PCES | С                       | 0 0.0   | -1054,300  | 2726,900  | 0,3 |
| CO2          | TRIOLEIN     | R-PCES | С                       | 0 0.0   | -8741,320  | 30000,000 | 0,3 |
| CO2          | ETHANOL      | R-PCES | С                       | 0 0.0   | -656,263   | 1097,880  | 0,3 |
| CO2          | KERATIN      | R-PCES | С                       | 0 0.0   | -847,786   | 1782,420  | 0,3 |

| Componente i | Componente j | Fuente | Unidades de temperatura | AIJ AJI | BIJ        | BJI       | CIJ |
|--------------|--------------|--------|-------------------------|---------|------------|-----------|-----|
| C5H7NO2      | GLUTAMIC     | R-PCES | С                       | 0 0.0   | 91,817     | 118,685   | 0,3 |
| C5H7NO2      | HYDROGEN     | R-PCES | С                       | 0.0.0   | 13809,600  | -1967,650 | 0,3 |
| C5H7NO2      | METHANE      | R-PCES | С                       | 0.0.0   | -317,553   | 1226,140  | 0,3 |
| C5H7NO2      | HEMECELL     | R-PCES | С                       | 0.0.0   | -95,581    | -1967,650 | 0,3 |
| C5H7NO2      | TRIOLEIN     | R-PCES | С                       | 0.0.0   | 2287,130   | 151,164   | 0,3 |
| C5H7NO2      | ETHANOL      | R-PCES | С                       | 0.0.0   | -71,074    | 498,967   | 0,3 |
| C5H7NO2      | KERATIN      | R-PCES | С                       | 0.0.0   | 591,588    | 899,168   | 0,3 |
| GLUTAMIC     | HYDROGEN     | R-PCES | С                       | 0.0.0   | 19073,000  | -2179,230 | 0,3 |
| GLUTAMIC     | METHANE      | R-PCES | С                       | 0.0.0   | -199,329   | 1773,480  | 0,3 |
| GLUTAMIC     | HEMECELL     | R-PCES | С                       | 0.0.0   | 184,341    | -163,515  | 0,3 |
| GLUTAMIC     | TRIOLEIN     | R-PCES | С                       | 0.0.0   | 4717,070   | 1092,340  | 0,3 |
| GLUTAMIC     | ETHANOL      | R-PCES | С                       | 0.0.0   | 1251,070   | -665,245  | 0,3 |
| GLUTAMIC     | KERATIN      | R-PCES | С                       | 0.0.0   | 1020,860   | 1704,700  | 0,3 |
| HYDROGEN     | METHANE      | R-PCES | С                       | 0.0.0   | -454,518   | 648,251   | 0,3 |
| HYDROGEN     | HEMECELL     | R-PCES | С                       | 0.0.0   | -2159,200  | 18486,200 | 0,3 |
| HYDROGEN     | TRIOLEIN     | R-PCES | С                       | 0.0.0   | -19734,900 | 30000,000 | 0,3 |
| HYDROGEN     | ETHANOL      | R-PCES | С                       | 0.0.0   | -1223,640  | 3829,610  | 0,3 |
| HYDROGEN     | KERATIN      | R-PCES | С                       | 0.0.0   | -2075,180  | 16320,000 | 0,3 |
| METHANE      | HEMECELL     | R-PCES | С                       | 0.0.0   | 1442,510   | -271,867  | 0,3 |
| METHANE      | TRIOLEIN     | R-PCES | С                       | 0.0.0   | -7588,130  | 30000,000 | 0,3 |
| METHANE      | ETHANOL      | R-PCES | С                       | 0.0     | 1193,750   | -265,477  | 0,3 |
| METHANE      | KERATIN      | R-PCES | С                       | 0.0.0   | -910,592   | 2048,200  | 0,3 |
| HEMECELL     | TRIOLEIN     | R-PCES | С                       | 0.0.0   | 3410,490   | -1967,650 | 0,3 |
| HEMECELL     | ETHANOL      | R-PCES | С                       | 0.0.0   | 385,041    | -291,900  | 0,3 |
| HEMECELL     | KERATIN      | R-PCES | С                       | 0.0     | 730,166    | 1186,630  | 0,3 |
| TRIOLEIN     | ETHANOL      | R-PCES | С                       | 0.0.0   | -119,491   | 1972,500  | 0,3 |
| TRIOLEIN     | KERATIN      | R-PCES | С                       | 0.0.0   | 2359,590   | -978,492  | 0,3 |
| ETHANOL      | KERATIN      | R-PCES | С                       | 0.0.0   | 394,293    | 695,475   | 0,3 |

# ANEXO 5

# FLOWSHEET ASPEN PLUS



### **ANEXO 6**

#### RECOMENDACIONES

Se debe tener en cuenta para un próximo programa que intente simular la digestión anaerobia, primero todas las reacciones que intervengan en el proceso de las cuatro etapas de la digestión anaerobia además en las ecuaciones de balance de masa se deben tener en cuenta ecuaciones relacionadas con inhibidores como el amoniaco o el pH

En la medida de lo posible utilizar biomasa que contengan altos contenidos de celulosa para maximizar la producción de Hidrógeno y metano en los biorreactores. Para la simulación se recomienda emplear todas las reacciones involucradas en la etapa de la acidogénesis, con el fin que maximizar la producción de hidrógeno, así mismo es importante implementar una torre de separación que permita la obtención de hidrógeno, teniendo en consideración que la mezcla de la cuál debe ser retirada está en calidad de líquido y vapor.