ANÁLISIS ENERGÉTICO Y EXERGÉTICO DE UN CICLO RANKINE PARA LA PRODUCCIÓN DE ENERGÍA ELÉCTRICA USANDO LA CASCARILLA DE ARROZ COMO COMBUSTIBLE

LUIS FELIPE PEÑA MORENO LUIS FELIPE CÁRDENAS ACEVEDO

Proyecto integral de grado para optar al título de INGENIERO MECÁNICO

> Orientador Libardo Enrique Mendoza Ingeniero Mecánico

FUNDACION UNIVERSIDAD DE AMERICA FACULTAD DE INGENIERIAS INGENIERIA MECANICA BOGOTÁ D.C. 2021

NOTA DE ACEPTACION

Nombre Firma del Director Nombre Firma del Presidente Jurado

> Nombre Firma Jurado

> Nombre Firma Jurado

Bogotá D.C. Agosto de 2021

DIRECTIVOS DE LA UNIVERSIDAD

Presidente de la Universidad y Rector del Cláustro Dr. MARIO POSADA GARCÍA-PEÑA

Consejero institucional Dr. LUIS JAIME POSADA GARCÍA-PEÑA

Vicerrectora Académica y de Investigaciones Dra. ALEXANDRA MEJÍA GUZMÁN

Vicerrector Administrativo y Financiero Dr. RICARDO ALFONSO PEÑARANDA CASTRO

Secretaria General **Dr. JOSE LUIS MACIAS RODRIGUEZ**

Decano de la Facultada de ingeniería Dr. JULIO CESAR FUENTES ARISMENDI

Director de Programa de ingeniería mecánica Dra. MARIA ANGELICA ACOSTA PEREZ

DEDICATORIA

Dedico este trabajo de grado a mi familia, por apoyarme siempre de manera incondicional, por brindarme sus consejos, amor y cariño, por todo el esfuerzo, dedicación y compromiso de cada uno de ellos para darme la oportunidad y enseñarme de crecer como persona y profesional.

A mi novia, por brindarme amor y cariño incondicional, por escucharme siempre y ser tan especial conmigo, por dejarme participar en sus proyectos de vida y compartir conmigo sueños y metas en conjunto, por ser mi mejor amiga y compañera, por su compresión y paciencia, por haberse cruzado en mi camino en el momento preciso, soy muy afortunado de caminar de tu mano.

Luis Felipe Cárdenas Acevedo

Dedicado a mi papá que siempre estuvo a mi lado y siempre lo estará, por todo lo que me dejo y lo que me enseño, por que todos los logros son gracias a él, porque me preparo para afrontar la vida y llegar a conseguir mis sueños y por la familia que construyo, quisiera poder compartir esto contigo y verte orgulloso de tu hijo.

A mi mamá por todo el apoyo y el esfuerzo que siempre ha hecho por mi y por siempre estar pendiente de lo que necesitan sus hijos, se lo agradezco todo en la vida. A mi hermano por ser un apoyo siempre para mi mamá y para mi y ser un ejemplo a seguir. A mi novia por acompañarme en mis metas, siempre estar ahí cuando lo necesito y por luchar por nuestros sueños.

Luis Felipe Peña Moreno

AGRADECIMIENTOS

Agradecemos a la Fundación Universidad de América por brindarnos el apoyo técnico y teórico atreves su equipo administrativo y docente, los cuales nos orientaron y brindaron mediante sus conocimientos profesionales la capacidad para el desarrollo de esta investigación.

Igualmente, queremos agradecer al ingeniero Libardo Enrique Mendoza Geney por su compromiso y dedicación con la realización de esta investigación.

Las directivas de la Universidad de América, los jurados calificadores y el cuerpo docente no son responsables por los diferentes criterios e ideas expuestas en el presente documento. Estos corresponden únicamente a los autores.

TABL	A DE	CONT	ENIDO

RE	SUME	EN	Pág. 16
INT	ROD	DUCCIÓN	17
1.	F	PLANTEAMIENTO DEL PROBLEMA	19
1.1	(Objetivos	23
	1.1.1	1 Objetivo general	23
	1.1.2	2 Objetivos específicos	23
2.	(GENERALIDADES	24
3.	(S	CARACTERIZACIÓN FISICOQUÍMICA DE LA CASCARILLA DE ARR SUS CENIZAS Y LAS CAPACIDADES DE SUMINISTRO DE ENERGÍ REQUERIDAS	OZ Y ÍA 35
3.1		Análisis próximo de la cascarilla de arroz	35
3.2	ļ	Análisis elemental de la cascarilla de arroz	37
3.3	F	Poder calorífico de la cascarilla de arroz	40
3.4	(Caracterización de las cenizas	42
3.5	F	Resumen de las propiedades fisicoquímicas de la cascarilla de arroz e base seca obtenidas a partir de la caracterización energética	n 45
	3.5.1	1 Resumen análisis próximo de la cascarilla de arroz	45
	3.5.2	2 Resumen análisis elemental de la cascarilla de arroz	46
	3.5.3	3 Resumen poder calorífico de la cascarilla de arroz	47
	3.5.4	4 Resumen caracterización de las cenizas de cascarilla de arroz	47
3.6	F	Resumen caracterización fisicoquímica de la cascarilla de arroz	48
4.	/ [F	ANÁLISIS TEÓRICO DEL PROCESO DE COMBUSTIÓN DE CASCA DE ARROZ PARA CUANTIFICAR LA CANTIDAD DE CALOR GENER PARA UN CICLO RANKINE Y LAS EMISIONES DE CO2 EQUIVALEN	RILLA ADO NTES 49
4.1	E	Estequiometria de la reacción de combustión	49
4.2	E	Entalpia de Combustión 5	
4.3	7	Temperatura de flama adiabática 52	
4.4	٦	Temperatura de flama adiabática con exceso de aire	54
5.	E C A	BALANCE DE MASA, ENERGÍA Y EXERGÍA DE POSIBLES CONFIGURACIONES DEL CICLO RANKINE USANDO CASCARILLA ARROZ COMO FUENTE DE ENERGÍA	DE 56
5.1	(Condiciones de uso de la energía la energía producida	56

5.2	C	onsideraciones de diseño	58
	5.2.1	Eficiencia del ciclo	59
	5.2.2	Eficiencia de la bomba y la turbina	60
	5.2.3	Flujo másico del combustible	61
	5.2.4	Calor especifico de los gases	62
	5.2.5	Balance de energía en la caldera	63
	5.2.6	Potencia Suministrada	63
5.3	Di	seño del ciclo Rankine básico	64
	5.3.1	Selección de Turbina 3500kW	64
	5.3.2	Análisis termodinámico 3500kW	66
	5.3.3	Selección de turbina 2500kW	67
	5.3.4	Análisis termodinámico 2500kW	68
5.4	C	onsideraciones de diseño con secado de arroz	71
	5.4.1	Humedad del arroz	71
	5.4.2	Secador	73
5.5	Di	seño ciclo Rankine con secado y recirculación de flujo 2500kW	74
	5.5.1	Recirculación con mezcla en el estado 6	74
	5.5.2	Recirculación con mezcla en el estado 3	77
5.6	Di	seño ciclo Rankine con secado y recirculación de flujo 3500kW	84
5.7	Di ca	seño ciclo Rankine con secado, recirculación de flujo e intercambiac Ilor 2500kW	lor de 85
	5.7.1	Flujo másico orgánico de combustible total disponible	86
	5.7.2	Flujo másico orgánico máximo de combustible	91
5.8	A	nálisis de resultados	99
	5.8.1	Análisis de la energía producida por kilogramo de cascarilla	100
	5.8.2	Análisis del porcentaje de exergía destruida en los equipos	101
5.9	Va	ariación de parámetros	102
	5.9.1	Variación de flujo masico orgánico de combustible	102
	5.9.2	Variación de temperatura en el estado 2	106
	5.9.3	Variación de temperatura en el estado 2´	111
	5.9.4	Variación de la presión en el estado 5	116
6.	AI	NÁLISIS COMPARATIVO DE LOS RESULTADOS OBTENIDOS	122
7.	AI AI	NÁLISIS ECONÓMICO DEL CICLO RANKINE EN FUNCIÓN DEL NÁLISIS EXERGÉTICO Y DE LAS EMISIONES DE DIÓXIDO DE	
	C	ARBONO REDUCIDAS	125

7.1	Pérdidas económicas en función del análisis exergético 125			
7.2	Er ar	nisiones de dióxido de carbono mediante la combustión de la roz	cascarilla de 126	
	7.2.1	Impacto ambiental	129	
7.3	Be	eneficios Legales Según ley 1715 de 2014	129	
	7.3.1	Finalidad de la Ley 1715 de 2014	130	
	7.3.2	Incentivos Ley 1715 de 2014	131	
CO	NCLUS	SIONES	135	
BIB	LIOGR	AFÍA	137	
AN	EXOS		143	

LISTA DE FIGURAS

	Pág.
Figura 1. Ciclo Rankine ideal simple	28
Figura 2. Turbina General Electric LM5000	29
Figura 3. Maquina térmica	30
Figura 4. Grafica del exceso de aire	55
Figura 5. Metodología para el diseño del ciclo Rankine	56
Figura 6. Ciclo Rankine Básico	64
Figura 7. Turbina D-R SST350 Siemens	65
Figura 8. Datos técnicos turbina D-R C de Siemens	67
Figura 9. Diagrama T vs S del ciclo Rankine básico 2500kW	69
Figura 10. Diagrama T vs S del ciclo Rankine básico 2500kW, estados 6 y 3	70
Figura 11. Secador	74
Figura 12. Ciclo Rankine con secado y recirculación de flujo en estado 6 2500	kW 75
Figura 13. Ciclo Rankine con secado y recirculación de flujo en estado 3 2500	kW 77
Figura 14. Diagrama T vs S del ciclo Rankine con secado y recirculación de fl	ujo en
el estado 3 2500kW	79
Figura 15. Diagrama T vs S del ciclo Rankine con secado y recirculación de flu	ijo en
el estado 3 2500kW, estados 3´y 6	79
Figura 16. Diagrama T vs S del ciclo Rankine con secado y recirculación de flu	ijo en
el estado 3, con flujo máximo de combustible 2500kW	83
Figura 17. Diagrama T vs S del ciclo Rankine con secado y recirculación de flu	ijo en
el estado 3, con flujo máximo de combustible 2500kW	83
Figura 18. Ciclo Rankine con secado, recirculación de flujo e intercambiador	
2500kW	86
Figura 19. Balance de energía caldera	87
Figura 20. Balance de energía mezclador	88
Figura 21. Balance de energía mezclador	88
Figura 22. Diagrama T vs S del ciclo Rankine con secado, recirculación de fluj	ое
intercambiador de calor 2500kW	90
Figura 23. Diagrama T vs S del ciclo Rankine con secado, recirculación de flu	jo e
intercambiador de calor 2500kW, estados 3´y 6	90
Figura 24. Diagrama T vs S del ciclo Rankine con secado, recirculación de fluj	ое
intercambiador de calor con flujo máximo de combustible	94

Figura 25. Diagrama T vs S del ciclo Rankine con secado, recirculación de flujo e intercambiador de calor con flujo máximo de combustible, estados 3´ y 6

	94
Figura 26. Eficiencias térmicas del ciclo	99
Figura 27. Calor de entrada en la caldera de los ciclos	100
Figura 28. Porcentaje de exergía destruida de los equipos	101
Figura 29. Flujo arroz secado Vs % Combustible Vs Flujo de vapor para secado	103
Figura 30. Eficiencia exergética con variación de flujo masico	104
Figura 31. Exergía destruida en equipos con variación de flujo de combustible	105
Figura 32. Exergía destruida en la caldera con variación de flujo de combustible	105
Figura 33. Eficiencia térmica y calor de entrada con Variación de la Temperatura	a
estado 2	107
Figura 34. Flujo de arroz secado y flujo masico total de vapor con variación en la	a
temperatura del estado 2	108
Figura 35. Eficiencia exergética con variación en la temperatura 2	109
Figura 36. Exergía destruida en equipos con variación en la temperatura del esta	ado
2	110
Figura 37. Exergía destruida en la caldera con variación en la temperatura del	
estado 2	110
Figura 38. Eficiencia térmica y calor de entrada a la caldera con variación en la	
temperatura del estado 2	112
Figura 39. Flujo de arroz secado y flujo masico total de vapor con variación en la	a
temperatura del estado 2	113
Figura 40. Eficiencia exergética con variación en la temperatura 2'	114
Figura 41. Exergía destruida en equipos con variación en la temperatura del esta	ado
2′	115
Figura 42. Exergía destruida en la caldera con variación en la temperatura del	
estado 2´	115
Figura 43. Eficiencia térmica y calor de entrada a la caldera con variación en la	
presión del estado 5	117
Figura 44. Flujo de arroz secado y flujo masico total de vapor con variación en la	a
presión del estado 5	118
Figura 45. Eficiencia exergética con variación en la presión del estado 5	119
Figura 46. Exergía destruida en equipos con variación en la presión del estado 5	5120

Figura 47. Exergía destruida en la caldera con variación en la presión del estado 5120Figura 48. Impacto ambiental129Figura 49. Finalidad de la Ley 1715 de 2014131

LISTA DE TABLAS

Tabla 1. Potencial energético departamental para biomasa residual de arroz	Pág. 19
Tabla 2. Potencial energético de la biomasa residual en sector agrícola	20
Tabla 3. Tipos de biomasa	25
Tabla 4. Composición elemental de distintos tipos de biomasa sin humedad	26
Tabla 5. Análisis próximo de la cascarilla de arroz	35
Tabla 6. Análisis próximo de la cascarilla de arroz	36
Tabla 7. Análisis próximo de la cascarilla de arroz	36
Tabla 8. Análisis próximo de la cascarilla de arroz	37
Tabla 9. Composición elemental de la cascarilla de arroz	38
Tabla 10. Composición elemental de la cascarilla de arroz	38
Tabla 11. Composición elemental de la cascarilla de arroz	39
Tabla 12. Composición elemental de la cascarilla de arroz	40
Tabla 13. Poder calorífico de la cascarilla de arroz	41
Tabla 14. Poder calorífico de la cascarilla de arroz	41
Tabla 15. Poder calorífico de la cascarilla de arroz	42
Tabla 16. Caracterización de las cenizas de la cascarilla de arroz	43
Tabla 17. Caracterización de las cenizas de la cascarilla de arroz	44
Tabla 18. Caracterización de las cenizas de la cascarilla de arroz	45
Tabla 19. Conclusión Análisis próximo de la cascarilla de arroz	46
Tabla 20. Conclusión Análisis elemental de la cascarilla de arroz	46
Tabla 21. Conclusión Poder calorífico de la cascarilla de arroz	47
Tabla 22. Conclusión Caracterización de la ceniza de la cascarilla de arroz	47
Tabla 23. Conclusión Caracterización fisicoquímica de la cascarilla de arroz	48
Tabla 24. Valores de entalpia de formación	52
Tabla 25. Valores de temperatura con exceso de aire	54
Tabla 26. Consumo energético anual de la producción de arroz	57
Tabla 27. Consumo energético anual de plantas arroceras	58
Tabla 28. Consideraciones de los procesos térmicos de los equipos	59
Tabla 29. Eficiencia térmica ciclo Rankine	59
Tabla 30. Eficiencia de la turbina de vapor	60
Tabla 31. Eficiencia bomba centrifuga	60
Tabla 32. Flujo másico de combustible disponible	61

Tabla 33. Calor especifico gases de combustión	63
Tabla 34. Parámetros de la turbina D-R SST 350	65
Tabla 35. Estados del ciclo Rankine básico 3500kW	66
Tabla 36. Parámetros de la turbina D-R C	68
Tabla 37. Estados del ciclo Rankine básico 2500kW	69
Tabla 38. Resultados ciclo Rankine básico 2500kW	71
Tabla 39. Humedad promedio de entrada y salida del arroz en el secador.	72
Tabla 40. Calor requerido para secado de la producción anual de arroz	73
Tabla 41. Estados del ciclo Rankine con secado y recirculación de flujo en el e	stado
6 2500kW	76
Tabla 42. Estados del ciclo Rankine con secado y recirculación de flujo en el e	stado
3 2500kW	78
Tabla 43. Consideraciones de diseño del ciclo Rankine con secado, recirculac	ión de
flujo en el estado 3, con flujo máximo de combustible	81
Tabla 44. Estados del ciclo Rankine con secado y recirculación de flujo en el e	stado
3, con flujo máximo de combustible 2500kW	82
Tabla 45. Resultados ciclo Rankine con secado, recirculación de flujo en el est	tado
3, con flujo máximo de combustible	84
Tabla 46. Estados del ciclo Rankine con secado y recirculación de flujo en el e	stado
3 3500kW	85
Tabla 47. Estados del ciclo Rankine con secado, recirculación de flujo e	
intercambiador de calor 2500kW	89
Tabla 48. Consideraciones de diseño del ciclo Rankine con secado, recirculac	ión de
flujo e intercambiador de calor, con flujo máximo de combustible	91
Tabla 49. Estados del ciclo Rankine con secado, recirculación de flujo e	
intercambiador de calor con flujo máximo de combustible	93
Tabla 50. Resultados ciclo Rankine con secado, recirculación de flujo e	
intercambiador de calor con flujo máximo de combustible	95
Tabla 51. Entropías por irreversibilidades y la eficiencia exergética para cada u	uno de
los equipos	97
Tabla 52. Constate R de gas de combustión	97
Tabla 53. Eficiencia exergética del ciclo	98
Tabla 54. Análisis Exergético en equipos con flujo máximo combustible	98
Tabla 55. Energía por kg de cascarilla	101

Tabla 56. Parámetros de la investigación seleccionada	122
Tabla 57. Resultados propios y de la investigación seleccionada	123
Tabla 58. Resultados de investigación seleccionada en el ciclo más optimo	124
Tabla 59. Pérdidas económicas en los equipos	125
Tabla 60. Factor de emisiones de CO2 combustibles fósiles	126
Tabla 61. Emisiones de CO2 de la cascarilla de arroz	126
Tabla 62. Emisiones de CO2 de Termodorada 1 y Zipa 2	127
Tabla 63. Emisiones de CO2 reducidas	128
Tabla 64. Marco Normativo Ley 1715 de 2014	130
Tabla 65. Incentivos de la Ley 1715 de 2014	133

RESUMEN

En el presente trabajo se realiza el análisis energético y exergético de un ciclo Rankine para la producción de energía eléctrica usando la cascarilla de arroz en base seca como combustible, se inicia a partir de la caracterización fisicoquímica de la biomasa con el objetivo de conocer las propiedades para el aprovechamiento energético, obteniendo un poder calorífico de 14,42 MJ/kg, se desarrolla un análisis teórico de la combustión para cuantificar el calor generado. Partiendo de un ciclo Rankine convencional, se establecen parámetros de diseño, a través de un análisis termodinámico llevado a cabo con ayuda de la biblioteca CoolProp, de Microsoft Excel, en búsqueda de mejorar el aprovechamiento de la energía mediante la implementación de equipos y configuraciones, con el objetivo de suplir los requerimientos de la planta Diana Corporación/Vía Morichal.

Durante el diseño del proceso se obtuvo un exceso de energía, el cual fue aprovechado para la implementación de un sistema de secado del arroz, logrando aumentar la eficiencia debido al aprovechamiento térmico. Al llegar a un diseño donde el uso energético fue máximo, logrando una eficiencia térmica y exergética del 53% y 66% respectivamente, se realizó una variación en los parámetros de diseño con el objetivo de conocer el comportamiento del ciclo en diferentes condiciones de trabajo.

Se alcanzo a suplir el 63% de la energía requerida en la planta Diana Corporación/Vía Morichal, lo cual implica una importante reducción de las emisiones de CO₂ producidas al obtener la energía eléctrica.

Palabras clave: biomasa, ciclo Rankine, cascarilla de arroz, combustión, energía, exergía, emisiones de CO₂, secado.

16

INTRODUCCIÓN

En la industria arrocera el principal desecho que se genera es la cascarilla de arroz, compuesta principalmente por fibras, celulosas y minerales, tiene un uso restringido en el área de la elaboración de alimentos concentrados para animales, debido a su alto contenido de sílice, elemento que disminuye notablemente su digestibilidad [1]. Debido a su composición físico química la cascarilla de arroz es un residuo de muy difícil biodegradación, al mismo tiempo se le suma el hecho de que la cantidad de cascarilla generada oscila en valores cercanos al 20% en peso de la producción total en las plantas procesadoras de arroz y teniendo en cuenta el bajo peso específico de la cascarilla de arroz a granel (100 kg/m³), genera que el transporte y la evacuación de la cascarilla represente un problema que implica unos costos elevados y un impacto perjudicial para el medio ambiente [1].

Gran parte de los residuos generados por el sector arrocero son quemados a cielo abierto deteriorando la salud de la comunidad que habita en estas áreas. La agroindustria del arroz apuesta por la reincorporación al proceso productivo de la cascarilla de arroz dándole uso como sustrato agrícola para el mejoramiento de suelos, fabricación de productos agroindustriales, control de la contaminación, fabricación de insumos, construcción de vivienda y fabricación de productos químicos [2].

En el presente trabajo, el objetivo central es realizar el análisis energético y exergético de un ciclo Rankine para la producción de energía eléctrica usando la cascarilla de arroz como combustible, empleando los fundamentos de la termodinámica, en el proceso de combustión para poder cuantificar la cantidad de calor generado en un ciclo Rankine y las emisiones de CO₂. Se realizará la caracterización física y química de la cascarilla de arroz, sus cenizas y las capacidades de suministro de energía requeridas, por medio del análisis próximo, para el cual se tomará como referencia estudios previos realizados encontrados en la literatura. Se realizará un análisis teórico del proceso de combustión de cascarilla de arroz para cuantificar la cantidad de calor generado para un ciclo Rankine y las emisiones de CO₂ equivalentes. Se determinará el balance de masa, energía y exergía en posibles configuraciones de ciclo Rankine, los resultados obtenidos se compararán con la información obtenida

17

en la literatura acerca de emisiones de CO₂, como principal contaminante, emitidas por la producción de energía con combustibles fósiles.

1. PLANTEAMIENTO DEL PROBLEMA

El crecimiento de la industria arrocera en Colombia, ha generado un aumento en los residuos del proceso de la obtención del grano de arroz, los cuales presentan un potencial energético mostrado en la tabla 1. La cascarilla es el principal residuo del sector arrocero, el cual tiene una producción de 492.738 toneladas por año para el 2011 con un potencial energético estimado de 7.136,53 Tera Jules/año (tabla 2), en el país no es aprovechado de una forma adecuada y se convierte en un residuo obsoleto con grandes niveles de contaminación [3].

Tabla 1.

	Área	Producción	Cantidad de residuo	Potencial energético	
Departamento	[ha]	[t producto/año]	[t/año]	[TJ/año]	
Antioquia	21.635	54.875	139.931	620,00	
Bolívar	33.374	125.250	319.388	1.415,13	
Caquetá	1.268	1.539	3.924	17,39	
Cauca	1.446	5.352	13.648	60,47	
Cesar	24.780	144.896	369.485	1.637,10	
Córdoba	32.404	104.258	265.858	1.177,96	
Cundinamarca	1.666	10.146	25.872	114,63	
Chocó	11.946	21.565	54.991	243,65	
Huila	30.258	214.038	545.797	2.418,30	
La Guajira	2.750	13.480	34.374	152,3	
Magdalena	2.563	12.806	32.655	144,69	
Meta	65.456	353.516	901.466	3.994,19	
Nariño	799	470	1.200	5,31	
Norte de Santander	20.642	120.134	306.342	1.357,33	
Santander	470	3.108	7.925	35,12	
Sucre	41.505	184.618	470.776	2.085,90	
Tolima	99.880	763.109	1.945.928	8.621,97	
Valle del Cauca	5.970	40.031	102.079	452,29	
Arauca	3.646	14.190	36.185	160,33	
Casanare	51.189	274.409	699.743	3.100,40	
Putumayo	1.010	1.238	3.157	13,99	
Amazonas	28	38	97	0,43	
Guaviare	676	548	1.397	6,19	
Vaupés	60	45	114	0,51	
Vichada	22	30	77	0,34	
TOTAL	455.444	2.463.689	6.282.407	27.835,94	

Potencial energético departamental para biomasa residual de arroz

Nota. En la tabla se demuestra el Área sembrada (ha), producción (t producto/año), Cantidad de residuo (t/año) y potencial energético (TJ/año) por departamento en Colombia. Tomado de: Universidad Industrial de Santander. Centro de Estudios e Investigaciones Ambientales, «Unidad De Planeacion Minero Energetica,» 2011. [En línea]. Disponible: https://www1.upme.gov.co/siame/Paginas/atlas-del-potencial-energetico-de-la-biomasa.aspx. [Último acceso: 29 09 2020].

Tabla 2.

Cultivo	Producción	Tipo de	Origen del	Factor de residuo ²	Masa de residuo	Potencial energético
	' [t/año]	residuo	residuo	[t _{residue} /t _{producto principal}]	[t/año]	[TJ / año]
		Cuesco		0,22	189.074	2.627,44
Palma de	872 117	Fibra	RAI	0,63	546.381	6.778,89
Aceite		Raquis de Palma		1,06	924.618	6.607,31
Caña de	2.615.251	Hojas - Cogollo	RAC	3,26	8.525.718	41.707,22
Azucar		Bagazo	RAI	2,68	7.008.873	76.871,65
Caña		Bagazo	RAC	2,53	5.680.790	62.305,56
Panelera	1.514.878	Hojas - Cogollo	RAI	3,75	3.832.640	18.749,01
	942.327	Pulpa	PAL	2,13	2.008.192	7.206,79
Café		Cisco	RAI	0,21	193.460	3.338,57
		Tallos	RAC	3,02	2.849.596	38.561,52
	1.368.996	Rastrojo	RAC	0,93	1.278.642	12.573,18
Maiz		Tusa		0,27	369.629	3.845,88
		Capacho		0,21	288.858	4.383,73
Arroz	2,463,689	Tamo	RAC	2,35	5.789.669	20.699,41
		Cascarilla	RAI	0,2	492.738	7.136,53
		Raquis de banano	RAC	1	1.878.194	806,31
Banano	1.878.194	1.878.194 Vástago de banano		5	9.390.968	5.294,27
		Banano de rechazo	RAI	0,15	281.729	495,34
		Raquis de plátano		1	3.319.357	1.425,00
Plátano	3.319.357	Vástago de plátano	RAG	5	16.596.783	9.356,64
		Plátano de rechazo	RAI	0,15	497.903	875,43
TOTAL	14.974.807				71.943.813	331.645,71

Potencial energético de la biomasa residual en sector agrícola

Nota. En la tabla se evidencia el potencial energético de la biomasa residual del sector agrícola en Colombia en Producción (t/año), Tipo de residuo, Origen de residuo, Factor de residuo (Tresiduo/Tproducto principal), Masa de residuo (t/año) y el potencial energético (TJ/año). Tomado de: Universidad Industrial de Santander. Centro de Estudios e Investigaciones Ambientales, «Unidad De Planeacion Minero Energetica,» 2011. [En línea]. Disponible: https://www1.upme.gov.co/siame/Paginas/atlas-del-potencial-energetico-de-la-biomasa.aspx. [Último acceso: 29 09 2020].

En Colombia la cascarilla de arroz se ha utilizado principalmente como camas avícolas o abono orgánico el cual presenta grandes características en macro y micronutrientes para el suelo, por lo tanto, es una gran alternativa para la mitigación de la contaminación agroindustrial, aunque las características de este producto son de gran utilidad en la agricultura de las regiones, la demanda no alcanza a cubrir la cantidad de residuos generados, estudios realizados indican la alta eficiencia de esta alternativa, pero la baja mitigación en cuanto a cantidades usadas en abono, las cuales no cubren ni una cuarta parte de la cascarilla producida [2]. Entonces de este modo se requieren establecer aplicaciones para el aprovechamiento energético de este residuo de forma sostenible.

Para la producción energética en el mundo se usa principalmente los combustibles fósiles, estos producen gases de efecto invernadero los cuales aceleran el aumento de la temperatura de la atmosfera, contribuyendo al cambio climático. La quema de combustibles fósiles se ha convertido en la principal fuente de emisiones dióxido de carbono (CO₂) a la atmosfera, siendo este el gas más nocivo en la generación del efecto invernadero [4].

Es importante diversificar la canasta de generación eléctrica en Colombia ya que esta se concentra en dos fuentes, la hidroelectricidad con una participación del 63.9% (67.7% incluyendo menores hidráulicas) y la generación a gas natural que representa 26.3% de la capacidad instalada en el año 2014. Tal dependencia hace que el sistema energético colombiano pueda ser vulnerable en el corto plazo debido a fenómenos climáticos como el fenómeno del niño y de la niña, y en mediano y largo plazo de la disponibilidad de gas natural. Por lo anterior es preciso que se implementen nuevas fuentes de energía para lograr una diversificación de la canasta y garantizar un suministro de energía confiable, pero adicionalmente que sea sostenible. La Ley 1715 de 2014, es un primer paso para lograr este objetivo, dado que busca promover la integración de fuentes no convencionales (FNCE), principalmente aquellas de carácter renovable en el sistema energético nacional. Específicamente se busca la introducción de plantas eólicas, generación solar fotovoltaica, geotermia y generación a partir de la biomasa en el sistema eléctrico del país [5].

El uso energético de la cascarilla de arroz puede ser desde el punto de vista técnico, ambiental y económicamente viable. Se puede evidenciar el uso alternativo que se le da a la cascarilla de arroz en el mundo, desde hornos Clamp o Escocés y Hornos Hoffman que son usados en la industria ladrillera artesanales en Perú, actualmente utilizan como combustible principal carbón mineral, aserrín de madera, cáscara de arroz o de café, leña de algarrobo o de otras especies [6]. Fenirol S.A. (Energía Renovable Tacuarembó) es un emprendimiento de un consorcio de cuatro grupos económicos (tres uruguayos y uno extranjero), con vasta experiencia en otras actividades a nivel nacional e internacional localizada en Tacuarembó Ciudad en Uruguay. Obtiene biomasa de distintas fuentes, como subproductos de actividades de la industria forestal (aserrín de aserraderos, trozas de diámetros finos de actividades forestales) y de los molinos arroceros (cáscara de arroz) de la zona. Cuenta con un sistema de combustión capaz de quemar mezcla de los distintos tipos mencionados, hasta un 20% de cáscara de arroz y biomasa forestal con hasta un 55% de humedad. La energía entregada a la red en el año 2018 fue de 46.888MWh [7].

Galofer implementa a la generación de energía con la cogeneración con turbina de vapor, utilizando como combustible cascara de arroz, pertenece a un grupo conformado por industrias arroceras de la zona centro-este de Uruguay: Arrozal 33, Glencore, Casarone Agroindustrial, Saman y Coopar. Galofer se encuentra instalada en un predio contiguo a Arrozur y esta consume vapor de baja presión que se extrae de la turbina entregando en el 2019, 66.500 MWh de energía a la red [7].

Ante la importancia que representa el ahorro de combustibles, el uso de desechos contaminantes, la necesidad de incrementar la productividad de la agroindustria y con el deseo de aportar al campo de la investigación tecnológica aplicada, Super-Brix desarrolló, a mediados de 1993, un nuevo diseño de horno para el secamiento de granos, utilizando la cascarilla de arroz como combustible. Contribuyendo a la reducción de emisión de gases contaminantes, en gran medida, a la reducción de un desecho de difícil biodegradación como lo es la cascarilla de arroz. Así mismo, en estos tiempos de crisis energética mundial, se ha logrado encontrar una fuente alternativa de generación de calor y así reducir el consumo de combustibles fósiles para la generación de tecnologías sostenibles en plantas de la agroindustria, la utilización de la cascarilla de arroz representa un aporte significativo en la preservación de los recursos naturales para garantizar un futuro mejor para las nuevas generaciones [8].

1.1 Objetivos

1.1.1 Objetivo general

Realizar el análisis energético y exergético de un ciclo Rankine para la producción de energía eléctrica usando la cascarilla de arroz como combustible.

1.1.2 Objetivos específicos

- 1. Caracterizar física y químicamente la cascarilla de arroz, sus cenizas y las capacidades de suministro de energía requeridas.
- Realizar un análisis teórico del proceso de combustión de cascarilla de arroz para cuantificar la cantidad de calor generado para un ciclo Rankine y las emisiones de CO₂ equivalentes.
- 3. Realizar el balance de masa, energía y exergía de posibles configuraciones del ciclo Rankine usando cascarilla de arroz como fuente de energía.
- 4. Establecer un análisis comparativo de los resultados obtenidos con resultados disponibles en la literatura.
- Realizar el análisis económico del ciclo Rankine en función del análisis exergético y de las emisiones de dióxido de carbono reducidas.

2. GENERALIDADES

Biomasa: La biomasa es la materia orgánica que deriva de árboles, plantas y residuos de animales que pueden ser transformados en energía; o desechos que provienen de la industria agrícola (residuos de maíz, café, arroz), de aserradero (aserrín, cortezas podas, ramas,) y de los residuos urbanos (aguas negras, basura orgánica y otros). La biomasa es la fuente de energía renovables más antigua conocida y aprovechada por el hombre [9].

Las fuentes más significativas de biomasa son los campos forestales y agrícolas, ya que en estos se producen basuras que regularmente son dejadas en campo debido a que no se cuenta con la oferta suficiente para hacer usos de la totalidad de los residuos generados por los campos agrícolas [9].

> Tipos de biomasa

La Biomasa se puede identificar en diferentes estados físicos que establecen la factibilidad económica y técnica para la implementación en procesos de producción de energía. El estado físico de la biomasa se puede catalogar según el tipo de recurso, como se muestra en la tabla 3.

Tabla 3.

Tipos de biomasa

Recursos de biomasa	Tipo de residuo	Características físicas
Residuos forestales	Restos de aserrío: corteza, aserrín, astillas. Restos de ebanistería: aserrín, trozos, astillas. Restos de plantaciones: ramas, corteza, raíces.	Polvo, sólido, HR ² >50% Polvo sólido, HR 30 - 45% Sólido, HR > 55%
Cáscara y pulpa de frutas y vegetales. Cáscara y polvo de granos secos (arroz, café), Estiércol. agropecuarios Residuos de cosechas: tallos y hojas, cáscaras, maleza, pastura.		Sólido, alto contenido humedad Polvo, HR < 25% Sólido, alto contenido humedad Sólido HR >55%
Residuos industriales	Pulpa y cáscara de frutas y vegetales. Residuos de procesamiento de carnes. Aguas de lavado y precocido de carnes y vegetales. Grasas y aceites vegetales.	Sólido, humedad moderada Sólido, alto contenido humedad Líquido Líquido, grasoso
Residuos urbanos	Aguas negras. Desechos domésticos orgánicos (cáscara de vegetales). Basura orgánica (madera).	Líquido Sólido, alto contenido humedad Sólido alto contenido humedad

Nota. En la tabla se muestran los distintos tipos de biomasa y sus características físicas, Tomado de: FOCER, «bio-nica.info,» 2002. [En línea]. Disponible: http://www.bio-nica.info/biblioteca/BUNCA2002Biomasa.pdf. [Último acceso: 28 10 2020].

Composición elemental: Las características físicas y químicas de la biomasa establecen el tipo de combustible o subproducto energético que se puede generar utilizando biomasa; por ejemplo, los residuos animales producen altas cantidades de gas metano, mientras tanto la madera produce el llamado "gas pobre", que está compuesto por una mezcla rica en monóxido de carbono. Por otra parte, las características físicas influyen en el procedimiento previo que sea necesario aplicar a la biomasa [9], En la tabla número 4 se presenta el análisis elemental para diferentes tipos de biomasa.

Tabla 4.

Tipo de biomasa	Porcentaje del peso (sin humedad)						
Madera	с	н	N	0	S	сі	Ceniza
Sauce	47,66	5,2	0,3	44,70	0,03	0,01	1,45
Madera suave	52,10	6,10	0,20	39,90	-	-	1,70
Corteza de madera dura	50,35	5,83	0,11	39,62	0,07	0,03	3,99
Madera dura	50,48	6,04	0,17	42,43	0,08	0,02	0,78
Eucalipto	50,43	6,01	0,17	41,53	0,08	0,02	1,76
Roble	49,89	5,98	0,21	42,57	0,05	0,01	1,29
Corteza de pino	52,30	5,80	0,29	38,76	0,03	0,01	2,90
Aserrín pino	52,49	6,24	0,15	40,45	0,03	0,04	0,60
Sub-productos agrícolas							
Brizna de trigo	39,07	4,77	0,58	50,17	0,08	0,37	4,96
Caña de azúcar	44,80	5,35	0,38	39,55	0,01	0,12	9,79
Bagazo de caña	46,95	5,47	0,38	39,55	0,01	0,12	9,79
Paja de arroz	39,65	4,88	0,92	35,77	0,12	0,50	18,16
Cascarilla de arroz	38,68	5,14	0,41	37,45	0,05	0,12	18,15
Paja de maíz	46,91	5,47	0,56	42,78	0,04	0,25	3,99
Olote de maíz	47,79	5,64	0,44	44,71	0,01	0,21	1,2
Fibra de coco	50,29	5,05	0,45	39,63	39,63	0,28	4,14
Carbón mineral	71,70	4,70	1,3	8,30	0,64	0,060	20,70

Composición elemental de distintos tipos de biomasa sin humedad

Nota. En la tabla se muestran los distintos tipos de biomasa y sus características químicas. Tomado de FOCER, «bio-nica.info,» 2002. [En línea]. Disponible: http://www.bionica.info/biblioteca/BUNCA2002Biomasa.pdf. [Último acceso: 28 10 2020].

Contenido de humedad (H.R.): El contenido de humedad de la biomasa es la relación de la masa de agua por kilogramo de materia seca. Normalmente en los procesos de conversión energética es indispensable que la biomasa tenga un contenido de humedad inferior al 30%. Con frecuencia, los restos salen del proceso productivo con un contenido de humedad muy superior, lo que obliga a implementar operaciones de preparación de la biomasa, antes de ingresar al proceso de conversión de energía [9].

Porcentaje de cenizas: El porcentaje de cenizas revela la cantidad de materia sólida no combustible por kilogramo de biomasa. En los procesos que contienen la combustión de la biomasa, es significativo conocer la relación de generación de ceniza y su composición, ya que, en algunos casos, ésta puede ser utilizada, por ejemplo, la ceniza de la cascarilla de arroz es un excelente aditivo en la mezcla de concreto o para la fabricación de filtros de carbón activado [9].

Material Volátil: "Los materiales volátiles son desprendimientos gaseosos de la materia orgánica e inorgánica durante el calentamiento" [10].

Poder calórico: El contenido calórico por unidad de masa es la medida que establece la energía disponible en la biomasa. El poder calorífico de los combustibles tiene una relación directa con su contenido de humedad. Un mayor porcentaje de humedad reduce la eficiencia de la combustión debido a que una gran parte del calor liberado se usa para evaporar el agua y no se aprovecha en la reducción química del material [11].

El poder calorífico puede ser llamado, poder calorífico superior (PCS) el cual representa el valor máximo en el que se libera la energía en la combustión completa, donde se considera la energía utilizada para la vaporización del agua contenida; y el poder calorífico inferior (PCI) el cual representa el valor máximo de energía útil, así el poder calorífico superior es el más utilizado para poder comparar la energía liberada por varios tipos de biomasa [12].

Fuentes No Convencionales de Energía (FNCE): Son aquellos recursos energéticos disponibles a nivel mundial que son considerados ambientalmente sostenibles, pero que en el país no son utilizados y no se comercializan ampliamente. Se consideran FNCE la energía nuclear o atómica y las FNCER. Otras fuentes podrán ser consideradas como FNCE según lo determine la UPME en Colombia [11].

Fuentes No Convencionales de Energía Renovable (FNCER): Son los recursos energéticos disponibles ambientalmente sostenibles, pero que en el país no son utilizados y comercializados ampliamente. Se consideran FNCER la biomasa, los pequeños aprovechamientos hidroeléctricos, la eólica, la geotérmica, la solar y los mares. Otras fuentes podrán ser consideradas como FNCER según lo determine la UPME [11].

Ciclo Rankine: Es el más utilizado en las centrales de vapor para generación eléctrica debido a que presenta los mejores resultados, el ciclo ideal no presenta irreversibilidades internas y se compone a partir de cuatro principales procesos. El ciclo se muestra en la figura 1 junto al diagrama T vs S [13].

Figura 1.

Ciclo Rankine ideal simple

Nota. En la figura se muestra el ciclo Rankine básico con sus componentes y la gráfica de temperatura vs entropía que relaciona cada una de las partes del proceso. Tomado de: M. A. B. Yunes A. Cengel, «joinville,» 2011. [En línea]. Disponible: http://joinville.ifsc.edu.br/~evandro.dario/Termodin%C3%A2mica/Material%20Did%C3%A 1tico/Livro%20-%20Cengel/Termodinamica%20-%20Cengel%207th%20-%20espanhol.pdf. [Último acceso: 29 Octubre 2020].

En el estado 1 el agua ingresa a la bomba como un líquido saturado y este se condensa isoentrópicamente hasta la presión en que se encuentra la caldera. El agua incrementa su temperatura un poco durante el proceso de compresión isentrópica debido a que el volumen específico del agua presenta una leve disminución. El agua ingresa a la caldera en estado de líquido comprimido en el estado 2, para salir como vapor sobrecalentado en el estado 3. Se puede decir que la caldera se comporta igual que un gran intercambiador de calor en la cual el calor originado en los gases de combustión, se transfiere al agua a presión constante. La caldera y la sección en la cual el vapor se sobrecalienta, se le llama generador de vapor [13].

El vapor sobrecalentado en la etapa 3 entra a la turbina donde se expande isoentrópicamente produciendo trabajo al hacer girar un eje conectado a un generador eléctrico. Durante este proceso se presenta una disminución de la presión y la temperatura del vapor hasta los valores del estado 4, en el cual el vapor entra al condensador, en este estado es un vapor húmedo con una calidad alta. En el condensador el vapor se condensa a presión constante (isobáricamente), el cual es otro gran intercambiador de calor, liberando el calor hacia un medio de enfriamiento como un cuerpo de agua o la atmósfera. Por último, el vapor sale del condensador en estado de líquido saturado y vuelve e ingresa a la bomba, completando el ciclo para que vuelva a comenzar [13].

Turbina: Por lo general se usan para impulsar los generadores eléctricos, al pasar un fluido por la turbina esta genera trabajo contra los álabes, los cuales van unidos al eje, por lo tanto, esta gira convirtiendo la energía cinética en energía mecánica y a su vez produciendo trabajo. La velocidad que lleva el fluido en la mayoría de turbinas es muy alta, por lo cual el fluido presenta un importante cambio en su energía cinética, no obstante, este cambio es pequeño comparado al cambio de entalpia que se presenta [13].

Figura 2.

Turbina General Electric LM5000

Nota. En la figura se presenta una turbina moderna de gas basada en tierra que se utiliza para la producción de potencia eléctrica, tiene una longitud de 6.2 m, pesa 12.5 toneladas y produce 55.2 MW a 3.600 rpm. Tomado de: M. A. B. Yunes A. Cengel, «joinville,» 2011. [En línea]. Disponible:

http://joinville.ifsc.edu.br/~evandro.dario/Termodin%C3%A2mica/Material%20Did%C3%A1tico/Livro%20-%20Cengel/Termodinamica%20-

%20Cengel%207th%20-%20espanhol.pdf. [Último acceso: 29 Octubre 2020].

Maquinas térmicas: Estas se encargan de convertir el calor en trabajo, sus principales características son que absorben calor de una fuente a alta temperatura, después parte de este calor se convierte en trabajo y rechazan el calor sobrante hacia un sumidero que se encuentra a baja temperatura, estas operan en ciclo, mostrada en la figura 3 [13].

Maquina térmica

Nota. La figura muestra el diagrama de la maquina térmica. Tomado de: M. A. B. Yunes A. Cengel, «joinville,» 2011. [En línea]. Disponible: http://joinville.ifsc.edu.br/~evandro.da rio/Termodin%C3%A2mica/Material %20Did%C3%A1tico/Livro%20-%20Cengel/Termodinamica%20-%20Cengel%207th%20-%20espanhol.pdf. [Último acceso: 29 Octubre 2020].

Eficiencia térmica: En una maquina térmica la salida de trabajo neto es menor que el calor de entrada, solo una parte del calor transferido a una maquina térmica se transforma en trabajo, esta porción de calor de entrada que se convierte en trabajo neto es un indicador de rendimiento de una maquina térmica la cual es llamada

eficiencia térmica. La salida ideal es el trabajo neto y la entrada que requieren es la cantidad de calor suministrado al fluido de trabajo [13].

Combustión: Un material que puede quemarse para liberar energía acumulada en forma de calor se le llama combustible. La combustión es una reacción química en la que se oxida el combustible y se logra liberar una gran cantidad de energía, el aire es el oxidante que más comúnmente se emplea en los procesos de combustión por la facilidad de acceso. El aire se compone en su mayoría de nitrógeno y la presencia de este influye considerablemente en el resultado del proceso de combustión, debido a que el nitrógeno entra en grandes cantidades a una cámara de combustión a temperaturas bajas, y luego sale a altas temperaturas, en el proceso absorbe gran proporción de la energía química que se libera durante la combustión. En el proceso de combustión los reactivos son los componentes existentes antes de que pase la reacción, y los componentes que se obtienen al terminar la reacción se llaman productos [13].

Temperatura de flama adiabática: Cuando se presenta una ausencia de cualquier interacción de trabajo y variaciones en las energías potencial y cinética, se pierde la energía química liberada en el proceso de combustión en forma de calor hacia el exterior o se pueden usar interiormente para aumentar la temperatura de los productos. Entre menor es el calor perdido, va a ser mayor el incremento en la temperatura. Un caso límite en el cual no se presente pérdida de calor hacia el exterior, ocasiona que la temperatura de los productos alcance un máximo valor, esta es la llamada temperatura de flama adiabática [13].

Exergía: Establece el potencial de trabajo útil de una cantidad determinada de energía en un estado especifico. El potencial de trabajo de la energía contenida en el sistema es el trabajo útil máximo que puede obtenerse del sistema. El trabajo que se realiza en un proceso depende de los estados inicial, final y de la trayectoria del proceso, en el análisis exergético siempre se especifica el estado inicial, por lo que no es una variable. Cuando el proceso entre dos estados es reversible la salida de trabajo llega a un máximo [13].

31

La energía cinética se puede convertir en trabajo debido a que es una forma de energía mecánica. "El potencial de trabajo o la exergía de la energía cinética de un sistema es igual a la propia energía cinética sin tener en cuenta la temperatura y la presión del ambiente" [13]. La energía potencial es una forma de energía mecánica, por esto, se puede convertir en trabajo. Entonces, en la energía potencial de un sistema la exergía es igual a esa energía potencial sin importar la presión ambiente ni la temperatura [13].

"El sistema debe estar en el estado muerto al final del proceso para maximizar la salida de trabajo" [13],a menos que se defina los parámetros del estado muerto, se toman como la temperatura ($T_0=25^{\circ}C$) y presión ambiente ($P_0=1$ atm). [13]

Análisis exergético: La exergía se puede destruir, pero no es posible crearla. Por ende, en un sistema el cambio de exergía durante un proceso es menos que la transferencia de exergía por una unidad igual de exergía destruida dentro de los límites del sistema. El cambio de exergía de un sistema es igual a la diferencia entre la transferencia neta de exergía por medio de la frontera del sistema y la exergía destruida dentro de las irreversibilidades durante un proceso [13].

Eficiencia exergética según la segunda ley de la termodinámica: Basándose en que la medida de la eficiencia exergética según la primera ley de la termodinámica no es una medida que tenga en cuenta los desempeños de los dispositivos técnicos. Para lograr tener una medida real es necesario definir la eficiencia basada en la segunda ley de la termodinámica que relaciona la eficiencia térmica real y la eficiencia térmica máxima (reversible), bajo unas condiciones iguales. La eficiencia según la segunda ley además puede expresarse como la relación entre las salidas de trabajo útil y la de trabajo máximo (reversible), se define para los dispositivos productores de trabajo como [13]:

Ecuación 1.

Eficiencia exergética para dispositivos productores de trabajo

$$\eta_{\rm II} = \frac{W_u}{W_{rev}}$$

Igualmente se puede definir la eficiencia según la segunda ley para dispositivos no cíclicos y cíclicos consumidores de trabajo, como proporción de la entrada de trabajo mínimo (reversible) y la entrada de trabajo útil:

Ecuación 2.

Eficiencia exergética para dispositivos consumidores de trabajo

$$\eta_{\rm II} = \frac{W_{rev}}{W_u}$$

En las anteriores relaciones el trabajo reversible se debe establecer por medio del uso de los mismos estados inicial y final como en el caso del proceso real, lo anteriormente nombrado no puede ser aplicado para dispositivos que no estén destinados para producir o consumir trabajo, por esto, este valor debe estar entre cero en el peor de los casos, por la destrucción completa de exergía, y 1 en el mejor cuando no se presenta destrucción de exergía. La eficiencia según la segunda ley de un sistema durante un proceso se define como [13]:

Ecuación 3.

Eficiencia exergética de un proceso

$$\eta_{\rm II} = \frac{Exergía \ recuperada}{Exergía \ suministrada} = 1 - \frac{Exergía \ destruida}{Exergía \ suministrada}$$

Es necesario que se determine cuanta exergía o el potencial de trabajo que se consume durante el proceso para determinar la eficiencia según la segunda ley. El cambio de exergía del flujo de fluido cuando esta un proceso de un estado 1 a un estado 2 está definido por [13]:

Ecuación 4.

Cambio de exergía de un flujo de fluido

$$\psi_2 - \psi_1 = (h_2 - h_1) - T_0(s_2 - s_1) + \frac{V_2^2 - V_1^2}{2} + g(z_2 - z_1)$$

Cuando se quiere calcular el cambio de exergía de un gas se puede hacer uso de la expresión para el cálculo de la diferencia de entropías [13]:

Ecuación 5.

Cambio de entropía en un gas

$$s_2 - s_1 = C_p Ln \frac{T_2}{T_1} - RLn \frac{P_2}{P_1}$$

Ley 1715 de 2014: Tiene como objetivo incentivar el desarrollo y la utilización de las Fuentes No Convencionales de Energía, en especial aquellas de carácter renovable, en el sistema energético nacional de Colombia, mediante su integración al mercado eléctrico, su participación en las regiones No Interconectadas y en otros usos energéticos como medio necesario para el desarrollo económico sostenible, la reducción de emisiones de gases de efecto invernadero y la seguridad del abastecimiento energético [11].

3. CARACTERIZACIÓN FISICOQUÍMICA DE LA CASCARILLA DE ARROZ Y SUS CENIZAS Y LAS CAPACIDADES DE SUMINISTRO DE ENERGÍA REQUERIDAS

En este capítulo se realiza la caracterización fisicoquímica de la cascarilla de arroz de forma teórica debido a la complejidad y elevados costos que presenta realizar un estudio de este tipo, por ejemplo, utilizando termogravimetría. También a las dificultades que se presentan como consecuencia de la pandemia ocurrida en los años 2020 y 2021 durante el desarrollo de esta investigación.

3.1 Análisis próximo de la cascarilla de arroz

La investigación realizada por Valverde G. y su equipo de trabajo, tiene como fin realizar el análisis comparativo de las características fisicoquímicas de la cascarilla de arroz, da a conocer los resultados del análisis próximo de la cascarilla de arroz, los cuales son de gran importancia para el desarrollo de esta investigación, se fundamenta en conocer la composición inmediata de la cascarilla de arroz. En el análisis proxim0 se determina el contenido de carbono fijo, humedad, cenizas y material volátil, los cuales desarrollan un factor importante durante la ignición en las primeras etapas de la combustión de la biomasa, en la tabla 5 se presentan los resultados obtenidos en esta investigación [14].

Tabla 5.

Análisis próximo de la cascarilla de arroz

Elemento	%
Carbono fijo	16.67
Cenizas	17.89
Volátiles	65.47

Nota. En la tabla se presentan los resultados del análisis próximo de la cascarilla de arroz. Tomado de: A. Valverde, B. Sarria y J. Monteagudo, «revistasutp.edu.co,» Diciembre 2007. [En línea]. Disponible:

https://revistas.utp.edu.co/index.php/revistaciencia/articl e/view/4055. [Último acceso: 26 Febrero 2021]. En un estudio realizado por Arenas C. y su equipo de trabajo de la Universidad Pontificia Bolivariana con el fin de estudiar la valorización de cascarilla de arroz para la producción de calor y materiales abrasivos para el sector textil, lograron concluir en el análisis próximo llevado a cabo con cascarilla de arroz con origen en el departamento del Tolima, Colombia, obteniendo los siguientes datos presentados en la tabla 6 [15].

Tabla 6.

Análisis próximo de la cascarilla de arroz

Análisis próximo	%
Volátiles	55.0
Carbono fijo	16.0
Cenizas	19.9

Nota. En la tabla se presentan los resultados del análisis próximo de la cascarilla de arroz. Tomado de: C. Arenas, F. Campuzano, M. Betancur, T. Tamayo, R. Pedrozo y J. Marinez, «Virtulapro,» Enero 2017. [En línea]. Disponible: https://www.virtualpro.co/biblioteca/valorizacion-de-cascarilla-de-arroz-para-la-produccion-de-calor-y-materiales-abrasivos-para-el-sector-textil. [Último acceso: 1 Marzo 2021].

El trabajo realizado por Williams, P. Nugranad, N. acerca de la comparación de productos de pirolisis y pirolisis catalítica de la cascarilla de arroz, en el cual lograron obtener los siguientes resultados, los cuales se presentan en la tabla 7 [16].

Tabla 7.

Análisis próximo de la cascarilla de arroz

Análisis próximo	%		
Volátiles	59.5		
Humedad	7.9		
Cenizas	17.1		

Nota. En la tabla se presentan los resultados del análisis próximo de la cascarilla de arroz. Tomado de: P. N. N. Williams, «science direct,» Junio 2000. [En línea]. Disponile: https://www.sciencedirect.com/science/article/abs/pii/S 0360544200000098. [Último acceso: 1 Marzo 2021].
En la investigación realizada por Echeverría M .y López O., contiene la caracterización energética de la cascarilla de arroz para su aplicación como biocombustible en la generación de energía termoeléctrica, que mediante pruebas de laboratorio y cálculos determinaron las propiedades fisicoquímicas de la cascarilla de arroz, las cuales se realizaron en los laboratorios de AGROCALIDAD; Agencia Ecuatoriana de Aseguramiento de la Calidad del Agro y también se realizaron pruebas de la misma muestra en los laboratorios de PRONACA Procesadora Nacional de Alimentos Puembo. Los resultados obtenidos para el análisis próximo se presentan en la tabla 8 [17].

Tabla 8.

Parámetros	Laboratorios PRONACA	Laboratorios AGROCALIDAD
Materia volátil (%)	61,34	52,85
Humedad (%)	8,41	6,40
Cenizas (%)	14,83	23,94

Análisis próximo de la cascarilla de arroz

Nota. En la tabla se presentan los resultados del análisis próximo de la cascarilla de arroz realizado en diferentes laboratorios, el material volátil según la norma ASTM, American Society for Testing Materials; Procedimiento N° E 872, la humedad según la norma ASTM D y las cenizas según la norma ASTM, American Society for Testing Materials; Procedimiento N° D 1102. Tomado de: M. Echeverría y O. López, «1Library.co,» Mayo 2012. [En línea]. Disponible: https://1library.co/document/y968d5jy-caracterizacion-energetica-cascarilla-arroz-aplicacion-generacion-energia-termoelectrica.html. [Último acceso: 1 Marzo 2021].

3.2 Análisis elemental de la cascarilla de arroz

La investigación realizada por Valverde A, y su equipo de investigación con el objetivo de hacer un análisis comparativo de las características fisicoquímicas de la cascarilla de arroz, da a conocer los resultados del análisis elemental de la cascarilla de arroz los cuales son de gran importancia para el desarrollo de esta investigación, se fundamenta en conocer la composición inmediata de la cascarilla de arroz. En el análisis elemental se determina la composición elemental de una sustancia combustible en su contenido de carbono, azufre, hidrogeno, nitrógeno, oxigeno, cenizas y humedad. Es la característica técnica más importante de un combustible ya que constituye la base para realizar los análisis del proceso de combustión, como el

cálculo de volúmenes de aire, gases y entalpia. Los resultados se muestran en la tabla 9 [14].

Tabla 9.

Composición elemental de la cascarilla de arroz

Humedad (%)	8,6	8,9	9,4
Carbono (%)	42,4	39,1	33,4
Hidrógeno (%)	6,0	5,2	4,3
Oxigeno (%)	36,2	37,2	38,5
Nitrógeno (%)	0,21	0,27	0,38
Azufre (%)	0,49	0,43	0,32
Cenizas (%)	14,6	17,8	23,1

Nota. En la tabla se presentan los resultados de la composición elemental de la cascarilla de arroz a diferentes porcentajes de humedad. Tomado de: A. Valverde, B. Sarria y J. Monteagudo, «revistasutp.edu.co,» Diciembre 2007. [En línea]. Disponible: https://revistas.utp.edu.co/index.php/revistaciencia/article/view/4055. [Último acceso: 26 Febrero 2021].

El porcentaje de cenizas muestra la cantidad de materia solida no combustible por kilogramo del material. En la combustión de la biomasa, es importante conocer el porcentaje de producción de ceniza y su composición.

En un estudio realizado por Arenas C, y equipo de trabajo, realizado a partir de cascarilla de arroz con origen en el departamento del Tolima, Colombia, en base seca, se obtuvieron los siguientes datos para el análisis, presentados en la tabla 10 [15].

Tabla 10.

Análisis elemental%Carbono41,13Hidrógeno3,37Oxigeno35,30Nitrógeno0,33

Composición elemental de la cascarilla de arroz

Nota. En la tabla se presentan los resultados de la composición elemental de la cascarilla de arroz. Tomado de: C. Arenas, F. Campuzano, M. Betancur, T. Tamayo, R. Pedrozo y J. Marinez, «Virtulapro,» Enero 2017. [En línea]. Disponible: https://www.virtualpro.co/biblioteca/valorizacion-de-cascarilla-de-arroz-para-la-produccion-de-calor-y-materiales-abrasivos-para-el-sector-textil. [Último acceso: 1 Marzo 2021].

El trabajo realizado por Williams, P. Nugranad, N., con cascarilla de arroz, en este trabajo lograron obtener los siguientes resultados del análisis elemental, los cuales se presentan en la tabla 11 [16].

Tabla 11.

Composición elemental de la cascarilla de arroz

Análisis elemental	%
Carbono	44,6
Hidrogeno	5,6
Oxigeno	49,3

Nota. En la tabla se presentan los resultados de la composición elemental de la cascarilla de arroz. Tomado de: P. N. N. Williams, «science direct,» Junio 2000. [En línea]. Disponile: https://www.sciencedirect.com/science/article/ab s/pii/S036054420000098. [Último acceso: 1 Marzo 2021].

En la investigación realizada por Echeverría M, y López O, se realizó el análisis elemental de la cascarilla de arroz en base seca siguiendo los lineamientos de la norma ASTM D 3176-89 Internacional Standards; Standard Practice for Ultimate Analysis of Coal and Coke, obteniendo los resultados de la tabla 12 [17].

Tabla 12.

Composición elemental de la cascarilla de arroz

Elementos	%
Carbono	39,6
Oxígeno	37,52
Silicio	15,21
Hidrógeno	4,94
Potasio	0,25
Nitrógeno	1,83
Azufre	0,40
Fosforo	0,05
Calcio	0,09
Sodio	0,035
Hierro	0,006
Magnesio	0,06
Zinc	0,0059

Nota. En la tabla se presentan los resultados de la composición elemental de la cascarilla de arroz realizados en el laboratorio de AGROCALIDAD. Tomado de: M. Echeverría y O. López, «1Library.co,» Mayo 2012. [En línea]. Disponible: https://1library.co/document/y968d5jycaracterizacion-energetica-cascarillaarroz-aplicacion-generacion-energiatermoelectrica.html. [Último acceso: 1 Marzo 2021].

3.3 Poder calorífico de la cascarilla de arroz

El poder calorífico inferior por unidad de masa fue determinado para la investigación realizada por Valverde A. y su equipo de investigación, donde se logró concluir en los datos presentados en la tabla 13 [14].

Tabla 13.

Humedad %	Poder calorífico inferior kJ/kg
0	19.880
10	17.644
20	15.412
30	13.180
40	10.947
50	8.715
60	6.413

Poder calorífico de la cascarilla de arroz

Nota. En la tabla se presentan los resultados del poder calorífico de la cascarilla de arroz a diferentes contenidos de humedad. Tomado de: A. Valverde, B. Sarria y J. Monteagudo, «revistasutp.edu.co,» Diciembre 2007. [En línea]. Disponible: https://revistas.utp.edu.co/index.php/revistaciencia/article/vie w/4055. [Último acceso: 26 Febrero 2021].

En el estudio realizado por Arenas C., y su equipo de investigación, realizada a partir de cascarilla de arroz con origen en el departamento del Tolima, Colombia en base seca, donde se obtuvieron resultados para el poder calorífico superior presentados en la tabla 14 [15].

Tabla 14.

Poder calorífico de la cascarilla de arroz

El trabajo de Echeverría M. y López O., nos permite evidenciar los resultados de obtener el poder calorífico de la cascarilla de arroz de tres diferentes métodos, los cuales son el método experimental (bomba calorimétrica), análisis bromatológico y análisis de su composición química (análisis último), los resultados se presentan en la tabla 15 [17].

Tabla 15.

PCSB.s. (MJ/kg)	12,7
PCSB.s. (MJ/kg)	12,04
PCSB.s. (MJ/kg)	15,58
PCIB.s (MJ/kg)	14,42
РСІ в.н (MJ/kg)	13,498

Poder calorífico de la cascarilla de arroz

Nota. En la tabla se presentan los resultados del poder calorífico superior (PCS) y el poder calorífico inferior (PCI) de la cascarilla de arroz en base seca (B.S.) y en base húmeda (B.H.). Tomado de: M. Echeverría y O. López, «1Library.co,» Mayo 2012. [En línea]. Disponible: https://1library.co/document/y968d5jy-caracterizacion-energetica-cascarilla-arroz-aplicacion-generacion-energia-termoelectrica.html. [Último acceso: 1 Marzo 2021].

3.4 Caracterización de las cenizas

Es importante caracterizar las cenizas que se genera por la combustión de la cascarilla de arroz para conocer o determinar los óxidos que se producen en el proceso, algunos elementos pueden afectar el proceso de combustión de la biomasa. Valverde A, y su equipo investigativo, presentaron los siguientes resultados de la caracterización de las cenizas mostrados en la tabla 16 [14].

Tabla 16.

Caracterización	de	las	cenizas	de	la
cascarilla de arro	DZ				

Elemento	%
Oxido de potasio	1,10
Oxido de sodio	0,78
Oxido de calcio	0,25
Oxido de magnesio	0,23
Sulfatos	1,13
Sílice	96,51
Total	100,00

Nota. En la tabla se presentan los resultados de la caracterización de la cascarilla de arroz en Colombia. Tomado de: A. Valverde, B. Sarria y J. Monteagudo, «revistasutp.edu.co,» Diciembre 2007. [En línea]. Disponible: https://revistas.utp.edu.co/index.php/revistaciencia /article/view/4055. [Último acceso: 26 Febrero 2021].

Debido al empleo de fertilizantes en la industria agrícola, la mayoría de los residuos producidos tienen en sus cenizas un elevado contenido de óxidos de potasio, que tienen un punto de fusión relativamente bajos, donde el valor de la temperatura de fusión disminuye a medida que se aumenta la proporción de este elemento. No obstante, la ceniza de la cascarilla de arroz tiene un bajo contenido de óxidos de potasio, por esta razón no se deberían presentar problemas de escorificación debido a los bajos puntos de fusión de sus cenizas que están alrededor de los 1500°C [14].

Arenas C., y su equipo de investigación de la universidad pontificia bolivariana realizaron en su investigación esta caracterización obteniendo los resultados presentados en la tabla 17 [15].

Tabla 17.

Caracterización de las cenizas de la cascarilla de arroz

Elemento	%
Oxido de silicio	93,5
Oxido de aluminio	0,31
Óxido de hierro	0,16
Oxido de titanio	0,03
Oxido de calcio	0,37
Oxido de magnesio	0,38
Oxido de potasio	2,14
Oxido de níquel	0,01
Oxido de cobre	0,02
Cloruros	0,09
Perdida por ignición	2,11

Nota. En la tabla se presentan los resultados de la caracterización de la cascarilla de arroz. Tomado de: C. Arenas, F. Campuzano, M. Betancur, T. Tamayo, R. Pedrozo y J. Marinez, «Virtulapro,» Enero 2017. [En línea]. Disponible: https://www.virtualpro.co/biblioteca/valorizacion-de-cascarilla-de-arroz-para-la-produccion-de-calor-y-materiales-abrasivos-para-el-sector-textil. [Último acceso: 1 Marzo 2021].

En el trabajo realizado por Echeverría M. y López O., se obtiene datos para la caracterización de las cenizas presentados en la tabla 18 [17].

Tabla 18.

Caracterización de las cenizas de la cascarilla de arroz

Composición	%
Sílice	90-97
Oxido de calcio	0,2-1,5
Oxido de magnesio	0,1-2,0
Oxido de potasio	0,6-1,6
Oxido de sodio	Trazas-1,75
Oxido de fosforo	0,3
Sulfatos	0,10-1,13
Cloro	0,15-0,40
Óxido de hierro	Trazas-0,40
Oxido de manganeso	Trazas

Nota. En la tabla se presentan los resultados de la caracterización de la cascarilla de arroz. Tomado de: M. Echeverría y O. López, «1Library.co,» Mayo 2012. [En línea]. Disponible: https://1library.co/document/y968d5jy-caracterizacion-energetica-cascarilla-arroz-aplicacion-generacion-energia-termoelectrica.html. [Último acceso: 1 Marzo 2021].

3.5 Resumen de las propiedades fisicoquímicas de la cascarilla de arroz en base seca obtenidas a partir de la caracterización energética

En este capítulo se revisan las propiedades y características fisicoquímicas de la cascarilla de arroz de estudios disponibles en la literatura, que mediante métodos experimentales y analíticos lograron obtener resultados que son de gran importancia para el desarrollo de esta investigación.

3.5.1 Resumen análisis próximo de la cascarilla de arroz

Como conclusión de la investigación teórica del análisis próximo de la cascarilla de arroz que se evidencia anteriormente, se presenta en la tabla 19 los resultados de los valores mínimos y máximos de cada una de sus propiedades ya sea en Base seca o una cascarilla de arroz en Base húmeda.

Tabla 19.

Propiedad	Base seca (%)	Base húmeda (%)
Material Volátil	55 - 65,47	52,85 – 61,34
Carbono Fijo	16 - 16,67	
Humedad		6,40 - 8,41
Cenizas	17,89 - 19,9	14,83 – 23,94

Conclusión Análisis próximo de la cascarilla de arroz

Nota. En la tabla se presentan los resultados del análisis próximo de la cascarilla de arroz en base seca y en base húmeda.

Con estos resultados se puede concluir las principales diferencias entre la cascarilla de arroz en base seca y en base húmeda en el análisis próximo, en el material volátil se logra evidenciar la variación entre los datos obtenidos y así mismo en el contenido de cenizas debido a la diferencia del contenido de humedad.

3.5.2 Resumen análisis elemental de la cascarilla de arroz

Para concluir la investigación teórica del análisis elemental de la cascarilla de arroz que se evidencia anteriormente, se presenta en la tabla 20 los resultados de los valores mínimos y máximos de cada una de sus propiedades ya sea en Base seca o una cascarilla de arroz en Base húmeda.

Tabla 20.

Elemento	Base Seca (%)	Base Húmeda (%)
Carbono	39,6 - 41,13	33,4 - 44,6
Nitrógeno	0,33 – 1,83	0,21 – 0,38
Hidrogeno	3,37 – 4,94	4,3 - 5,6
Oxigeno	35,30 - 37,52	36,2 - 49,3
Azufre	0,40	0,32 - 0,49

Conclusión Análisis elemental de la cascarilla de arroz

Nota. En la tabla se presentan los resultados del análisis elemental de la cascarilla de arroz en base seca y en base húmeda, con un rango de humedad entre 7,9 % y 9,4%.

3.5.3 Resumen poder calorífico de la cascarilla de arroz

Finalmente, en la tabla 21 se representan los valores del poder calorífico superior y el poder calorífico inferior en base seca y en base húmeda de la cascarilla de arroz, tomados de la investigación teórica realizada previamente.

Tabla 21.

Conclusión Poder calorífico de la cascarilla de arroz

	Base Seca (MJ/kg)	Base Húmeda (MJ/kg)
Poder Calorífico Superior	12,04 -15,58	15,41 – 17,64
Poder Calorífico Inferior	14,42	13,49

Nota. En la tabla se presentan los resultados del poder calorífico superior e inferior en base seca y e base húmeda, con un rango de humedad entre el 10% y el 20%.

Para efectos de esta investigación y teniendo en cuenta que se hace uso de la materia prima en base seca, se utilizará el poder calorífico inferior de 14,42 MJ/kg.

3.5.4 Resumen caracterización de las cenizas de cascarilla de arroz

En la tabla 22 se representa los valores máximos y mínimos de la caracterización de la ceniza de la cascarilla de arroz realizada teóricamente.

Tabla 22.

Conclusión Caracterización de la ceniza de la cascarilla de arroz

Elemento	Composición (%)
Sílice (SiO)	90 – 97
Oxido de Calcio (Cao)	0,2 - 1,5
Oxido de Magnesio (MgO)	0,1 – 2
Oxido de Potasio (K ₂ O)	0,6-2,14
Oxido de Sodio (Na2O)	Menor a 1,75
Oxido de Fosforo (P2O5)	0,3 - 0,66
Sulfatos (SO ₃)	0,1 – 1,13
Cloro (Cl)	0,09 - 0,40
Óxido de Hierro (Fe2O3)	Menor a 0,40
Oxido de Manganeso (MnO ₂)	despreciable

Nota. En la tabla se presentan los resultados de la caracterización de las cenizas de cascarilla de arroz con sus valores máximos y mínimos.

3.6 Resumen caracterización fisicoquímica de la cascarilla de arroz

Para los efectos de esta investigación se van a tomar los valores registrados en la tabla 23, dichos valores son los promedios entre cada uno de los elementos y la propiedad de la cascarilla de arroz analizada teóricamente.

Tabla 23.

Conclusión Caracterización fisicoquímica de la cascarilla de arroz

Elemento	Base Seca
Carbono	40,37%
Nitrógeno	1,08%
Hidrogeno	4,16%
Oxigeno	36,41%
Azufre	0,40%
Cenizas	18,90%
Poder Calorífico	14,42 MJ/kg
Material Volátil	60,23%
Carbono Fijo	16,33%

Nota. En la tabla se resumen los valores de la caracterización fisicoquímica de la cascarilla de arroz que van a ser tomados para el desarrollo de esta investigación.

4. ANÁLISIS TEÓRICO DEL PROCESO DE COMBUSTIÓN DE CASCARILLA DE ARROZ PARA CUANTIFICAR LA CANTIDAD DE CALOR GENERADO PARA UN CICLO RANKINE Y LAS EMISIONES DE CO2 EQUIVALENTES

4.1 Estequiometria de la reacción de combustión

Se realiza el análisis teórico del proceso de combustión fundamentado en el libro Fundamentals of Air Pollution Engineering [18]. Tomando los valores obtenidos en el análisis elemental de la cascarilla de arroz, se divide cada uno de los porcentajes de masa por el respectivo peso atómico para obtener las moles por cada 100 gramos de combustible (Mol/100g), por conveniencia en los cálculos estequiométricos, la composición se normaliza con respecto al carbono, dividiendo las moles de cada elemento entre las moles de carbono. Se presenta en la tabla 24.

Tabla 24.

Composición molar con respecto al carbono

	Base Seca (%)	Mol / 100g	Mol / Mol C
Carbono	40,37	3,36	1
Nitrógeno	1,08	0,08	0,02
Hidrogeno	4,16	4,16	1,24
Oxigeno	36,41	2,28	0,68
Azufre	0,40	0,01	0,0037
Cenizas	18,90	-	5,62 g/Mol C

Nota. En la tabla se presentan los valores en porcentaje, en composición molar y la composición molar en términos de carbono.

La fórmula química que se puede utilizar para describir este combustible es:

$C H_{1,24} N_{0,02} S_{0,0037} O_{0,68}$

La estequiometria de combustión de este combustible debe incluir los reactivos, cenizas y el oxígeno en el combustible:

C
$$H_{1,24}N_{0,02}S_{0,0037}O_{0,68} + \alpha(O_2 + 3,76N_2) - \rightarrow$$

→ XCO₂ + YH₂O + ZSO₂ + (3,76 α + W)N₂

Se realiza el balance de la estequiometria de la combustión:

C
$$H_{1,24}N_{0,02}S_{0,0037}O_{0,68} + \alpha(O_2 + 3, 76N_2) \rightarrow$$

→ $CO_2 + 0, 62H_2O + 0, 0037SO_2 + (3, 76\alpha + 0, 01)N_2$

Donde la cantidad de aire en moles es:

$$\alpha = 1 + \frac{1,24}{4} + 0,0037 - \frac{0,68}{2} = 0,9737$$

Se remplaza el valor de la cantidad de aire en moles para obtener la estequiometria final:

C
$$H_{1,24}N_{0,02}S_{0,0037}O_{0,68}$$
 + 0,9737(O_2 + 3,76 N_2)-→
→ CO_2 + 0,62 H_2O + 0,0037 SO_2 + 3,67 N_2

Se obtiene el peso del combustible en masa por mol de carbono, incluyendo las cenizas:

$$Mf = \frac{100}{3,36} \frac{g}{mol} = 29,76 \frac{g}{mol C}$$

Con este valor se halla la relación de combustible-aire para la combustión estequiométrica, dividiendo el peso del combustible por la cantidad de aire estequiométrico por la masa molar de los elementos:

Ecuación 6.

Relación de combustible aire

$$\left(\frac{Mf}{Ma}\right)_{s} = \frac{29,76 \frac{g}{mol C}}{0,9737 (32+3,76*28) \frac{g}{mol C}} = 0,22 \frac{gcombustible}{gaire}$$

Se obtiene el número total de moles de los productos de la combustión gaseosa por mol de carbono sumando el número de moles de los productos de la combustión (CO₂, H₂O, SO₂ y N₂):

$$Nt = 1 + 0,62 + 0,0037 + 3,6711 = 5,33$$

Por último, se halla el porcentaje de cada uno de los productos de la combustión, tomando de Mol/Mol C, mostrado en la tabla 24:

$$y_{CO_2} = \frac{1}{5,33} = 0,1876 = 18,76\%$$
$$y_{H_2O} = \frac{0,62}{5,33} = 0,1163 = 11,63\%$$
$$y_{SO_2} = \frac{0,0037}{5,33} = 0,00069418 = 694,18 \ ppm$$
$$y_{N_2} = \frac{3,6711}{5,33} = 0,6887 = 68,67\%$$

El dióxido de azufre se ha expresado en partes por millón (ppm) en un mol del combustible, una forma común de expresar datos de elementos que se encuentran en pequeña cantidad. Por esta razón el dióxido de azufre no se tomará en cuenta ya que se considera despreciable en la reacción química de la combustión [17].

4.2 Entalpia de Combustión

Para obtener la entalpia de la combustión es necesario tener las entalpias de formación de cada uno de los reactivos y de los productos, en el caso del combustible esta entalpia de formación se tomará como el poder Calorífico superior en base seca el cual es [18].

13,81 MJ/kg = 13810 kJ/K

Con ayuda de la masa molar de cada uno de los elementos que lo componen, se obtiene la masa molar total del combustible:

$$C = 12 \text{ g/mol}$$

$$N = 14 \text{ g/mol}$$

$$H = 1 \text{ g/mol}$$

$$O = 16 \text{ g/mol}$$

$$(12 \text{ g}) = 10 \text{ g/mol}$$

$$1\left(12\frac{g}{mol}\right) + 1,24\left(1\frac{g}{mol}\right) + 0,02\left(14\frac{g}{mol}\right) + 0,68\left(16\frac{g}{mol}\right) = 24,4\frac{g}{mol}$$

Se multiplica la masa molar total del combustible por el poder calorífico superior en base seca para obtener la entalpia de formación aproximada:

$$4, 4\frac{\mathrm{kg}}{\mathrm{kmol}} * 13810 \ \frac{\mathrm{kJ}}{\mathrm{kg}} = 336964 \ \frac{\mathrm{kJ}}{\mathrm{kmol}}$$

Se obtiene la entalpia de combustión de la reacción aplicando la ecuación 7 [13].

Ecuación 7.

Entalpia de combustión

$$h_R = h_C = H_{Productos} - H_{Reactivos}$$

$$h_{c} = (1 \ Kmol) \left(-393520 \frac{kJ}{kmol}\right) + (0, 62 \ kmol) \left(-285830 \frac{kJ}{kmol}\right)$$
$$- (1 \ Kmol) \left(-336964 \frac{kJ}{kmol}\right)$$
$$h_{c} = -233770, 6 \frac{kJ}{kmol}$$

Los valores de entalpia de formación fueron tomados de la tabla 24 [19].

Tabla 24.

Valores de entalpia de formación

Formula	Compuesto	Δ Hf
CO ₂	Dióxido de carbono	-393,5
H ₂ O	Agua (Gas)	-241,6

Nota. En la tabla se presentan los valores de entalpia de formación de algunos compuestos, donde se tomó los valores necesarios para la reacción del combustible. Tomado de: Quimitube, «Quimitube,» [En línea]. Available: https://www.quimitube.com/wp-content/uploads/2013/04/Tabla-entalpias-estandar-formacion-compuestos-organicos-e-inorganicos.pdf. [Último acceso: 15 Febrero 2021].

4.3 Temperatura de flama adiabática

Para obtener la temperatura de flama adiabática es necesario hacer uso de la ecuación 8 y con ayuda del ejemplo 15-8, registrado de [13]:

Ecuación 8.

Temperatura de flama adiabática

$$\sum N_p (\bar{h}_f^o + \bar{h} - \bar{h}^o)_p = \sum N_r \bar{h}_{f,r}^o = (N\bar{h}_f^o)_{CH_{1,24}N_{0,02}S_{0,0037}O_{0,68}}$$

Se remplaza por cada uno de los valores de los reactivos y los productos:

$$(1 \ kmol \ CO_2) \left[\left(-393520 + \overline{h}_{CO_2} - 9364 \right) \frac{kJ}{kmol} \ CO_2 \right] + (0, 62 \ kmol \ H_2O) \left[\left(-241820 + \overline{h}_{H_2O} - 9904 \right) \frac{kJ}{kmol} \ H_2O \right] + (3, 67 \ kmol \ N_2) \left[\left(0 + \overline{h}_{N_2} - 8669 \right) \frac{kJ}{kmol} \ N_2 \right] = \left(1 \ kmol \ C \ H_{1,24}N_{0,02}S_{0,0037}O_{0,68} \right) \left(-233770, 6 \frac{kJ}{kmol} \ C \ H_{1,24}N_{0,02}S_{0,0037}O_{0,68} \right)$$

Finalmente se obtiene la ecuación en términos de las entalpias de cada uno de los productos, están relacionadas con respecto a la temperatura máxima de la reacción:

$$1\overline{h}_{CO_2} + 0,62\overline{h}_{H_2O} + 3,67\overline{h}_{N_2} = 356997,51 \, kJ$$

Para obtener una primera suposición de la temperatura máxima de la reacción, se divide el lado derecho de la ecuación en el número de moles total de los productos:

$$\frac{356997,51}{1+0,62+3,67} = 67485,35\frac{kJ}{kmol}$$

Con este valor de entalpia aproximado se busca la temperatura de cada uno de los productos en las tablas de las propiedades termodinámicas para gases ideales (A-18, A-20 y A-23) [13]:

$$CO_2 \approx 1440 K$$

 $H_2O \approx 1700 K$
 $N_2 \approx 2100 K$

Debido a que el compuesto que mayor se presenta es el nitrógeno, por consecuencia se toma este valor aproximado de la temperatura a 2000 K.

$$1\bar{h}_{CO_2} + 0,62\bar{h}_{H_2O} + 3,67\bar{h}_{N_2} = (1 * 100804) + (0,62 * 82593) + (3,67 * 64810)$$

= 389864,36 kJ

Debido a que este no es un valor cercano al valor objetivo, se realiza una iteración para encontrar los valores más cercanos, los cuales son entre una temperatura de 1840 K y 1860 K:

1840K

$$\begin{split} 1\bar{h}_{CO_2} + 0,62\bar{h}_{H_20} + 3,67\bar{h}_{N_2} \ &= (1*\ 91196) + (0,62*74506) + (3,67*59075) \\ &= 354194,97\ kJ \end{split}$$

1860K

$$\begin{split} 1\bar{h}_{CO_2} + 0,62\bar{h}_{H_20} + 3,67\bar{h}_{N_2} \ &= (1*\ 92394) + (0,62*75506) + (3,67*59790) \\ &= 358637,02\ kJ \end{split}$$

Se realiza la interpolación entre el rango de valores seleccionados para obtener la temperatura de flama adiabática.

$$T = 1852, 61 \text{ K} = 1579, 46 \,^{\circ}\text{C}$$

La temperatura de flama adiabática para una reacción estequiométrica de la cascarilla de arroz es de 1.852,61 K.

4.4 Temperatura de flama adiabática con exceso de aire

Se realizan los cálculos de temperatura de flama adiabática para condiciones de exceso de aire, los resultados se presentan en la tabla 25.

Tabla 25.

Valores de temperatura con exceso de aire

Porcentaje de aire (%)	Temperatura (K)
100	1.852,66
200	1.224,51
300	960,47

Nota. En la tabla se presentan los valores de temperatura en Kelvin cuando se presenta exceso de aire en la reacción de combustión.

Se presenta en la figura 4 la variación de la temperatura de flama adiabática con respecto al porcentaje de aire presente en la combustión.

Figura 4.

Nota. En la figura se presenta la gráfica de los datos de la cantidad de aire en porcentaje versus la temperatura en la reacción.

Analizando los datos obtenidos se puede evidenciar que el porcentaje de aire y la temperatura de flama adiabática son inversamente proporcionales. Al introducir mayor cantidad de aire, la temperatura de flama adiabática disminuye, ya que se requiere calentar mayor cantidad de gas, en este caso el nitrógeno contenido en el aire y que no aporta energía al proceso de combustión [20]. Es importante conocer la temperatura de flama adiabática en el proceso, tomándolo como el valor de entrada de los gases de combustión a la caldera y así obtener la transferencia de calor al ciclo [21].

5. BALANCE DE MASA, ENERGÍA Y EXERGÍA DE POSIBLES CONFIGURACIONES DEL CICLO RANKINE USANDO CASCARILLA DE ARROZ COMO FUENTE DE ENERGÍA

Para cumplir con este objetivo se llevará a cabo la siguiente metodología presentada en la siguiente figura.

Figura 5.

Metodología para el diseño del ciclo Rankine

Nota. En la figura se presenta la metodología llevada a cabo para el diseño del ciclo Rankine.

5.1 Condiciones de uso de la energía la energía producida

En Colombia la agroindustria arrocera es un sector de gran importancia para el país, ya que representa el 1,8% de la producción manufacturera nacional y el 6,8% de la industria alimentaria del país, los departamentos de Tolima, Huila y Meta son los principales productores de arroz [22].Con el fin de conocer y poder establecer las condiciones energéticas requeridas por la industria arrocera se inicia conociendo el consumo energético de la producción de arroz en el país el cual se presenta en la tabla 26.

Tabla 26.

Consumo energético anua	l de la producción de arroz
-------------------------	-----------------------------

	País	Cantidad producida	Valor de la producción	Consumo energético agricultura	Consumo energético subsector	Consumo energético especifico
Ton US \$		kWh	kWh	kWh/Ton		
	Colombia	1.850.218	135.616.000	20.492.060.000	243.373.447	131,54
N	Vota. En la tabla se presenta el consumo energético anual de la producción de arroz en Colombia					

Nota. En la tabla se presenta el consumo energético anual de la producción de arroz en Colombia. Tomado de: UPME, «SIEL,» 2007. [En línea]. Available: http://www.siel.gov.co/siel/documentos/documentacion/Demanda/Agroindustrial/ILM_Tomo_I.pdf. [Último acceso: 19 Abril 2021].

En Colombia se encuentran plantas para la producción de arroz como la planta de Fedearroz ubicada en Puerto López (Meta), que cuenta con sistemas de alta tecnología en recibido, limpieza y secamiento, con capacidad para procesar hasta 500 toneladas por día [23]. La planta Diana Corporación ubicada en el departamento del Casanare la cual tiene un volumen aproximado de entrada en el año de cascarilla de arroz de 50 mil toneladas, donde aproximadamente se genera 19% de cascarilla por tonelada de arroz, también la planta agroindustrial molino sonora la cual produce anualmente alrededor de 93 mil toneladas de arroz donde 16.740 toneladas son de cascarilla de arroz equivalentes al 18% de la producción [2].

El molino Federal ubicado en la ciudad de Ibagué puso en funcionamiento su planta de autogeneración de energía que cuenta con la capacidad de producir 150 kWh haciendo uso de la cascarilla de arroz como combustible, donde se necesitan 750 kg por hora de cascarilla de arroz para producir el gas que genera la planta [24]. Los datos obtenidos de estas empresas se presentan en la tabla 27.

Tabla 27.

	Producción arroz	Producción cascarilla	Consumo energético especifico	Consumo energético total	Potencia Requerida
	Ton	Ton	kWh/Ton	kWh	MW
Diana					
Corporación/	263.157,8	50.000	131,54	34.615.789,5	3,95
Vía Morichal					
Molino	93.000	16 740	131 54	12 233 220	1 30
Sonora	33.000	10.740	151,54	12.200.220	1,55
Fedearroz	182 500	36 500	131 54	24 006 050	2 74
Puerto López	30.300	131,34	24.000.000	2,74	

Consumo energético anual de plantas arroceras

Nota. En la tabla se presentan los datos de producción y consumo energético anual de algunas plantas arroceras colombianas. Tomado de: C. Lozano, «Repositorio UNAD,» 2020. [En línea]. Available:

https://repository.unad.edu.co/bitstream/handle/10596/33698/cllozanor.pdf?sequence=1&isAllow ed=y. [Último acceso: 19 Abril 2021].

Se tomará como referencia para los cálculos del diseño los valores de producción anuales de la planta Diana corporación/ Vía Morichal, debido a su alta capacidad de producción de cascarilla de arroz, con esto garantizando la aplicación del diseño en plantas de tamaño promedio en Colombia.

5.2 Consideraciones de diseño

Se considera el diseño básico del ciclo Rankine para hacer un cálculo preliminar de la energía que se puede generar, utilizando como fluido de trabajo agua. Para el análisis del ciclo se asumen las siguientes consideraciones respecto a los equipos que operan en el sistema presentados en la tabla 28.

Tabla 28.

Consideraciones de los procesos térmicos de los equipos

Equipo Proceso	Turbina	Condensador	Bomba	Caldera	Intercambiador
Adiabático	Si		Si		
Isocórico				No	No
Isoentrópico	No		No		
Isobárico		Si		Si	Si

Nota. En la tabla se presentan procesos térmicos asumidos en los que trabajan los equipos para el análisis del ciclo Rankine.

Para el diseño se considera que la presión de salida de la turbina es 100 kPa, por lo tanto, el fluido a la entrada de la bomba debe estar en estado de saturación para asegurar que se encuentre en estado líquido y evitar daños en la bomba.

5.2.1 Eficiencia del ciclo

Para el diseño es necesario tomar como referencia valores de eficiencias térmicas en el ciclo Rankine donde se utilice biomasa como combustible, para esto se han tomado valores de investigaciones acerca de plantas de generación de energía presentados en la tabla 29. La información es tomada de [25], [26], [27].

Tabla 29.

Eficiencia térmica ciclo Rankine

Referencia	Eficiencia Térmica (%)
[25]	15-38
[26]	30
[27]	30

Nota. En la tabla se presentan valores de Eficiencias térmicas del ciclo Rankine usando biomasa como combustible.

Para efectos de cálculos se tomará una eficiencia térmica del ciclo Rankine del 30%.

5.2.2 Eficiencia de la bomba y la turbina

Para el diseño es necesario tomar como referencia valores de eficiencias isoentrópicas en la turbina de vapor y la bomba, para esto se han tomado valores de referencia presentados en las tablas 30 y 31. En la tabla se presenta información tomada de [28], [29], [30].

Tabla 30.

Eficiencia de la turbina de vapor

Referencia	Eficiencia isoentrópica Turbina (%)
[28]	85
[29]	80
[30]	90

Nota. En la tabla se presentan valores de eficiencias isoentrópicas de la turbina de vapor.

Para efectos de cálculos se tomará una eficiencia isoentrópica de la turbina como 90%.

En la tabla se presenta información tomada de [31], [29], [32].

Tabla 31.

Eficiencia bomba centrifuga

Referencia	Eficiencia isoentrópica
	Bomba (%)
[31]	75
[29]	80
[32]	80

Nota. En la tabla se presentan valores de eficiencias isoentrópicas de la bomba centrifuga.

Para efectos de cálculos se tomará una eficiencia isoentrópica de la bomba como 80%.

5.2.3 Flujo másico del combustible

En la tabla 32 se presentan los valores del flujo masico del combustible utilizados para el diseño del ciclo Rankine.

Tabla 32.

Flujo másico de combustible disponible

Planta	Diana Corporación / vía Morichal	
Producción arroz (Ton)	263.157,89	
Producción cascarilla (Ton)	50.000	
Flujo másico combustible (kg/h)	5.700	
Flujo másico inorgánico combustible (kg/h)	1.077,3	
Flujo másico orgánico combustible (kg/h)	4.622,7	

Nota. En la tabla se presentan los valores de producción y flujo másico de la planta arrocera Diana Corporación.

Debido a que el porcentaje de flujo masico inorgánico de combustible (cenizas) que contiene la cascarilla de arroz es del 18,90%, que se determina de acuerdo a la caracterización realizada en el capítulo 3, se obtiene un flujo masico orgánico de combustible de 4.622,7 kg/h para la planta Diana Corporación/ Vía Morichal, este se utiliza para calcular la cantidad de energía liberada en la combustión.

5.2.3.i. Flujo másico Aire. Para la reacción de combustión es necesario el flujo másico del aire, se obtiene a partir de la ecuación 6, que aplica únicamente para condiciones estequiométricas sin exceso de aire:

Flujo masico de aire =
$$\frac{Flujo masico combustible}{0, 22}$$

Flujo masico de aire = $\frac{4.622, 7\left(\frac{kg}{h}\right)}{0, 22}$ = 21.012, 27 $\left(\frac{kg}{h}\right)$

5.2.3.ii. Flujo másico de los gases de combustión. Se obtiene a partir de la suma del flujo másico orgánico del combustible y el flujo de aire necesario para la combustión completa:

 $\dot{m}_{gases} = Flujo \ masico \ combustible + flijo \ masico \ de \ aire$

$$\dot{m}_{gases} = 4.622, 7 \frac{kg}{h} + 21.012, 27 \frac{kg}{h} = 25.634, 97 \frac{kg}{h}$$

5.2.4 Calor especifico de los gases

Se toma un calor específico constante a una temperatura promedio (1.162,88 K) entre la temperatura de flama adiabática y la temperatura de salida de los gases de combustión de la caldera, como parámetro de diseño se considera una temperatura de 200°C a la salida de los gases, teniendo en cuenta que es una temperatura adecuada de liberación al medio ambiente según la resolución 909 del 5 de junio de 2008 [33]. Tomando los calores específicos de los elementos como gases ideales en función de la temperatura registrado en las tablas de propiedades, figuras y diagramas, tabla A-2c [13], presentados en la tabla 33 para cada uno de los gases de combustión.

$$\bar{C}_p = a + bT + cT^2 + dT^3$$

Con la suma del Cp. por el porcentaje de cada uno de los elementos, se obtiene el Cp. de los gases de combustión.

$$C_{p \, Total} = C_{p \, CO_2} * \%_{CO_2} + C_{p \, H_2O} * \%_{H_2O} + C_{p \, N_2} * \%_{N_2}$$

Tabla 33.

Calor	especifico g			
Temper	atura Prom.	1.162,88	К	
Gas	CO2	H2O	N2	
%	19%	12%	69%	
а	22,26	32,24	28,90	
b	0,059810	0,001923	-0,001571	
С	-0,00003501	-0,00001055	0,000008081	
d	7,469E-09	-3,595E-09	-2,873E-09	Unidades
Cp.	56,21	14,56	33,48	kJ/kmol*K
Cp.	1,28	0,81	1,20	kJ/kg*K
Cp. total			KJ/Kg*K	

Calor especifico gases de combustión

Nota. En la tabla se presentan los valores de las constantes para hallar el calor especifico de los gases y el calor especifico total de los gases de combustión.

5.2.5 Balance de energía en la caldera

Se realiza el balance de energía entre la entrada y la salida de la caldera, para obtener el calor cedido por la combustión de la cascarilla de arroz [13].

Ecuación 9.

Flujo de calor con diferencia de temperaturas

 $Q_{12} = \dot{m}_{gases} * C_p (T_1 - T_2)$

Tomando la temperatura de entrada a la caldera como la temperatura de flama adiabática y suponiendo la temperatura salida como una temperatura promedio a la que pueden ser liberados los gases de combustión a la atmosfera (200°C), de esta forma se obtiene el calor de entrada del ciclo Rankine:

$$Q_{12} = 40.839.882,59 \frac{kJ}{h} = 11,34 \, MW$$

5.2.6 Potencia Suministrada

Teniendo en cuenta el calor de entrada del ciclo Rankine y la eficiencia promedio especificado en la tabla 29, se obtiene la potencia que se puede producir a través del ciclo Rankine:

$$W = Q_{12} * \eta = 3,40 MW$$

5.3 Diseño del ciclo Rankine básico

En la figura 6 se presenta la configuración del ciclo Rankine básico.

Figura 6.

Ciclo Rankine Básico

Nota. En la figura se presenta la disposición del ciclo Rankine básico con sus componentes.

5.3.1 Selección de Turbina 3500kW

Con la potencia suministrada se selecciona una turbina que tenga la capacidad de cumplir con los requerimientos del proceso, se presenta en la figura 7 el catálogo de la turbina seleccionada [34].

Figura 7.

Turbina D-R SST350 Siemens

	Technical Data	
	D-R SST 350/500/700	
	Power output	3,500kW
	Turbine speed	≤ 12,000 rpm
	Inlet steam temperature	≤482°C/900°F
	Inlet Steam pressure	≤ 63 bar(a)/914 psi
	Back-pressure	21 bar(a)/315 psi
and the second	Type of wheel/blades	Curtis/Impulse
	API 611 and API 612	Yes
	Bearings	Sleeve, Ball or Tiltpad

Technical Data

Nota. En la figura se presenta el catálogo de la turbina D-R SST350 seleccionada para el ciclo. Tomado de: Virtualexpogroup, «directindustry,» [En línea]. Available: https://www.directindustry.es/prod/siemens-power-genereration/product-23116-2019855.html. [Último acceso: 12 Mayo 2021].

Los parámetros de la turbina utilizados para el diseño del ciclo se presentan en la tabla 34, el flujo masico que requiere la turbina se calcula por medio de la ecuación 10.

Ecuación 10.

Balance de energía en la turbina [13]

 $W_{Turbina} = \dot{m}_{v} * (h_{salida} - h_{entrada})$

Tabla 34.

Parámetros de la turbina D-R SST 350

Turbina D-R SST 350				
Potencia Max	3.500	kW		
T entrada	482	°C		
P entrada	6.300	kPa		
P salida	100	kPa		
m v	4,27	kg/s		

Nota. En la tabla se presentan los parámetros de la turbina D-R SST350 seleccionada para el ciclo.

Con la potencia de la turbina utilizada y los valores de entalpia a la entrada y la salida de esta, se realiza un balance de energía para hallar el flujo masico (ecuación 10) con el que debe trabajar la turbina, dándonos como resultado un flujo de 4,27 kg/s.

5.3.2 Análisis termodinámico 3500kW

Teniendo los datos técnicos de la turbina (Tabla 35) y el calor generado en la caldera (Ecuación 7) con ayuda de la extensión de Microsoft Excel, CoolProp, se inicia el cálculo en cada uno de los estados mostrados en la figura 6, presentados en la tabla 35.

Tabla 35.

Estados del ciclo Rankine básico 3500kW

Análisis	termodi	námico				
Sustancia	Gase comb	es de ustión				
Estado	Tempe	eratura				
LStaut	K	°C				
1	1852,61	1579,46				
2	473,15	200				
Sustancia	Wa	iter				
_	T (°C)	P (kPa)	h (ki/kg)	s (kl/kg*K)	m'v (kg/s)	Vf
	. (6)	· (Ki ŭ)	(,			(M3/kg)
3	100,42	6300	425,59	1,31	3,84	-
4	482	6300	3376,40	6,80	3,84	-
5s	99,61	100	2466,67	6,80	3,84	-
5	99,61	100	2557,65	7,04	3,84	-
6	99,61	100	417,50	1,30	3,84	0,001043

Nota. En la tabla se presentan los resultados de los cálculos de las propiedades termodinámicas de los estados del ciclo Rankine básico 3500kW.

Ecuación 11.

Flujo de calor con diferencia de entalpias [13]

$$Q_{12} = \dot{m}_{v} * (h_{salida} - h_{entrada})$$

Con los resultados de todos los estados del sistema y el calor de entrada se obtiene el flujo de vapor (ecuación 11) que se logra producir con esta configuración, 3,84 kg/s.

Se evidencia que el flujo masico producido por esta configuración no es el suficiente para suplir el flujo masico (4,27 kg/s) necesario para que la turbina D-R SST350 trabaje en óptimas condiciones y produzca la potencia requerida.

Entonces se realiza la selección de una nueva turbina de menor potencia que cumpla con las condiciones de flujo masico disponible.

5.3.3 Selección de turbina 2500kW

Se selecciona una turbina de 2500kW de potencia presentada en la figura 8 [35].

Figura 8.

Datos técnicos turbina D-R C de Siemens

Technical Data

D-R C	
Power output	2,500 kW/3,250 HP
Turbine speed	≤8,500 rpm
Inlet steam temperature	≤ 520°C/986 °F
Inlet steam pressure	≤120 bar(a)/1,740 psi
Back-pressure	21 bar(a)/315 psi
Condensing pressure	vacuum
Type of wheel/blades	Curtis/Rateau Impulse
API 611 & 612 compliance	with exception
Bearings	Tiltpad / Sleeve

Nota. En la figura se presenta el catálogo con las especificaciones técnicas de la turbina D-R C de Siemens. Tomado de: Virtualexpo group, «direct industry,» [En línea]. Available: https://www.directindustry.es/prod/siemens-power-genereration/product-23116-2019861.html. [Último acceso: 12 Mayo 2021].

Los parámetros de la turbina utilizados para el diseño del ciclo se presentan en la tabla 36.

Tabla 36.

Parámetros de la turbina D-R C

Turbina D-R C				
Potencia Max	2.500	kW		
T entrada	520	°C		
P entrada	12.000	kPa		
P salida	100	kPa		
m ่ v	2,71	kg/s		

Nota. En la tabla se presentan los parámetros de la turbina D-R C seleccionada para el ciclo.

La turbina D-R C de 2500 kW requiere un flujo masico de vapor de 2,71 kg/s para obtener su máximo rendimiento, este valor se obtiene a partir de la ecuación 10.

5.3.4 Análisis termodinámico 2500kW

Teniendo los datos técnicos de la turbina (Tabla 36) y el calor generado en la caldera (Ecuación 9) con ayuda de la extensión de Microsoft Excel, CoolProp, se inicia el cálculo en cada uno de los estados mostrados en la figura 6, se presenta los resultados de los estados en la tabla 37, en las figuras 9 y 10 se muestra el diagrama T vs S del ciclo.

Tabla 37.

Análisis	s termo	dinámico					
Sustancia	Ga com	ses de bustión					
Estado	Tem	peratura					
LStaut	К	°C					
1	1852,61	1579,46					
2	473,15	200					
Sustancia	v	/ater					
-	Т (C°)	P (kPa)	h (kJ/kg)	S	m v (kg/s)	Vf	hg (kJ/kg)
		. ,		(kJ/kg*K)		(M3/kg)	
3	101 17	12000	422.02	1 21	2 0 2		
	101,17	12000	433,02	1,31	3,82	-	-
4	520,00	12000	433,02 3403,39	6,56	3,82	-	- 2685,45
4 5s	520,00 99,61	12000 12000 100	433,02 3403,39 2376,60	6,56 6,56	3,82 3,82 3,82	-	- 2685,45 -
4 5s 5	520,00 99,61 99,61	12000 12000 100 100	433,02 3403,39 2376,60 2479,28	6,56 6,56 6,83	3,82 3,82 3,82 3,82 3,82		- 2685,45 - -

Nota. En la tabla se presentan los resultados de los cálculos de las propiedades termodinámicas de los estados del ciclo Rankine básico 2500kW.

Figura 9.

Diagrama T vs S del ciclo Rankine básico 2500kW

Nota. En la figura se presenta el diagrama T vs S del ciclo Rankine básico 2500kW.

Figura 10.

Diagrama T vs S del ciclo Rankine básico 2500kW, estados 6 y 3

Nota. En la figura se presenta el diagrama T vs S del ciclo Rankine básico 2500kW, estados 3 y 6.

Con los resultados de todos los estados del sistema y el calor de entrada se obtiene el flujo de vapor (Ecuación 11) que se logra producir con esta configuración, 3,82 kg/s. Este flujo es suficiente para que la turbina trabaje en óptimas condiciones y además existe un exceso de flujo (1,11 kg/s) que representa un excedente de energía que tiene potencial de ser usada.

Al obtener todos los valores de los estados que componen el ciclo se puede obtener la potencia que consume la bomba, la potencia neta del ciclo y la eficiencia térmica del ciclo total, presentados en la tabla 38.

Ecuación 12.

Potencia de la bomba [13]

 $W_{bomba} = \dot{m}_v * (h_{salida} - h_{entrada})$ Ecuación 13.

Potencia neta del ciclo [13]

 $W_{neta} = W_{Turbina} - W_{Bomba}$

Ecuación 14.

Eficiencia térmica del ciclo [13]

 $\eta_{Th} = \frac{utilidad}{requerimiento}$

Tabla 38.

Resultados ciclo Rankine básico 2500kW

Ciclo					
m'v	3	3,82 kg/s			
Δm [°] v	1	,11	kg/s		
	Bomba Turbina				
Potencias	59,25 2.500		kW		
Wneta	2.440,75		kW		
ηth	22% -				

Nota. En la tabla se presentan los resultados del ciclo Rankine básico 2500kW.

Con el uso de la turbina de 2500kW se obtiene una eficiencia térmica del 22% con un exceso de vapor del 1,11 kg/s, que se puede tomar como un punto de partida para optimizar el diseño y aprovechar el máximo de la energía disponible en la cascarilla de arroz.

5.4 Consideraciones de diseño con secado de arroz

Sabiendo que en las plantas de producción de arroz también se requiere energía en forma de calor, se puede introducir al proceso un sistema de secado de arroz para aprovechar el excedente de energía disponible por la combustión de la cascarilla.

5.4.1 Humedad del arroz

Para el debido secado del arroz, es necesario conocer la humedad del arroz para el proceso de producción, en la tabla 40 se presentan valores de porcentajes de humedad del proceso de secado de arroz, la información de la tabla 40 es tomada de [36], [37], [38], [39], [40], [41].

Tabla 39.

Referencia	% humedad entrada	% humedad salida
[36]	20 - 26	14
[37]		13
[38]		11 - 13
[39]	22	13
[40]		13
[41]	23 - 25	13 - 14

Humedad promedio de entrada y salida del arroz en el secador

Nota. En la tabla se presenta los valores promedio de la humedad del arroz a la entrada y la salida del secador.

El arroz llega a las plantas de procesamiento con una humedad promedio de 23%, para realizar la trilla este debe estar en una humedad promedio de 13%, entonces es necesario disminuir la humedad del arroz en un 10% en su paso por proceso de secado. Teniendo en cuenta los datos de la planta Diana Corporación / Vía Morichal y la humedad del arroz, se calcula el calor requerido para secar el 100% de la producción anual de la planta Diana Corporación / Vía Morichal, usando la entalpia de evaporación del agua a la presión ambiente y el flujo de agua que se necesita secar, se obtiene la cantidad de calor necesario para el secado del 100% de la producción, estos datos se presentan en la tabla 40.

Ecuación 15.

Calor requerido

 $Q_{Requerido} = \dot{m}_{H_2O} * h_{fg}$

Con la ecuación 16 se calcula el flujo de vapor necesario para el secado del flujo de arroz destinado, donde h_{g4} es la energía total requerida para generar vapor de agua a la presión del estado 4.

Ecuación 16.

Flujo de vapor para secado

 $\dot{m}_{vapor} = rac{Q_{Requerido}}{h_4 - h_{g4}}$
Tabla 40.

Calor Requerido para	<mark>100% de pro</mark>	oducción	Unidades	
Producción de arroz	263.1	57,89	Ton	
anual	30.04	40,86	kg/h	
hfg a 100 kPa	2.25	57,5	kJ/kg	
masa de agua	3.00	3.004,09		
Calor	1.88	3,81	kW	
Turbina	2.500	3.500	kW	
Presión	12.000	6.300	kPa	
h4	3.403,39 3.376,40		kj/kg	
hg4	2.685,45	kj/kg		
m v 4sec.	2,62	3,17	kg/s	

Calor requerido para secado de la producción anual de arroz

Nota. En la tabla se presenta la producción de arroz anual de la planta Diana Corporación / vía Morichal, la masa de agua que se requiere secar y el flujo de vapor necesario para el secado.

Para lograr el secado del 100% de la producción de arroz anual de la planta Diana Corporación / Vía Morichal se requiere 1.883,81 kW en forma de calor y un flujo de vapor de 2,62 kg/s para la turbina D-R C de 2.500 kW y 3,17 kg/s para la turbina D-R SST350 de 3.500 kW.

5.4.2 Secador

A través de la energía en forma de calor que presenta el flujo de vapor, se utilizara para la evaporización de la humedad del arroz a través de un proceso de secado, en el cual se establece como parámetro de diseño que a la salida del secador el vapor se encuentre en un estado de vapor saturado, para evitar la presencia de agua en estado líquido en el proceso de secado y así evitar corrosión y otros problemas derivados de esto. Haciendo uso de un secador de tambor, donde "La energía térmica suministrada al interior del cilindro se transfiere casi totalmente al material secado, húmedo. La cantidad de la energía, suministrada por el vapor casi es igual que la cantidad requerida para la calefacción del producto, la evaporación del agua y superar la energía del agua y de la vinculación del producto" [42], en la figura 11 se muestra el diagrama de un secador de tambor [43].

Figura 11.

Secador

FINAL PRODUCT

Nota. En la figura se presenta el diagrama de un secador de tambor. Tomado de: GEA, «GEA,» [En línea]. Available: https://www.gea.com/es/products/dryers-particle-processing/rotary-dryers-coolers/rotary-dryer.jsp. [Último acceso: 23 Abril 2021].

5.5 Diseño ciclo Rankine con secado y recirculación de flujo 2500kW

Tomando la diferencia (1,11 kg/s) que se presenta entre el flujo masico generado y el flujo masico necesario para la turbina, el cual tiene como fin ser aprovechado como energía térmica para el secado del arroz, se realiza una recirculación por medio de un mezclador y aprovechar la energía remanente del proceso de secado para realizar un precalentamiento del fluido de trabajo.

5.5.1 Recirculación con mezcla en el estado 6

Se realiza la recirculación del fluido por medio de un mezclador ubicado entre el condensador y la bomba con ayuda de una válvula estranguladora que permite igualar la presión a la del fluido que sale del condensador logrando un mezclado adecuado, como se presenta en la figura 12.

Figura 12.

Ciclo Rankine con secado y recirculación de flujo en estado 6 2500kW

Nota. En la figura se presenta la disposición del ciclo Rankine básico con secado de arroz y recirculación de flujo con mezcla en el estado 6 y sus componentes, 2500kW.

5.5.1.i. Análisis termodinámico. Teniendo los datos técnicos de la turbina (Tabla 36) y el calor generado en la caldera (Ecuación 9), se realiza el balance de energía en el mezclador del estado 6, con ayuda de la extensión de Microsoft Excel, CoolProp, se inicia el cálculo en cada uno de los estados mostrados en la figura 12, adicionalmente se muestran los resultados asociados al secado del arroz.

Balance de energía en el mezclador considerando un proceso adiabático:

$$m_6 * h_6 + m_{4''} * h_{4''} = m_{6'} * h_{6'}$$

Despejando h6[,] se obtienen las propiedades del estado 6[,] mostrados en la tabla 41.

Tabla 41.

Análisis termodinámico								
Sustancia	Gases combusti	de ón		Secado Unidades			Unidades	
Estado	Temperat	tura		m' v		-6,10	kg/s	
LStado	К	°C		Q de secad	о	-4381,73	kW	
1	1.852,61	1.579,46		Masa de ag	gua	-69.874,74	kg/h	
2	473,15	200		Masa de a	roz	-6.987,47	kg/h	
Sustancia	Water			hfg a 100 k	Pa	2257,5	kg/h	
-	т (С°)	P (kPa)	h (kJ/kg)	s (kJ/kg*K)	m'v (kg/s)	Vf (M3/kg)	hg (kJ/kg)	Calidad
3	1.782,86	12.000	6.742,07	9,05	-3,40	-	-	-
4	520	12.000	3.403,39	6,56	-3,40	-	2.685,45	-
4 tur	520	12.000	3.403,39	6,56	2,7053	-	-	-
4 sec	520	12.000	3.403,39	6,56	-6,10	-	-	-
4′	324,68	12.000	2.685,45	5,49	-6,10	-	-	-
4′′	104,68	100	2.685,45	7,39	0,80	-	-	-
5s	99,61	100	2.376,60	6,56	2,7053	-	-	-
5	99,61	100	2.479,28	6,83	2,7053	-	-	-
6	99,61	100	417,50	1,30	2,7053	0,001043	-	-
6	99,61	100	936,53	2,70	3,5000	0,3903	-	0,23

Estados del ciclo Rankine con secado y recirculación de flujo en el estado 6 2500kW

Nota. En la tabla se presentan los resultados de los cálculos de las propiedades termodinámicas de los estados del ciclo Rankine con secado y recirculación con mezcla en el estado 6, 2500kW.

Se realizo el análisis termodinámico mostrado en la tabla 41, al llevar a cabo la mezcla entre los flujos procedentes del secador y condensador (estados 4^{''} y 6), se presenta a la salida del mezclador agua saturada como mezcla con una calidad del 23%, lo cual no es factible ya que a la bomba debe entrar máximo como liquido saturado, aplicando la ecuación número 11 en la caldera se puede evidenciar que se presenta un flujo masico negativo debido a que la entalpia del estado 3 es mayor que en el estado 4, lo que significa que la caldera está quitándole energía al fluido.

5.5.2 Recirculación con mezcla en el estado 3

Debido a que la configuración anterior no es factible, se realiza la recirculación del fluido por medio de un mezclador ubicado entre la bomba y la caldera (estado 3), en este caso no es necesario el uso de una válvula estranguladora ya que el fluido se encuentra a la misma presión a la salida del secador y a la salida de la bomba, logrando un mezclado adecuado, la configuración se presenta en la figura 13.

Figura 13.

Ciclo Rankine con secado y recirculación de flujo en estado 3 2500kW

Nota. En la figura se presenta la disposición del ciclo Rankine básico con secado de arroz y recirculación de flujo con mezcla en el estado 3 y sus componentes,2500kW.

5.5.2.i. Análisis termodinámico. Teniendo los datos técnicos de la turbina (Tabla 36) y el calor generado en la caldera (Ecuación 9), se realiza el balance de energía en el mezclador y en la caldera, con ayuda de la extensión de Microsoft Excel, CoolProp, se inicia el cálculo en cada uno de los estados mostrados en la figura 13, adicionalmente se muestran los resultados asociados al secado del arroz.

Balance de energía en el mezclador considerando un proceso adiabático:

$$\dot{m}_{3'} * h_{3'} + \dot{m}_{4'} * h_{4'} = \dot{m}_3 * h_3$$

Balance de energía en la caldera:

$$Q_{entada} + \dot{m}_3 * h_3 = \dot{m}_4 * h_4$$

A partir de los balances de energía se obtiene los valores de h₃ y \dot{m}_3 que se evidencian en la tabla 42, en las figuras 14 y 15 se muestra el diagrama T vs S del ciclo.

Tabla 42.

Estados del ciclo Rankine con secado	y recirculación de flu	ujo en el estado 3 2500kW
--------------------------------------	------------------------	---------------------------

Análisis termodinámico									
Sustancia	Gase comb	es de ustión			Secado Unidades				
Estado	Tempe	eratura		۳'۱	/	4,61	kg/s		
Estado	К	°C		Q de se	cado	3308,61	kW		
1	1852,61	1579,46		Masa de	agua	5276,19	kg/h		
2	473,15	200		Masa de	arroz	52.761,90	kg/h		
Sustancia	Wa	iter		hfg a 100		2257,5	kg/h		
_	T (°C)	P (kPa)	h	S	m'v	Vf	hg	Calidad	
-	1(0)	Γ (ΚΓά)	(kJ/kg)	(kJ/kg*K)	(kg/s)	(M3/kg)	(kJ/kg)	Canuau	
3′	101,17	12.000	433,02	1,31	2,71	-	-	-	
3	324,68	12.000	1.852,29	4,10	7,31	-	-	0,3022	
4	520	12.000	3.403,39	6,56	7,31	-	2.685,45	-	
4 Tur.	520	12.000	3.403,39	6,56	2,71	-	-	-	
4 Sec.	520	12.000	3.403,39	6,56	4,61	-	-	-	
4′	324,68	12.000	2.685,45	5,49	4,61	-	-	-	
5 s	99,61	100	2.376,60	6,56	2,71	-	-	-	
5	99,61	100	2.479,28	6,83	2,71	-	-	-	
6	99,61	100	417,50	1,30	2,71	0,001043	-	-	

Nota. En la tabla se presentan los resultados de los cálculos de las propiedades termodinámicas de los estados del ciclo Rankine con secado y recirculación con mezcla en el estado 3, 2500kW.

Figura 14.

Diagrama T vs S del ciclo Rankine con secado y recirculación de flujo en el estado 3 2500kW

Nota. En la figura se presenta el diagrama T vs S del ciclo Rankine con secado y recirculación de flujo en el estado 3 2500kW.

Figura 15.

Diagrama T vs S del ciclo Rankine con secado y recirculación de flujo en el estado 3 2500kW, estados 3' y 6

Nota. En la figura se presenta el diagrama T vs S del ciclo Rankine con secado y recirculación de flujo en el estado 3 2500kW, estados 3' y 6.

Teniendo en cuenta el flujo masico necesario en la turbina, 2,71 kg/s, con los resultados de todos los estados del sistema y el calor de entrada se obtiene el flujo de vapor (Ecuación 11) que se logra producir con esta configuración, 7,31 kg/s, se evidencia un aumento del flujo masico total en el sistema debido al mezclado que se realiza en el estado 3, el cual lleva a cabo un precalentamiento del fluido consiguiendo que la caldera tenga la capacidad de calentar un mayor flujo masico con el mismo calor de entrada. Tomando la diferencia (4,6 kg/s) que se presenta entre el flujo masico generado y el flujo masico necesario para la turbina, el cual tiene como fin ser aprovechado como energía térmica para el secado del arroz, se calcula el calor producido para conocer la masa de agua que se puede evaporar y por lo tanto el flujo de arroz que se puede secar. Se evidencia que en el estado 3 se presenta una mezcla con una calidad del 30%, que puede generar una cavitación en la tubería a la entrada de caldera [44].

5.5.2.ii. Flujo máximo de combustible. Debido a que se presenta cavitación a la entrada de la caldera utilizando el flujo másico de cascarilla de arroz total disponible en la planta Diana Corporación / Vía Morichal, se realiza el cálculo para conocer la cantidad de cascarilla de arroz necesaria para que no se presente cavitación en el sistema, utilizando la configuración que se muestra en la figura 13, las consideraciones de diseño se presentan en la tabla 43.

Tabla 43.

Consideraciones de diseño del ciclo Rankine con secado, recirculación de flujo en el estado 3, con flujo máximo de combustible

Combustión		Unidades
Flujo masico orgánico	3.976,28	kg/h
Flujo masico aire	18.073,98	kg/h
Flujo masico gases	22.050,26	kg/h
Cp. gases	1,15	kJ/kg*K
	35.128.964,34	kJ/h
Color do optrada (012)	9.758,05	kJ/S
	9.758.045,65	W
	9,76	MW
	2.927.413,70	W
Potencia suministrada	2.927,41	kW
	2,93	MW

Nota. En la tabla se presentan las consideraciones para el ciclo Rankine con secado, recirculación de flujo en el estado 3, con flujo máximo de combustible.

En los resultados de la tabla 43 se evidencia que al disminuir el flujo masico orgánico de combustible se disminuye el calor de entrada al ciclo, viéndose afectado la potencia suministrada.

5.5.2.iii. Análisis termodinámico con flujo máximo de combustible. Teniendo los datos técnicos de la turbina (Tabla 36) y el calor generado en la caldera (Ecuación 9), se realiza el balance de energía en el mezclador y en la caldera, con ayuda de la extensión de Microsoft Excel, CoolProp, se inicia el cálculo en cada uno de los estados mostrados en la figura 13, adicionalmente se muestran los resultados asociados al secado del arroz.

Balance de energía en el mezclador considerando un proceso adiabático:

$$\dot{m}_{3'} * h_{3'} + \dot{m}_{4'} * h_{4'} = \dot{m}_3 * h_3$$

Balance de energía en la caldera:

$$Q_{entada} + \dot{m}_3 * h_3 = \dot{m}_4 * h_4$$

A partir de los balances de energía se obtiene los valores de h₃ y \dot{m}_3 que se evidencian en la tabla 44, en las figuras 16 y 17 se muestra el diagrama T vs S del ciclo.

Tabla 44.

Estados del ciclo Rankine con secado y recirculación de flujo en el estado 3, con flujo máximo de combustible 2500kW

Análisis termodinámico										
Sustancia	Gase comb	es de ustión		Secado Unidades			Unidades			
Fatada	Tempe	eratura		m	v	2,40	kg/s			
ESIdUU	К	°C		Q de s	ecado	1.722,24	kW			
1	1.852,61	1.579,46		Masa d	e agua	2.746,44	kg/h			
2	473,15	200		Masa d	e arroz	27.464,37	kg/h			
Sustancia	Wa	ater		hfg a 1	00 kPa	2.257,50	kg/h			
	T (°C)	$D(kD_2)$	h	S	m'v	Vf	hg	Calidad		
-	1(0)	r (kraj	(kJ/kg)	(kJ/kg*K)	(kg/s)	(M3/kg)	(kJ/kg)	Canuau		
3′	101,17	12.000	433,02	1,31	2,71	-	-	-		
3	324,68	12.000	1.491,61	3,50	5,10	-	-	0		
4	520	12.000	3.403,39	6,56	5,10	-	2.685,45	-		
4 Tur.	520	12.000	3.403,39	6,56	2,71	-	-	-		
4 Sec.	520	12.000	3.403,39	6,56	2,40	-	-	-		
4´	324,68	12.000	2.685,45	5,49	2,40	-	-	-		
5s	99,61	100	2.376,60	6,56	2,71	-	-	-		
5	99,61	100	2.479,28	6,83	2,71	-	-	-		
6	99,61	100	417,50	1,30	2,71	0,001043	-	-		

Nota. En la tabla se presentan los resultados de los cálculos de las propiedades termodinámicas de los estados del ciclo Rankine con secado y recirculación con mezcla en el estado 3, con flujo máximo de combustible 3500kW.

Figura 16.

Diagrama T vs S del ciclo Rankine con secado y recirculación de flujo en el estado 3, con flujo máximo de combustible 2500kW

Nota. En la figura se presenta el diagrama T vs S del ciclo Rankine con secado y recirculación de flujo en el estado 3, con flujo máximo de combustible 2500kW.

Figura 17.

Diagrama T vs S del ciclo Rankine con secado y recirculación de flujo en el estado 3, con flujo máximo de combustible 2500kW

Nota. En la figura se presenta el diagrama T vs S del ciclo Rankine con secado y recirculación de flujo en el estado 3, con flujo máximo de combustible 2500KW.

Los resultados de la tabla 44 muestran que no se presenta mezcla en el estado 3, por lo tanto, no se genera cavitación, pero a su vez se disminuye el flujo de vapor destinado para el secado y por ende se tiene una capacidad menor para el secado de arroz, en la tabla 45 se presentan los resultados del ciclo.

Tabla 45.

Resultados ciclo Rankine con secado, recirculación de flujo en el estado 3, con flujo máximo de combustible

Ciclo								
m'v	5	5,10	kg/s					
Δmiv	2	2,40						
	Bomba	Bomba Turbina						
Potencias	41,97	2.500,00	kW					
Wneta	4.1	kW						
ηth	2	13%	-					

Nota. En la tabla se presentan los resultados del ciclo Rankine con secado, recirculación de flujo en el estado 3, con flujo máximo de combustible 2500kW.

En la tabla 45 se muestra el resultado de la eficiencia térmica, la cual aumenta en comparación al ciclo Rankine básico hasta un 43%, debido al aprovechamiento del exceso de vapor en el secado del arroz y también a la recirculación del flujo aprovechando la energía remanente del proceso del secado, para realizar un precalentamiento del fluido a la entrada de la caldera.

5.6 Diseño ciclo Rankine con secado y recirculación de flujo 3500kW

Debido a la gran producción de flujo de vapor, se realiza el análisis con el mezclado en el estado 3 pero con la turbina D-R SST350 mostrada en la figura 7, para comprobar si es posible la generación de una mayor potencia eléctrica, la configuración se presenta en la figura 13.

Análisis termodinámico

Siguiendo la metodología de la sección 5.5, se desarrolla el análisis termodinámico planteado en la tabla 46.

Tabla 46.

Análisis termodinámico										
Sustancia	ia Gases de combustión					Unidades				
Estado	Tempe	eratura		m	v	-2,13	kg/s			
LStado	К	°C		Q de se	ecado	-1.269,70	kW			
1	1.852,61	1.579,46		Masa de	e agua	-2.024,77	kg/h			
2	473,15	200		Masa de	e arroz	-20.247,74	kg/h			
Sustancia	Wa	ter		hfg a 100 kPa		2.257,50	kg/h			
-	T (°C)	P (kPa)	h (kJ/kg)	s (kJ/kg*K)	m'v (kg/s)	Vf (M3/kg)	hg (kJ/kg)			
3´	100,42	6.300	425,59	1,31	4,27	-	-			
3	N/A	6.300	-1.921,12	N/A	2,14	-	2781,22			
4	482,00	6.300	3.376,40	6,80	2,14	-	-			
4 Tur.	482,00	6.300	3.376,40	6,80	4,27	-	-			
4 Sec.	482,00	6.300	3.376,40	6,80	-2,13	-	-			
4′	278,79	6.300	2.781,23	5,87	-2,13	-	-			
5 s	99,61	100	2.466,67	6,80	4,27	-	-			
5	99,61	100	2.557,65	7,04	4,27	-	-			
6	99,61	100	417,50	1,30	4,27	0,001043	-			

Estados del ciclo Rankine con secado y recirculación de flujo en el estado 3 3500kW

Nota. En la tabla se presentan los resultados de los cálculos de las propiedades termodinámicas de los estados del ciclo Rankine con secado y recirculación con mezcla en el estado 3, 3500kW. N/A= No disponible.

Debido a las condiciones de la turbina y a la salida del secador, no se logra generar el flujo masico de vapor necesario para cumplir las especificaciones de la turbina D-R SST350, lo que produce que, al realizar los balances de energía en el mezclador y la caldera, se obtiene como resultado una entalpia negativa en el estado 3, por lo tanto, una inconsistencia en los resultados del análisis termodinámico, por esta razón esta configuración no es posible. Concluyendo que la turbina de 3500 kW no es viable para el diseño debido a su gran requerimiento de flujo de vapor.

5.7 Diseño ciclo Rankine con secado, recirculación de flujo e intercambiador de calor 2500kW

Con los análisis anteriores se puede evidencia que la turbina D-R C de Siemens de 2.500 kW de potencia, es la más adecuada para el diseño del ciclo. A través de un intercambiador de calor se busca aprovechar el calor remanente de lo gases de

combustión para realizar un precalentamiento del fluido a la entrada de la caldera, y así aumentar al máximo el aprovechamiento del calor generado por la combustión de la cascarilla de arroz, de esta forma mejora la eficiencia del ciclo, la configuración se presenta en la figura 18.

Figura 18.

Ciclo Rankine con secado, recirculación de flujo e intercambiador 2500kW

Nota. En la figura se presenta la disposición del ciclo Rankine con secado de arroz, recirculación de flujo e intercambiador y sus componentes.

5.7.1 Flujo másico orgánico de combustible total disponible

Se desarrolla los cálculos del diseño haciendo uso del total del flujo másico orgánico de cascarilla disponible en la planta Diana Corporación / Vía morichal, equivalente a 4.622,70 kg/h.

5.7.1.i. Análisis termodinámico. Como parámetro de diseño se toma que la temperatura de liberación de los gases de combustión (Estado 2´) al medio ambiente es de 70 °C [33], teniendo los datos técnicos de la turbina (Tabla 36) y el calor generado en la caldera (Ecuación 9), se realiza el balance de energía en el mezclador, en la caldera y en el intercambiador de calor, con ayuda de la extensión de Microsoft Excel, CoolProp, se inicia el cálculo en cada uno de los estados mostrados en la figura 18, adicionalmente se muestran los resultados asociados al secado del arroz en la tabla 47.

Balance de energía en la caldera:

Figura 19.

Nota. En la figura se presenta los flujos presentes en la caldera.

 $Q_{ent} + \dot{m}_3 h_3 = \dot{m}_4 h_4$

Balance de energía en el mezclador considerando un proceso adiabático:

Figura 20.

 $\dot{m}_{4'}h_{4'} + \dot{m}_{3'}h_{3'} = \dot{m}_{3''}h_{3''}$

Balance de energía en el intercambiador de calor:

Nota. En la figura se presenta los flujos presentes en el mezclador.

$$Q_{int} + \dot{m}_{3''}h_{3''} = \dot{m}_3h_3$$

A partir de los balances de energía se obtiene los valores de h₃, h₃, y \dot{m}_3 que se evidencian en la tabla 47, el diagrama T vs S se presenta en las figuras 22 y 23.

Tabla 47.

Estados del ciclo Rankine con secado, recirculación de flujo e intercambiador de calor 2500kW

Análisis termodinámico										
Sustancia	Gase comb	es de ustión		Secado Unidades						
Fatada	Tempe	eratura		m	v	6,10	kg/s			
Estado	К	°C		Q de s	ecado	4377,71	kW			
1	1852,61	1579,46		Masa d	e agua	6981,06	kg/h			
2	473,15	200		Masa d	e arroz	69810,59	kg/h			
2'	343,15	70		hfg a 1	00 Кра	2257,50	kg/h			
Sustancia	Water									
-	т (°С)	P (kPa)	h (kJ/kg)	s (kJ/kg*K)	m'v (kg/s)	Vf (M3/kg)	hg (kJ/kg)	Calidad		
3′	101,17	12000	433,02	1,3111	2,71	-	-	0		
3″	324,68	12000	1993,23	4,3360	8,80	-	-	0,42		
3	324,68	12000	2114,68	4,5392	8,80	-	2.685,45	0,52		
4	520,00	12000	3403,39	6,5585	8,80	-	-	1		
4 tur	520,00	12000	3403,39	6,5585	2,71	-	-	1		
4sec	520,00	12000	3403,39	6,5585	6,10	-	-	1		
4´	324,68	12000	2685,45	5,4939	6,10	-	-	1		
5s	99,61	100	2376,60	6,5585	2,71	-	-	0,87		
5	99,61	100	2479,28	6,8339	2,71	-	-	0,91		
6	99,61	100	417,50	1,3028	2,71	0,001043	-	0		

Nota. En la tabla se presentan los resultados de los cálculos de las propiedades termodinámicas de los estados del ciclo Rankine con secado, recirculación de flujo e intercambiador de calor, 2500KW.

Figura 22.

Diagrama T vs S del ciclo Rankine con secado, recirculación de flujo e intercambiador de calor 2500kW

Nota. En la figura se presenta el diagrama T vs S de los estados del ciclo Rankine con secado, recirculación de flujo e intercambiador de calor, 2500kW.

Figura 23.

Diagrama T vs S del ciclo Rankine con secado, recirculación de flujo e intercambiador de calor 2500kW, estados 3´y 6

Nota. En la figura se presenta el diagrama T vs S de los estados del ciclo Rankine con secado, recirculación de flujo e intercambiador de calor, 2500kW, estados 3´ y 6.

Los resultados del análisis termodinámico de la configuración que se muestran en la tabla 51 evidencian que en el estado 3, entrada de la caldera y en el estado 3^{''}, entrada al intercambiador, se presenta una mezcla con una calidad del 52% y 42% respectivamente, al igual que se evidencia en el diagrama T vs S, lo cual no es viable debido a que se presenta cavitación en las tuberías [44].

5.7.2 Flujo másico orgánico máximo de combustible

Debido que al hacer uso del 100% de la producción de cascarilla de arroz de la planta Diana Corporación / vía Morichal como combustible en el ciclo (4.622,7 kg/h) se presenta una mezcla en la entrada de la caldera, se realiza el análisis para calcular el flujo masico orgánico máximo de combustible para obtener como máximo un líquido saturado en la entrada de la caldera y evitar los problemas de la configuración anterior. En la tabla 48 se presentan las consideraciones para el análisis del ciclo.

Tabla 48.

Consideraciones de diseño del ciclo Rankine con secado, recirculación de flujo e intercambiador de calor, con flujo máximo de combustible

Combustión		Unidades
Flujo masico orgánico	3.455,82	kg/h
Flujo masico aire	15.708,28	kg/h
Flujo masico gases	19.164,10	kg/h
Flujo masico gases	5,32	kg/s
Cp. gases	1,15	kJ/kg*K
	30.530.926,70	kJ/h
Color do optrodo (012)	8.480,81	kJ/s
	8.480.812,97	W
	8,48	MW
Potoncio cuministrado	2.544.243,89	W
Potencia suministrada	2.544,24	kW

Nota. En la tabla se presentan las consideraciones para el ciclo Rankine con secado, recirculación de flujo e intercambiador de calor, con flujo máximo de combustible.

Para lograr obtener como máximo un líquido saturado en la entrada de la caldera y evitar así la cavitación producto de la mezcla vapor-agua, se debe realizar la combustión con un flujo masico orgánico de 3.455,82 kg/h para garantizar el flujo masico necesario en la turbina, obteniendo un flujo masico sobrante destinado para el proceso de secado del arroz, donde el flujo máximo de combustible representa el

75% de la producción de cascarilla de arroz de la planta Diana corporación/Vía Morichal.

5.7.2.i. Análisis termodinámico. Como parámetro de diseño se toma que la temperatura de liberación de los gases de combustión (Estado 2´) al medio ambiente es de 70 °C [33], teniendo los datos técnicos de la turbina (Tabla 36) y el calor generado en la caldera (Ecuación 9), se realiza el balance de energía en el mezclador, en la caldera y en el intercambiador de calor, con ayuda de la extensión de Microsoft Excel, CoolProp, se inicia el cálculo en cada uno de los estados mostrados en la figura 18, adicionalmente se muestran los resultados asociados al secado del arroz en la tabla 49.

Balance de energía en la caldera:

$$Q_{ent} + \dot{m}_3 h_3 = \dot{m}_4 h_4$$

Balance de energía en el mezclador considerando un proceso adiabático:

$$\dot{m}_{4'}h_{4'} + \dot{m}_{3'}h_{3'} = \dot{m}_{3''}h_{3''}$$

Balance de energía en el intercambiador de calor:

$$Q_{int} + \dot{m}_{3''}h_{3''} = \dot{m}_3h_3$$

A partir de los balances de energía se obtiene los valores de h₃, h₃, y \dot{m}_3 que se evidencian en la tabla 49, se presenta el diagrama T vs S en las figuras 24 y 25.

Tabla 49.

Estados del ciclo Rankine con secado, recirculación de flujo e intercambiador de calor con flujo máximo de combustible

Análisis termodinámico									
Sustancia	Gase comb	es de ustión		Secado Unidades					
Fatada	Tempe	eratura		miv	/	1,73	kg/s		
Estado	К	°C		Q de se	cado	1.244,24	kW		
1	1.852,61	1.579,46		Masa de	e agua	1.984,17	kg/h		
2	473,15	200		Masa de	arroz	19.841,73	kg/h		
2'	343,15	70		hfg a 10	0 kPa	2.257,50	kg/h		
Sustancia	Water							•	
-	т (°С)	P (kPa)	h (kJ/kg)	s (kJ/kg*K)	m'v (kg/s)	Vf (M³/kg)	hg (kJ/kg)	Calidad	
3′	101,17	12.000	433,02	1,3111	2,71	-	-	0	
3″	294,81	12.000	1.312,53	3,1900	4,44	-	-	0	
3	324,68	12.000	1.492,60	3,4986	4,44	-	2.685,45	0	
4	520,00	12.000	3.403,39	6,5585	4,44	-	-	1	
4 tur	520,00	12.000	3.403,39	6,5585	2,71	-	-	1	
4sec	520,00	12.000	3.403,39	6,5585	1,73	-	-	1	
4´	324,68	12.000	2.685,45	5,4939	1,73	-	-	1	
5 s	99,61	100	2.376,60	6,5585	2,71	-	-	0,87	
5	99,61	100	2.479,28	6,8339	2,71	-	-	0,91	
6	99,61	100	417,50	1,3028	2,71	0,001043	-	0	

Nota. En la tabla se presentan los resultados de los cálculos de las propiedades termodinámicas de los estados del ciclo Rankine con secado, recirculación de flujo e intercambiador de calor con flujo máximo de combustible, 2500kW.

Figura 24.

Diagrama T vs S del ciclo Rankine con secado, recirculación de flujo e intercambiador de calor con flujo máximo de combustible

Nota. En la figura se presenta el diagrama T vs S de los estados del ciclo Rankine con secado, recirculación de flujo e intercambiador de calor con flujo máximo de combustible, 2500kW.

Figura 25.

Diagrama T vs S del ciclo Rankine con secado, recirculación de flujo e intercambiador de calor con flujo máximo de combustible, estados 3´y 6

Nota. En la figura se presenta el diagrama T vs S de los estados del ciclo Rankine con secado, recirculación de flujo e intercambiador de calor con flujo máximo de combustible, 2500kW, estados 3´ y 6.

Utilizando un flujo masico orgánico de 3.455,82 kg/h, se puede evidenciar a través del análisis termodinámico que en la entrada de la caldera (Estado 3) se garantiza el agua en estado de líquido saturado, evitando cavitación en la tubería. De esta forma se consigue un flujo de vapor para el secado de 1,73 kg/s permitiendo secar un flujo de arroz de 19.841,73 kg/s.

En la tabla 50 se muestra la eficiencia térmica del ciclo utilizando un flujo masico orgánico de 3.455,82 kg/h.

Tabla 50.

Resultados ciclo Rankine con secado, recirculación de flujo e intercambiador de calor con flujo máximo de combustible

	Ciclo							
m'v	4	4,44						
Δm [°] v	1	,73	kg/s					
	Bomba	Turbina						
Potencias	41,97	2.500	kW					
Wneta	4.5	01,50	kW					
ηth	5	3%	-					
I	Intercambiador de calor							
Q. entrada	79	9,23	kW					

Nota. En la tabla se presentan los resultados del ciclo Rankine con secado, recirculación de flujo e intercambiador de calor con flujo máximo de combustible 2500KW.

Se puede evidenciar que al hacer uso del calor remanente de los gases de combustión para realizar un precalentamiento a través de un intercambiador de calor cediendo una energía de 799,23 kW al ciclo, se obtiene una mejora en la eficiencia térmica del ciclo, logrando aumentarla en un 10%, debido a la implementación del intercambiador de calor.

Esta configuración logra el máximo aprovechamiento de la energía generada a través de la combustión de la cascarilla de arroz disponible en la planta Diana Corporación / Vía Morichal, obteniendo los resultados más óptimos en el diseño del ciclo Rankine.

5.7.2.ii. Análisis exergético. El análisis exergético se realiza para el diseño optimo, este permite identificar los equipos del ciclo con las mayores ineficiencias termodinámicas, se realiza el análisis en cada uno de los equipos para determinar sus pérdidas. En la tabla 51 se muestran las ecuaciones para el cálculo de la diferencia de entropías por irreversibilidades y la eficiencia exergética para cada uno de los equipos que integran el ciclo.

Para efecto de los cálculos el estado muerto tiene una temperatura T₀=25°C, para el cálculo de la eficiencia exergética en el intercambiador y la caldera, se debe hallar la diferencia de entalpias y de entropías a través de un balance de energías en cada equipo, utilizando las ecuaciones 9 y 11, por último en el secador, se toma la temperatura del estado 4´ para hallar la diferencia de entropías por irreversibilidades debido a que la temperatura a la que ocurre el proceso de transferencia de calor es la temperatura mínima, las consideraciones anteriores se toman en cuenta para los análisis exergético de todos los diseños planteados en este trabajo de investigación.

Tabla 51.

Entropías por irreversibilidades y la eficiencia exergética para cada uno de los equipos

Equipo	ΔS_{irr}	Eficiencia Exergética
Turbina	$\dot{m}_{4tur}(s_5-s_{4tur})$	$\frac{W_t}{W_t + T_0(s_5 - s_{4tur})}$
Condensador	$\dot{m}_5(s_6 - s_5) + \frac{Q_{sal}}{T_{prom}}$	$1 - \frac{T_0 \Delta S_{irr}}{\dot{m}_5(\Psi_5 - \Psi_6)}$
Bomba	$\dot{m}_6(s_{3'}-s_6)$	$1 - \frac{T_0 (s_{3'} - s_6)}{W_B}$
Mezclador	$(\dot{m}_{3''} * s_{3''}) - (\dot{m}_{3'} * s_{3'}) - (\dot{m}_{4'} * s_{4'})$	$1 - \frac{T_0 \Delta S_{irr}}{\dot{m}_{4'}(\Psi_{4'} - \Psi_{3''})}$
Intercambiador de calor	$\dot{m}_3(s_3 - s_{3''}) + C_p Ln \frac{T_{2'}}{T_2}$	$1 - \frac{T_0 \Delta S_{irr}}{\dot{m}_2(\Psi_2 - \Psi_{2''})}$
Caldera	$\dot{m}_3(s_4 - s_3) + C_p Ln \frac{T_2}{T_1}$	$1 - \frac{T_0 \Delta S_{irr}}{\dot{m}_1(\Psi_1 - \Psi_2)}$
Secador	$\dot{m}_{4sec}(s_{4'}-s_{4sec})+rac{Q_{sal}}{T_{4'}}$	$1 - \frac{T_0 \Delta S_{irr}}{\dot{m}_{4 sec} (\Psi_{4 sec} - \Psi_{4'})}$

Nota. En la tabla se muestran las ecuaciones para el cálculo de Entropías por irreversibilidades y la eficiencia exergética para cada uno de los equipos.

Para los cálculos de Entropías por irreversibilidades en la caldera y el intercambiador de calor, es necesario el cálculo de la contaste R del gas de combustión mostrado en la tabla 52, las consideraciones anteriores se toman en cuenta para los análisis exergéticos de todos los diseños planteados en este trabajo de investigación.

Tabla 52.

Constate F	R de	gas	de	combustió	n
------------	------	-----	----	-----------	---

	Unidades			
Gas	CO2	H2O	N2	-
%	19%	12%	69%	-
R	0,1889	0,4615	0,2968	kJ/kg K
R total		kJ/kg K		

Nota. En la tabla se presentan el resultado de la contaste R del gas de combustión de la cascarilla de arroz.

Para el cálculo de la eficiencia exegética del ciclo, es necesario calcular la eficiencia máxima que puede alcanzar (Eficiencia de Carnot) para establecer la relación con la eficiencia térmica, los resultados se muestran en la tabla 53.

Tabla 53.

Eficiencia exergética del ciclo

Análisis exergético						
η Carnot	81%					
η Exergética	66%					
	/ H					

Nota. En la tabla se presentan el resultado del análisis exergético

Se obtiene como resultado una eficiencia exergético del 66% en el ciclo, lo cual indica el nivel de irreversibilidad del proceso.

Se realiza el análisis exergético para cada uno de los equipos, donde la exergía destruida se calcula mediante la multiplicación de la diferencia de entropías por irreversibilidades por la temperatura del estado muerto (25°C), haciendo uso de las fórmulas mostradas en la tabla 51 para cada uno de los equipos, mostrados en la tabla 54.

Tabla 54.

Análisis Exergético en equipos con flujo máximo combustible

Equipo	Turbina	Cond.	Bomba	Mezclador	Inter.	Caldera	Secador	Unidades
ΔSirr.	0,75	0,00	0,02	1,09	1,02	12,00	0,24	kJ/K*s
Ex Dest	222,18	0,00	6,76	324,95	303,29	3.579,14	70,46	kW
η Exer.	97%	100%	94%	73%	77%	67%	90%	-

Nota. En la tabla se presentan el resultado del análisis exergético en equipos con flujo máximo combustible. Inter. =Intercambiador de calor Cond. =Condensador

Según los resultados de la tabla 54 se puede concluir que, el equipo que presenta una exergía destruida mayor (3.579,14 kW) y por lo tanto la menor eficiencia exergética (67%) es la caldera, ya que es el equipo donde se presenta la mayor tasa de transferencia de calor en el sistema.

En el condensador se presenta en la diferencia de entropías por irreversibilidades un valor de cero, debido a que la relación entre el calor y la temperatura son exactamente iguales al cambio de entropía, lo cual no significa que el proceso sea isentrópico e irreversible, debido a que no es posible porque siempre se presenta una generación de entropía asociado al calor, también se presenta una eficiencia exergética del 100% en el condensador, ya que la ecuación para hallar este valor necesita la exergía destruida, que es igual a cero, ecuación presentada en la Tabla 51. El comportamiento descripto anteriormente para el condensador se toma en cuenta para los análisis exergéticos de todos los diseños planteados en este trabajo de investigación.

5.8 Análisis de resultados

Mediante la metodología utilizada para el diseño, se dio inicio desde un ciclo Rankine básico convencional, buscando una configuración más eficiente para lograr determinar el diseño más optimo del ciclo Rankine utilizando cascarilla de arroz como combustible, la eficiencia y el calor de entrada en la caldera de las principales configuraciones se presentan en la figura 26 y 27.

Figura 26.

Eficiencias térmicas del ciclo

Nota. En la figura se presentan las eficiencias térmicas de las principales configuraciones diseñadas para el ciclo Rankine utilizando cascarilla de arroz como combustible.

Figura 27.

Calor de entrada en la caldera de los ciclos

Nota. En la figura se presentan el calor de entrada de las principales configuraciones diseñadas para el ciclo Rankine utilizando cascarilla de arroz como combustible.

Se puede concluir a través de la figura 26 y 27, que la eficiencia térmica del ciclo Rankine aumento a razón de la búsqueda de un mejor aprovechamiento de la energía suministrada al ciclo a través de equipos y distintas configuraciones del proceso, esto se refleja en la disminución del calor requerido a medida que aumenta la eficiencia térmica del ciclo.

También se puede evidenciar, que al aprovechar el exceso de vapor como energía térmica para el secado del arroz se obtiene una mejora en la eficiencia térmica del ciclo.

5.8.1 Análisis de la energía producida por kilogramo de cascarilla

Es importante conocer la relación entre la energía que se puede obtener por cada kilogramo de cascarilla de arroz como combustible a través de un ciclo Rankine, conociendo el flujo de cascarilla necesario y el flujo de vapor en el ciclo, se obtiene la relación mencionada, en la tabla 55 se muestra el resultado del cálculo para el diseño más óptimo.

Tabla 55.

Energía por kg de cascarilla

Energía por Kg de Cascar	Unidades	
Flujo Cascarilla	4.108,97	kg/h
Flujo de vapor	15.978,21	kg/h
Relación F. Cascarilla/F. Vapor	3,89	-
Trabajo turbina	924,10	kJ/ <i>kg</i>
Energía por Kg de Cascarilla	3.593,49	kJ/kg

Nota. En la tabla se representa la energía producida por cada kilogramo de cascarilla en el ciclo.

Se obtiene como resultado que la cascarilla de arroz que ingresa para la combustión y su posterior aprovechamiento energético a través del ciclo Rankine más optimo desarrollado en esta investigación, produce 3.593,49 kJ por cada 1 kg de cascarilla de arroz.

5.8.2 Análisis del porcentaje de exergía destruida en los equipos

En la figura 28 se muestra el porcentaje de incidencia en la exergía destruida de cada uno de los equipos que componen el ciclo Rankine más optimo desarrollado en esta investigación, utilizando cascarilla de arroz como combustible e incorporando un proceso de secado.

Figura 28.

Porcentaje de exergía destruida de los equipos

Nota. En la figura se representa el porcentaje de exergía destruida de los equipos que componen el ciclo Rankine.

En la figura 28 se evidencia que la tendencia es que los equipos que mayor porcentaje de exergía destruida presentan, son aquellos donde se tiene un proceso de transferencia de calor, donde a mayor sea la transfería de calor, mayor será el porcentaje de incidencia en la exergía destruida en el ciclo, resaltando el gran porcentaje de exergía destruida que representa la caldera.

5.9 Variación de parámetros

Con base en la configuración más optima del ciclo presentada en la sección 5.7.2 Flujo másico orgánico máximo de combustible, se realiza la variación de parámetros para analizar los cambios que se pueden llegar a producir, se efectúa la variación en el flujo de combustible, la temperatura del estado 2 y estado 2[´] y en la presión en el estado 5, salida de la turbina.

5.9.1 Variación de flujo masico orgánico de combustible

Se realiza la variación del flujo masico orgánico del combustible respecto al 100% de cascarilla de arroz disponible en la planta Diana corporación/Vía Morichal. Teniendo en cuenta que el flujo máximo para el diseño más optimo representa el 75% equivalente a un flujo de 3.455,82 kg/h, y que cuando no es necesario el uso del sistema de secado y no se tiene el flujo masico máximo de combustible disponible, se debe garantizar un flujo mínimo de combustible para generar la energía eléctrica a través de la turbina, que representa el 65% respecto a la producción total, que equivale a un flujo de 2.992,47 kg/h.

En la figura 29 se muestra la relación del Flujo arroz secado y el Flujo de vapor para el secado con el porcentaje de combustible necesario.

Figura 29.

Flujo arroz secado Vs % Combustible Vs Flujo de vapor para secado

Nota. En la figura se muestran los resultados de la variación del combustible con respecto al flujo de arroz secado y el flujo de vapor destinado para el secado del arroz.

A partir de la configuración más eficiente utilizando un flujo masico máximo de combustible según la producción de cascarilla de arroz de la planta Diana Corporación/Vía morichal, se realizó la variación del porcentaje de combustible donde se evidencia mediante la figura 29, una relación directamente proporcional entre el porcentaje de combustible utilizado con el flujo de arroz secado y el flujo de vapor destinado para el secado del arroz. Con un porcentaje de combustible del 69%, que equivale a un flujo de 3.189,66 kg/h, el sistema tiene la capacidad de secar un flujo de arroz de 8.444,15 kg/h con un flujo de vapor de 0,74 kg/h.

5.9.1.i. Análisis exergético. A través de la figura 30 se quiere conocer la variación de la eficiencia exergética como consecuencia del cambio en el flujo masico orgánico de combustible en el ciclo más óptimo.

Figura 30.

Eficiencia exergética con variación de flujo masico

Nota. En la figura se muestran los resultados de la eficiencia exergética con respecto a la variación del combustible

Se puede evidenciar que a medida que aumenta el porcentaje de combustible utilizado, se incrementa la eficiencia exergética, debido al aumento de la eficiencia térmica, debido a que el sistema tiene la capacidad de secar más arroz, obteniendo una eficiencia exergética del 66% cuando se utiliza el máximo de combustible que puede utilizar el sistema, obteniendo las condiciones más optimas.

Es importante conocer la exergía destruida para cuantificar las pérdidas en cada uno de los equipos, los resultados se presentan en la figura 31.

Figura 31.

Exergía destruida en equipos con variación de flujo de combustible

Nota. En la figura se muestran los resultados de la exergía destruida de los equipos con respecto a la variación del combustible.

Los resultados de la exergía destruida en la caldera se presentan en la figura 32, debido a las grandes proporciones de exergía destruida.

Figura 32.

Exergía destruida en la caldera con variación de flujo de combustible

Nota. En la figura se muestran los resultados de la exergía destruida de la caldera con respecto a la variación del combustible.

En el intercambiador de calor se puede observar que existe un comportamiento inverso entre su exergía destruida y el aumento del porcentaje de combustible, debido a que entre menor es el porcentaje de combustible, mayor es el calor que debe transferir al fluido, por lo tanto, la exergía destruida aumenta.

En el mezclador cuando se tiene un flujo de combustible del 65% no presenta exergía destruida debido a que no cumple la función de mezclar dos flujos ya que no existe flujo de vapor para el proceso de secado. A medida que aumenta el flujo de combustible, la exergía destruida aumenta ya que es mayor el exceso de energía que es destinado para el secado. La misma tendencia se puede observar para el secador.

En la turbina y en la bomba se presenta una exergía destruida constante debido a que se asegura que el flujo de vapor siempre sea el requerido para el funcionamiento de la turbina (2,71 kg/s), En el condensador se presenta una exergía destruida igual a cero debido a que la diferencia de entropías por irreversibilidades es igual a cero, ya que la relación entre el calor y la temperatura son exactamente iguales al cambio de entropía.

La caldera tiene los mayores valores de exergía destruida ya que presenta una mayor transferencia de calor, esta aumenta a medida que crece el porcentaje de combustible utilizado, ya que es mayor el calor transferido en la caldera.

5.9.2 Variación de temperatura en el estado 2

Se calcula la variación de la variación en la temperatura en la salida de los gases de combustión de la caldera y la entrada del intercambiador para el precalentamiento (Estado 2). Se realiza el aumento y la disminución de la temperatura para efectuar el análisis del ciclo. En la figura 33 se muestra la eficiencia térmica y calor de entrada con Variación de la temperatura estado 2.

Figura 33.

Eficiencia térmica y calor de entrada con Variación de la Temperatura estado 2

Nota. En la figura se muestran los resultados de la variación de la eficiencia térmica y el calor de entrada en la caldera con respecto a la temperatura en el estado 2.

Al realizar la variación de la temperatura en el estado 2, se evidencia que a medida que aumenta la temperatura, el calor de entrada a la caldera disminuye, debido a que se reduce la diferencia entre las temperaturas de los estados 1 y 2, como consecuencia se evidencia un comportamiento contrario en la eficiencia térmica, la cual aumenta debido a que la diferencia de temperaturas entre la entrada y la salida del intercambiador de calor es mayor, produciendo el aumento del calor cedido a través del intercambiador de calor. Se tiene un aprovechamiento de energía térmica en el intercambiador, la cual influye en mayor medida al aumento de la eficiencia térmica térmica del ciclo.

En la figura 34 se muestra el flujo de arroz secado y flujo masico total de vapor con variación en la temperatura del estado 2

Figura 34.

Flujo de arroz secado y flujo masico total de vapor con variación en la temperatura del estado 2

Nota. En la figura se muestran los resultados de la variación del flujo de arroz que se puede secar y el flujo masico total de vapor con respecto a la temperatura en el estado 2.

Conforme aumenta la temperatura del estado 2, se reduce la capacidad de producción de flujo masico total de vapor, debido a que disminuye el calor de entrada en la caldera, por lo tanto, se produce una disminución del exceso de energía destinado para el secado, como resultado se ve afectada la capacidad del sistema de secado de arroz debido a que se reduce la diferencia entre las temperaturas de los estados 1 y 2.

5.9.2.i. Análisis exergético. En la figura 35 se muestra la variación eficiencia exergética como consecuencia del cambio en la temperatura del estado 2 en el ciclo más óptimo.
Figura 35.

Eficiencia exergética con variación en la temperatura 2

Nota. En la figura se muestran los resultados de la eficiencia exergética con respecto a la variación en la temperatura del estado 2.

La eficiencia exergética del ciclo aumenta a medida que es mayor la temperatura del estado 2, ya que la diferencia entre la temperatura de los estados 1 y 2 disminuye, por lo tanto, la diferencia de temperaturas entre los estados 2 y 2' es mayor, lo que significa una mayor transferencia de calor a través del intercambiador, afectando en mayor medida el aumento de la eficiencia térmica debido a que es un aprovechamiento directo de la energía térmica y por ende el aumento de la eficiencia exergética.

Es importante conocer la exergía destruida para cuantificar las pérdidas en cada uno de los equipos, los resultados se presentan en la figura 36.

Figura 36.

Exergía destruida en equipos con variación en la temperatura del estado 2

Nota. En la figura se muestran los resultados de la exergía destruida de los equipos con respecto a la variación de la temperatura en el estado 2.

Los resultados de la exergía destruida en la caldera se presentan en la figura 37, debido a las grandes proporciones de exergía destruida.

Figura 37.

Exergía destruida en la caldera con variación en la temperatura del estado 2

Nota. En la figura se muestran los resultados de la exergía destruida de la caldera con respecto a la variación de la temperatura del estado 2.

La exergía destruida en el intercambiador aumenta a medida que es mayor la temperatura del estado 2, debido a que va creciendo la diferencia entre las temperaturas de los estados 2 y 2', por tal motivo es mayor el calor transferido a través del intercambiador de calor.

En el mezclador la exergía destruida disminuye a razón de que aumenta la temperatura del estado 2, debido a que se genera menor flujo de vapor en el sistema, ya que disminuye el calor de entrada en el ciclo, por este motivo el exceso de energía destinado al proceso de secado disminuye, entonces es menor la relación de energía entre los fluidos que entran al mezclador. La misma tendencia se observa en el secador.

En la turbina y en la bomba se presenta una exergía destruida constante debido a que se asegura que el flujo de vapor siempre sea el requerido para el funcionamiento de la turbina (2,71 kg/s).

En la caldera se presenta una disminución en la exergía destruida a medida que aumenta la temperatura del estado 2, ya que se reduce la diferencia de temperaturas entre el estado 1 y 2, por ende, el calor de entrada es menor.

5.9.3 Variación de temperatura en el estado 2

Se realiza la variación en la temperatura de los gases de combustión a la salida del intercambiador de calor donde se efectúa el precalentamiento (Estado 2´). Se realiza el aumento y la disminución de la temperatura para ejecutar el análisis del ciclo.

En la figura 38 se presenta la variación de la eficiencia térmica y el calor de entrada en la caldera respecto a la variación en la temperatura del estado 2'.

Figura 38.

Eficiencia térmica y calor de entrada a la caldera con variación en la temperatura del estado 2[′]

Se evidencia que la eficiencia térmica del ciclo disminuye a medida que aumenta la temperatura del estado 2[´], ya que el calor cedido a través del intercambiador de calor es menor, debido a que la diferencia entre las temperaturas de los estados 2 y 2[´] también disminuye, y a su vez el calor de entrada en la caldera aumenta para obtener el máximo rendimiento del ciclo.

En la figura 39 se muestra el cambio en el flujo de arroz que se puede secar y el flujo masico total de vapor que se puede producir variando la temperatura del estado 2'.

Figura 39.

Flujo de arroz secado y flujo masico total de vapor con variación en la temperatura del estado 2

Nota. En la figura se muestran los resultados de la variación del flujo de arroz que se puede secar y el flujo masico total de vapor con respecto a la temperatura en el estado 2[´].

Cuando aumenta la temperatura del estado 2´, el flujo masico total de vapor es mayor, debido a que al disminuir la diferencia de temperaturas entre los estados 2 y 2´, es menor el calor cedido a través del intercambiador de calor y por esta razón la caldera aumenta su calor de entrada para obtener el máximo rendimiento en el ciclo, logrando aumentar el flujo de arroz que se puede secar en el proceso.

5.9.3.i. Análisis exergético. En la figura 40 se muestra la variación de la eficiencia exergética como consecuencia del cambio en la temperatura del estado 2´ en el ciclo más óptimo.

Figura 40.

Eficiencia exergética con variación en la temperatura 2´

Nota. En la figura se muestran los resultados de la eficiencia exergética con respecto a la variación en la temperatura del estado 2'.

Se puede evidenciar que la eficiencia exergética disminuye a medida que aumenta la temperatura del estado 2', por que disminuye la eficiencia térmica, ya que el aprovechamiento de energía térmica en el intercambiador de calor disminuye, debido a que se reduce la diferencia entre las temperaturas del estado 2 y 2'.

En la figura 41 se puede evidenciar la variación de la exergía destruida por cada uno de los equipos respecto a la temperatura del estado 2'.

Figura 41.

Exergía destruida en equipos con variación en la temperatura del estado 2´

Nota. En la figura se muestran los resultados de la exergía destruida de los equipos con respecto a la variación de la temperatura en el estado 2[′].

Los resultados de la exergía destruida en la caldera se presentan en la figura 42, debido a las grandes proporciones de exergía destruida.

Figura 42.

Exergía destruida en la caldera con variación en la temperatura del estado 2'

Nota. En la figura se muestran los resultados de la exergía destruida de la caldera con respecto a la variación en la temperatura del estado 2[′].

En el intercambiador de calor la eficiencia exergética disminuye a medida que aumenta la temperatura del estado 2['], debido a que la diferencia entre las temperaturas de los estados 2 y 2['] disminuye, por tal motivo disminuye el calor cedido en el intercambiador de calor.

La exergía destruida en el mezclador aumenta en una pequeña proporción a medida que la temperatura del estado 2' es mayor, debido a que el sistema tiene la capacidad de generar mayor flujo de vapor, al aumentar el calor de entrada en la caldera para obtener el máximo rendimiento en el ciclo, y por ende es mayor la energía transferida de la línea caliente a la línea fría por medio del mezclador. Se observa el mismo comportamiento en mayor medida en el secador.

En la turbina y en la bomba se presenta una exergía destruida constante debido a que se asegura que el flujo de vapor siempre sea el requerido para el funcionamiento de la turbina (2,71 kg/s).

En la caldera, la exergía destruida aumenta a medida que crece la temperatura del estado 2', ya que el sistema requiere un mayor flujo masico de combustible, como resultado aumentando el calor de entrada en la caldera y así obtener el máximo rendimiento del ciclo.

5.9.4 Variación de la presión en el estado 5

Se realiza la variación en la presión del estado 5, a la salida de la turbina, para conocer los efectos en el ciclo más óptimo. Se efectúa el aumento de la presión para ejecutar el análisis del ciclo, no se realiza una disminución en la presión debido a que se tiene por criterio como mínimo la presión atmosférica, presión del estado más óptimo.

En la figura 43 se muestra la variación de la eficiencia térmica y el calor de entrada respecto a la en la presión del estado 5.

Figura 43.

Eficiencia térmica y calor de entrada a la caldera con variación en la presión del estado 5

Se puede evidenciar que el calor de entrada a la caldera aumenta a medida que es mayor la presión del estado 5, debido a que la turbina requiere un mayor flujo masico de vapor para funcionar a máximo rendimiento, lo cual requiere un mayor flujo de combustible. La eficiencia térmica del ciclo disminuye ya que el sistema requiere más combustible para entregar la misma energía.

En la figura 44 se muestra el cambio en el flujo de arroz que se puede secar y el flujo masico total de vapor que se puede producir variando la presión en el estado 5.

Figura 44.

Flujo de arroz secado y flujo masico total de vapor con variación en la presión del estado 5

Nota. En la figura se muestran los resultados de la variación del flujo de arroz que se puede secar y el flujo masico total de vapor con respecto a la presión en el estado 5.

El flujo masico total de vapor producido por el ciclo aumenta a medida que es mayor la presión en el estado 5, debido a que el sistema requiere mayor calor de entrada, ya que la turbina requiere un mayor flujo masico de vapor para trabajar a su máximo rendimiento, por lo tanto, el flujo de arroz que se puede secar no presenta variaciones significativas, ya que el flujo masico adicional generado está destinado únicamente para la turbina.

5.9.4.i. Análisis exergético. En la figura 45 se muestra la variación de la eficiencia exergética como consecuencia del cambio en la presión del estado 5 en el ciclo más óptimo.

Figura 45.

Eficiencia exergética con variación en la presión del estado 5

La eficiencia exergética se ve afectada a medida que aumenta la presión en el estado 5, debido a que la eficiencia térmica y la eficiencia máxima disminuyen, ya que el sistema requiere mayor flujo masico de combustible para entregar la misma energía para funcionar a máximas condiciones.

En la figura 46 se puede evidenciar la variación de la exergía destruida por cada uno de los equipos respecto a la presión del estado 5.

Nota. En la figura se muestran los resultados de la eficiencia exergética con respecto a la variación en la presión del estado 5.

Figura 46.

Exergía destruida en equipos con variación en la presión del estado 5

Nota. En la figura se muestran los resultados de la exergía destruida de los equipos con respecto a la variación de la presión en el estado 5.

Los resultados de la exergía destruida en la caldera se presentan en la figura 47, debido a las grandes proporciones de exergía destruida.

Figura 47.

Exergía destruida en la caldera con variación en la presión del estado 5

Nota. En la figura se muestran los resultados de la exergía destruida de la caldera con respecto a la variación de la presión en el estado 5.

En el intercambiador de calor la exergía destruida aumenta a medida que crece la presión en el estado 5, ya que el sistema tiene la capacidad de producir mayor flujo de vapor, por lo tanto, se presenta más flujo de energía en el intercambiador.

En el mezclador la exergía destruida es menor a medida que es mayor la presión en el estado 5, como resultado de la disminución entre la diferencia de la energía de los flujos que entran al mezclador, debido a la disminución de las temperaturas de los estados 3' y 4'.

En la turbina y en la bomba disminuye la exergía destruida a medida que aumenta la presión del estado 5, debido a que la diferencia entre las entropías de la entrada y la salida de los equipos disminuye.

En el proceso de secado del arroz, no se presentan variaciones significativas en la exergía destruida a medida que aumenta la presión en el estado 5, a pesar de que aumenta el flujo de vapor generado por el ciclo, este flujo está destinado únicamente para el funcionamiento de la turbina.

En la caldera, la exergía destruida aumenta a medida que crece la presión del estado 5, ya que el sistema requiere un mayor flujo masico de combustible para cumplir los requerimientos de la turbina, como resultado aumentando el calor de entrada en la caldera.

6. ANÁLISIS COMPARATIVO DE LOS RESULTADOS OBTENIDOS

Tomando la investigación "Diseño de un sistema de generación termoeléctrica a partir de la cascarilla de arroz, para satisfacer la demanda energética de la empresa agroindustrias Mhil SAC, Picota – 2018" realizada por Ríos de La Universidad Cesar Vallejo [45], donde a través de un ciclo Rankine básico convencional utilizando cascarilla de arroz como combustible busca la generación de energía eléctrica, se realiza un análisis comparativo para confrontar resultados y lograr conocer semejanzas y/o diferencias, logrando obtener un análisis de coherencia en los resultados y así determinar la confiabilidad de la metodología utilizada en esta investigación.

La metodología usada para realizar el análisis comparativo es utilizar los parámetros de entrada planteados en la investigación seleccionada, tomando específicamente el calor de entrada en la caldera, datos técnicos de la turbina y las eficiencias isentrópicas en la turbina y la bomba, presentados en la tabla 56.

Tabla 56.

Parámetros							
Calor de entrada	5.129,62	kJ/s					
Eficiencias consideradas							
η isoentrópicas Turbina	0,8	-					
η isoentrópicas Bomba	0,8	-					
Turbina							
Potencia Max	1.330	kW					
T entrada	600	°C					
P entrada	10.000	kpa					
P salida	200	kpa					

Parámetros de la investigación seleccionada

Nota. En la tabla se muestran los parámetros de la investigación "Diseño de un sistema de generación termoeléctrica a partir de la cascarilla de arroz, para satisfacer la demanda energética de la empresa agroindustrias Mhil SAC, Picota – 2018". Tomado de: https://repositorio.ucv.edu.pe/handle/20.500.12692/27115

Estos valores se ingresan en la base de cálculo utilizada en esta investigación, con ayuda de la extensión de Microsoft Excel, CoolProp, para obtener los resultados del ciclo y lograr realizar el análisis comparativo en el ciclo Rankine básico convencional. En la tabla 57 se presenta los resultados aplicando la metodología utilizada en esta investigación.

Tabla 57.

Parámetros	Resultados propios	Resultados investigación seleccionada	Unidades
Flujo masico orgánico	0,5806	0,3455	kg/s
Flujo de vapor	1,651	1,6511	kg/s
Potencia bomba	21,09	21,41	kW
Q condensador	3.821,19	3.821,03	kW
Wneta	1.308,91	1.308,59	kW
ηth	25,52%	25,51%	-

Resultados propios y de la investigación seleccionada

Nota. En la tabla se muestran los resultados obtenidos aplicando la metodología utilizada en esta investigación en el diseño del ciclo Rankine convencional.

A través de la tabla 57 se comparan los resultados obtenidos aplicando la metodología utilizada en esta investigación, con los resultados obtenidos en la investigación seleccionada. Donde se puede evidenciar una diferencia entre los flujos masicos orgánicos de combustible utilizados, debido a que en la investigación seleccionada no se especifica los datos que se presentan en la combustión de la cascarilla de arroz, como la temperatura de flama adiabática y la temperatura de los gases de combustión a la salida de la caldera. Sin embargo, se presenta una similitud en los resultados obtenidos como en la eficiencia neta del ciclo, comprobando que la metodología utilizada para el desarrollo de esta investigación arroja resultados coherentes.

Con los parámetros de la investigación "Diseño de un sistema de generación termoeléctrica a partir de la cascarilla de arroz, para satisfacer la demanda energética de la empresa agroindustrias Mhil SAC, Picota – 2018" se realiza el cálculo en el diseño más optimo encontrado en esta investigación para analizar las mejoras obtenidas. Al aplicar el ciclo Rankine con el sistema de secado para aprovechar el

exceso de energía generada y el uso de un intercambiador de calor para realizar el precalentamiento del fluido antes de entrar a la caldera.

Tabla 58.

Resultados de investigación seleccionada en el ciclo más optimo

Parámetros	Resultados propios	Unidades
Flujo masico orgánico	2090,25	kg/s
Flujo de vapor	2,19	kg/s
Potencia bomba	21,09	kW
Q condensador	3.822,59	kW
Wneta	2.273,86	kW
ηth	44,33%	-

Nota. En la tabla se muestran los resultados obtenidos tomando los resultados de la investigación seleccionada, aplicando la metodología utilizada en esta investigación en el diseño del ciclo más optimo obtenido.

Se evidencia que se logra aumentar la eficiencia térmica del ciclo hasta un 44% gracias al aprovechamiento de la energía eléctrica y térmica, debido a la implementación de los equipos y configuraciones planteadas en estada investigación.

7. ANÁLISIS ECONÓMICO DEL CICLO RANKINE EN FUNCIÓN DEL ANÁLISIS EXERGÉTICO Y DE LAS EMISIONES DE DIÓXIDO DE CARBONO REDUCIDAS

7.1 Pérdidas económicas en función del análisis exergético

Al obtener la exergía destruida en kW de cada uno de los equipos presentes en el ciclo más optimo obtenido en esta investigación, se realiza la multiplicación por las horas de funcionamiento en el mes (720 horas) por la cantidad de exergía destruida, para conocer las pérdidas en kWh al mes de cada equipo, donde a mayor exergía destruida mayores son las pérdidas económicas. Sabiendo que la tarifa del kWh en promedio para la industria en el mes de mayo del año 2021 de la empresa Enerca, que tiene cobertura en la zona donde se encuentra la planta Diana Corporación / Vía Morichal, es de 620,48 pesos colombianos por Kilovatio hora (COP kWh) [46]. Se obtiene las pérdidas económicas de cada uno de los equipos de ciclo Rankine más optimo obtenido en la investigación, presentadas en la tabla 59.

Tabla 59.

Equipo	Turbina	Condensador Bomba		ba	Mezclador	Unidades		
ΔSirr.	0,75	0,00		0,02 1,09		kJ/K*s		
Ex Dest.	222,18	0,00		6,76	324,95	kW		
horas /mes	720	720		720	720	h		
Perdidas	159.970,63	0,00	4.8	65,62	233.961,83	kWh		
Perdidas \$	99.258.575	0,00	3.01	9.018	145.168.637	\$		
Equipo	Intercambiador	Caldera	a	Secador		Unidades		
ΔSirr.	1,02		12,00		0,24	kJ/K*s		
Ex Dest.	303,29	3	3.579,14		70,46	kW		
horas /mes	720		720		720 720		720	h
Perdidas	218.367,64	2.576.977,78		50.734,75		kWh		
Perdidas \$	135.492.755	1.598.	963.175	963.175 31.479.900		\$		

Pérdidas económicas en los equipos

Nota. En la tabla se muestran los resultados de la las pérdidas económicas en cada uno de los equipos.

Las mayores pérdidas económicas se presentan en los equipos que tienen una exergía destruida mayor, haciendo énfasis especialmente en la caldera, ya que es el equipo que presenta una mayor transferencia de calor, que se representa en elevadas

pérdidas económicas, por esta razón se debe trabajar en reducir la exergía destruida en la caldera, para disminuir las pérdidas económicas en el ciclo.

7.2 Emisiones de dióxido de carbono mediante la combustión de la cascarilla de arroz

Con el objetivo de cuantificar las reducciones de las emisiones de CO₂ de la combustión de la cascarilla de arroz, se realiza una comparación de las emisiones generadas por termoeléctricas que utilizan gas natural y carbón como combustible, en la tabla 60 se presentan los factores de emisiones de CO₂ de los combustibles a comparar obtenidos de la UPME [47].

Tabla 60.

Factor de emisiones de CO2 combustibles fósiles

Combustible	Factor Emisión CO2	Unidades
Carbón Genérico	2.534,81	kg CO2/Ton
Gas Natural Genérico	1,98	kg CO2/m3
Cascarilla de arroz	1.553,25	kgCO2/Ton

Nota. En la tabla se representa el factor de emisiones de CO₂ para el carbón genérico, el gas natural genérico y la cascarilla de arroz.

Es importante conocer el flujo de emisiones de CO₂ generadas por la combustión de la cascarilla de arroz, en la tabla 61 se muestra el resultado del cálculo para el ciclo "Flujo masico orgánico máximo de combustible"

Tabla 61.

Emisiones de CO2 de la cascarilla de arroz

Emisiones CO2 Case	Unidades	
Flujo cascarilla	4.108,97	kg/h
	4,11	Ton/h
Emisiones CO2	6.382,26	kgCO2/h

Nota. En la tabla se representa las emisiones de CO_2 de la cascarilla de arroz.

Para el cálculo de las emisiones de CO₂ reducidas se realiza a través de un análisis comparativo, tomando como referencia las emisiones producidas por Termodorada 1

y por Zipa 2, que utilizan como combustible gas natural y carbón respectivamente, en la tabla 62 se presentan los resultados [48].

Tabla 62.

Termoeléctrica	Termodorada 1 Gas Natural	Unidades	Zipa 2 Carbón	Unidad
Consumo Combustible	2.224.567,81	m³/año	22.631,42	Ton/año
Capacidad efectiva	51	MW/año	34	MW/año
neta	51.000	kW/año	34.000	kW/año
Emisionos do CO	4.405.979,00	kg CO₂/año	57.366.417,62	kg CO₂/año
Emisiones de CO ₂	4.405,98	Ton. CO₂/año	57.366,42	Ton. CO₂/año

Emisiones de CO₂ de Termodorada 1 y Zipa 2

Nota. En la tabla se representan las emisiones de CO₂ de Termodorada 1 y Zipa 2.

Calculando la cantidad aproximada de combustible (gas natural y carbón) que es necesario para la producción de los 3,95 MW de energía requeridos por la planta Diana Corporación / Vía Morichal, mostrado en la tabla 27, se realiza el cálculo de las emisiones que se generan haciendo uso de los combustibles fósiles.

Mediante el uso de cascarilla de arroz como combustible a través del ciclo Rankine es posible autoabastecer energéticamente en un 63% de la energía necesaria por la planta Diana Corporación / Vía Morichal, que equivale a los 2,5 MW producidos por la turbina.

Debido a que la utilización de la biomasa como combustible con fines energéticos genera emisiones de CO₂ que se pueden considerar neutras, donde se igualan la retención y la liberación de CO₂ equivalente, siempre y cuando se empleen cantidades máximo iguales a la producción de biomasa del sistema del que se está obteniendo, ya que el CO₂ emitido por la combustión de la cascarilla de arroz ha sido absorbido previamente en el proceso de fotosíntesis natural del crecimiento de la planta [49]. Tomando en cuenta que el 37% restante de energía necesario por la planta Diana Corporación / Vía Morichal, se debería generar a partir de combustibles fósiles, se calcula aproximadamente el nuevo consumo de combustible fósil necesario, para así

conocer las nuevas emisiones de CO₂, y, por lo tanto, obtener la diferencia equivalente a las emisiones reducidas utilizando la cascarilla de arroz como combustible.

En la tabla 63 se muestras las emisiones de CO₂ reducidas implementado el ciclo Rankine utilizando cascarilla de arroz como combustible.

Tabla 63.

Emisiones de CO₂ reducidas

Emisiones de CO2									
-	Gas natural	Unidades	Carbón	Unidades					
Consumo de combustible Molino 100%	172.294,96	m ³ Gas. Naño	2.629,24	Ton Carbón					
Emisiones CO ₂	341.247,39	kg de CO₂-año	6.664.627,93	kg CO₂ /Año					
Nuevo consumo 37%	63.247,52	m ³ Gas. N.	965,16	Ton Carbón					
Nuevas emisiones	125.268,03	kg CO₂/Año	2.446.508,99	kg CO ₂ /Año					
Emisiones CO ₂ reducidas	215.979,36	kg CO₂/Año	4.218.118,94	kg CO ₂ /Año					

Nota. En la tabla se representan las emisiones de CO₂ reducidas.

En la tabla 63 se ve reflejado una importante disminución en las emisiones de CO₂ utilizando cascarilla de arroz como combustible, tanto para el proceso de generación de energía utilizando gas natural como al utilizar el carbón, evidenciando los beneficios del uso de esta biomasa para la generación de energía eléctrica. Esto significa una disminución en el impacto ambiental generado en la producción de energía eléctrica.

7.2.1 Impacto ambiental

En la siguiente figura, se presentan las ventajas o impacto ambiental que significa el uso de la cascarilla de arroz como combustible [50].

Nota. En la figura se presentan los beneficios ambientales que genera el uso de la cascarilla de arroz como combustible. Tomado de : Gobierno de Mexico, «gob.mx,» [En línea]. Disponible: https://www.gob.mx/semarnat/articulos/beneficios-de-usar-energiasrenovables-172766. [Último acceso: 3 Junio 2021].

7.3 Beneficios Legales Según ley 1715 de 2014

Las reducciones de CO₂ a partir de la utilización de biomasa para la generación de energía eléctrica permite acceder a beneficios legales en Colombia determinados por

la Ley 1715 de 2014, es necesario tener en cuenta el marco normativo y las autoridades competentes presentadas en la tabla 64. [11]

Tabla 64.

Marco Normativo Ley 1715 de 2014

Ley	Decreto	Resolución
	Decreto 2143 de 2015 del	Resoluciones 520 y 638 de 2007 y Resolución 143 de 2016 de la UPME- Registro de Proyectos.
Ley 1715 de 2014 Art. 11, 12, 13 y 14	Ministerio Minas y Energía, Hacienda y Crédito Público, Comercio, Industria y Turismo y de Ambiente y Desarrollo Sostenible	Resolución 045 de 2016 de la UPME.
		Resolución 1283 de 2016 del MinAmbiente.
		Resolución 186 de 2012 del MinAmbiente.

Nota.En la tabla 64 se presenta el marco normativo y autoridades competentes establecidas por la ley1715 de 2014.Tomado de: (UPME) Unidad de Planeación Minero Energética, «Unidad de PlaneaciónMineroEnergética(UPME),»2014.[Enlínea].Disponible:https://www1.upme.gov.co/Documents/Cartilla_IGE_Incentivos_Tributarios_Ley1715.pdf.[Últimoacceso: 28 10 2020].[UPME].[Último

7.3.1 Finalidad de la Ley 1715 de 2014

El objetivo del marco normativo de la ley 1715 de 2014 es «Orientar las políticas públicas y definir los instrumentos tributarios, arancelarios, contables y de participación en el mercado energético colombiano que garanticen el cumplimiento de los compromisos adquiridos por el Gobierno Nacional, Incentivar la penetración de las Fuentes No Convencionales de Energía, principalmente aquellas de carácter renovable, en el sistema energético colombiano, la eficiencia energética y la respuesta de la demanda en todos los sectores y actividades, con criterios de sostenibilidad medioambiental, social y económica, Estimular la inversión, la investigación y el desarrollo para la producción y utilización de energía a partir de

Fuentes No Convencionales de Energía, principalmente aquellas de carácter renovable, mediante el establecimiento de incentivos tributarios, arancelarios o contables» [11].

Figura 49.

Finalidad de la Ley 1715 de 2014

Nota. En la figura se ilustra el propósito de la Ley 1715 de 2014. Tomado de: (UPME) Unidad de Planeación Minero Energética, «Unidad de Planeación Minero Energética (UPME),» 2014. [En línea]. Disponible: https://www1.upme.gov.co/Documents/Cartilla_IGE_Incentivos_Tributarios_Le y1715.pdf. [Último acceso: 28 10 2020].

7.3.2 Incentivos Ley 1715 de 2014

Para aplicar a los incentivos estipulados por la Ley 1715 de 2014 es necesario cumplir con los siguientes requisitos tomado de la UPME [11]:

Certificación expedida por la UPME, avalando el proyecto FNCE, elementos, equipos, maquinaria.

- Certificación de incentivo ambiental que expide el ministerio de ambiente y desarrollo sostenible.
- Certificación emitida por la autoridad nacional de licencias ambientales de equipos y servicio excluidos del impuesto, requisito especial para obtener la exclusión del IVA en la adquisición de bienes y servicios.

En la tabla 65 se describen cada uno de los incentivos a los que se pueden acceder por cumplimiento de los requisitos de la Ley 1715 de 2014, tomados de la UPME [11].

Tabla 65.

Incentivos de la Ley 1715 de 2014

Incentivo	Deducción especial en la determinación del impuesto sobre la renta						
	 Artículo 11 de la Ley 1715 de 2014. 						
Artículo	Artículo 2.2.3.8.2.1. y siguientes del Decreto 2143 de 2015						
	(incorporado al Decreto 1073 de 2015).						
	Descripción						
Los contribuy	entes declarantes del impuesto sobre la renta que realicen inversión						
en investigac	ión, desarrollo, producción y utilización de energía FNCE, tendrán						
derecho a dis	minuir hasta un 50% del valor de la inversión.						
Incentivo	Depreciación acelerada						
	 Artículo 14 de la Ley 1715 de 2014. 						
Artículo	 Artículo 2.2.3.8.5.1. del Decreto 2143 de 2015 (incorporado al 						
	Decreto 1073 de 2015).						
	Descripción						
Incentivo exc	clusivamente para las nuevas inversiones a partir de FNCE, en						
especial aplicado a maquinaria, equipos y obras civiles.							
Incentivo	Exclusión de bienes y servicios de IVA						
	 Artículo 12 de la Ley 1715 de 2014. 						
Artículo	 Artículo 2.2.3.8.3.1. del Decreto 2143 de 2015 (incorporado al 						
	Decreto 1073 de 2015).						
	Ley 1715 art. 12, Decreto 2143 Artículo 2.2.3.8.3.1						
	Descripción						
Por la compr	a de equipos, elementos y maquinaria, nacionales e importados o						
servicios des	tinados a nuevas inversiones para la producción y utilización de						
energía FNC							
Incentivo	Exención de gravámenes arancelarios						
Artículo	Ley 1715 art. 13, Decreto 2143 de 2015 Arts. 2.2.3.8.4.1.						
	Descripción						
Eximir del page	o de derechos arancelarios de importaciones de maquinaria, equipos,						
materiales e in	sumos en proyectos FNCE.						
Nota. En la tabla	se exponen los beneficios tributarios de la Ley 1715 de 2014. Tomado de: (UPME						
Unidad de Planea	ación Minero Energética, «Unidad de Planeación Minero Energética (UPME),» 2014						
[En	línea]. Disponible						

https://www1.upme.gov.co/Documents/Cartilla_IGE_Incentivos_Tributarios_Ley1715.pdf. [Último acceso: 28 10 2020].

Se pueden acceder a incentivos tributarios legales en Colombia, al hacer uso de Fuentes No Convencionales de Energía FNCE, al diversificar el sistema energético colombiano a través de proyectos FNCE, como la utilización de biomasa como la cascarilla de arroz para la generación de energía a través de un ciclo Rankine y así lograr la reducción del impacto ambiental.

CONCLUSIONES

A través del análisis próximo realizado de forma teórica de la cascarilla de arroz, donde se obtuvieron los siguientes resultados: Material volátil de 60,23%, Carbono fijo 16,33% y Cenizas 18,9% aproximadamente, con lo cual se concluye que es elevado el contenido de material volátil y cenizas en comparación a otras biomasas, por esta razón es necesario tener en cuenta los residuos generados por la combustión de la cascarilla de arroz, debido al alto contenido de elementos en las cenizas y en los humos.

Se obtuvo el poder calorífico de la cascarilla de 14,42 MJ/kg, el cual representa un valor bajo en comparación de los combustibles convencionales como el carbón que cuenta con un poder calorífico de 32.6 MJ/kg, por esta razón la cascarilla de arroz no se usa por lo general como fuente principal de energía, pero se puede usar como combustible complementario para la producción de energía eléctrica, teniendo en cuenta que es necesario contar con la disponibilidad de grandes cantidades.

En el análisis de proceso de combustión de la cascarilla de arroz, se logra obtener la temperatura de flama adiabática, donde se calcula la relación del porcentaje de aire estequiométrico por cantidad de combustible, para conocer las condiciones de una combustión completa, entonces se puede concluir que existe una relación inversamente proporcional entre la temperatura de flama adiabática y el porcentaje de exceso de aire presentes en la reacción de combustión.

Las eficiencias térmicas promedio de un ciclo Rankine convencional son del 30%, la cual puede ser mejorada a través del uso de equipos y configuraciones que ayuden a aumentar el aprovechamiento energético, generado a través de la combustión de la cascarilla de arroz, también es posible aumentar la eficiencia térmica del ciclo en mayor medida cuando se realiza el aprovechamiento en forma de energía térmica por medio del proceso de secado de arroz.

Por medio del análisis termodinámico se logró obtener los resultados para diferentes configuraciones, donde la configuración más apropiada tiene la capacidad de generar 2.500 kW de energía eléctrica, 1.244,24 kW de energía térmica, con una eficiencia

135

térmica del 53% y una eficiencia exergética del 66%, logrando abastecer en un 63% los requerimientos dados por la planta Diana Corporación/Vía Morichal, implementando una recirculación a través de un calentador abierto, un intercambiador de calor para el aprovechamiento de la energía remante de los gases residuales que salen de la caldera y un proceso de secado de arroz que permite el aprovechamiento de la energía térmica del exceso de vapor producido, haciendo uso de un flujo masico de combustible máximo de 3455,82 kg/h de cascarilla de arroz, logrando la mejor relación de lo que entra y se obtiene en el ciclo.

Es posible mejorar los resultados cuando se realiza un aumento en la diferencia de las temperaturas de entrada y salida de la caldera, sin embargo, esto implica la implementación de una caldera más robusta, un aumento en los costos y mayores dificultades para la implementación del ciclo.

El análisis exergético permite evidenciar los componentes que presentan mayor destrucción de exergía, lo cual representa altas ineficiencias termodinámicas, la caldera es el equipo que representa el mayor porcentaje de exergía destruida en el ciclo, por esta razón, el modo para obtener un ciclo más eficiente es logrando reducir las pérdidas debido a la transferencia de calor presente en este equipo. Esta ineficiencia termodinámica se ve reflejada en las pérdidas económicas que están relacionadas directamente con la exergía destruida de la caldera, por esta razón se debe trabajar en disminuir las pérdidas especialmente en la caldera.

En el condensador se presenta un resultado de una exergía destruida de cero, debido a que la relación matemática entre el calor y la temperatura son exactamente iguales al cambio de entropía, lo cual no significa que el proceso sea isentrópico, irreversible y que la eficiencia sea del 100%, debido a que no es posible porque siempre se presenta una generación de entropía asociado al calor.

El uso de Cascarilla de arroz como combustible para la generación de energía reduce considerablemente las emisiones de gases de efecto invernadero, debido a que las emisiones producidas por la combustión de la biomasa se consideran neutras, ya que los gases de efecto invernadero emitidos por la combustión de la cascarilla de arroz han sido absorbido previamente en el proceso de fotosíntesis. [51]

BIBLIOGRAFÍA

- J. Sierra, «Repositorio Unisucre,» 2009. [En línea]. Available: https://repositorio.unisucre.edu.co/jspui/bitstream/001/211/2/333.794S571.pdf. [Último acceso: 3 Febrero 2021].
- [2] C. Lozano, «Repositorio UNAD,» 2020. [En línea]. Available: https://repository.unad.edu.co/bitstream/handle/10596/33698/cllozanor.pdf?se quence=1&isAllowed=y. [Último acceso: 19 Abril 2021].
- [3] Universidad Industrial de Santander. Centro de Estudios e Investigaciones Ambientales, «Unidad De Planeacion Minero Energetica,» 2011. [En línea]. Available: https://www1.upme.gov.co/siame/Paginas/atlas-del-potencialenergetico-de-la-biomasa.aspx. [Último acceso: 29 09 2020].
- [4] H. A. J. R. Ing Javier Urquizo, «DSpace en ESPOL,» 12 Diciembre 2011. [En línea]. Available: https://www.dspace.espol.edu.ec/handle/123456789/19195.
 [Último acceso: 29 09 2020].
- [5] REPÚBLICA DE COLOMBIA, Ministerio de Minas y Energía, «UPME,» 2015. [En línea]. Available: http://www.upme.gov.co/docs/pen/pen_idearioenergetico2050.pdf. [Último acceso: 02 Octubre 2020].
- [6] M. C. Piñeiro, «redladrilleras,» 2010. [En línea]. Available: http://www.redladrilleras.net/assets/files/a8832ab5c8e44f4b8bb1d3250fdf2d45
 .pdf. [Último acceso: 01 10 2020].
- [7] ProBio, «ProBio,» 2019. [En línea]. Available: http://www.probio.dne.gub.uy/cms/index.php/generacion/plantas-de-operacion. [Último acceso: 01 10 2020].
- [8] Super-Brix S.A, «Repositorio Colciencias,» 1997. [En línea]. Available: http://repositorio.colciencias.gov.co/bitstream/handle/11146/2120/1997-V15-N4-Articulos-Art%204.10.pdf?sequence=1&isAllowed=y. [Último acceso: 01 10 2020].
- [9] FOCER, «bio-nica.info,» 2002. [En línea]. Available: http://www.bionica.info/biblioteca/BUNCA2002Biomasa.pdf. [Último acceso: 28 10 2020].
- [10] E. Vásquez y J. Herrera, «redalyc,» 2006. [En línea]. Available: https://www.redalyc.org/pdf/1799/179914075011.pdf. [Último acceso: 15 Febrero 2021].
- [11] (UPME) Unidad de Planeación Minero Energética, «Unidad de Planeación Minero Energética (UPME),» 2014. [En línea]. Available: https://www1.upme.gov.co/Documents/Cartilla_IGE_Incentivos_Tributarios_Le y1715.pdf. [Último acceso: 28 10 2020].

- [12] R. Al-Karany, «Repositorio comun,» 2013. [En línea]. Available: https://comum.rcaap.pt/bitstream/10400.26/17064/1/RaulDiserta%C3%A7aoJu nio2013.pdf. [Último acceso: 1 Marzo 2021].
- M. A. B. Yunes A. Cengel, «joinville,» 2011. [En línea]. Available: http://joinville.ifsc.edu.br/~evandro.dario/Termodin%C3%A2mica/Material%20 Did%C3%A1tico/Livro%20-%20Cengel/Termodinamica%20-%20Cengel%207th%20-%20espanhol.pdf. [Último acceso: 29 Octubre 2020].
- [14] A. Valverde, B. Sarria y J. Monteagudo, «revistasutp.edu.co,» Diciembre 2007.
 [En línea]. Available: https://revistas.utp.edu.co/index.php/revistaciencia/article/view/4055. [Último acceso: 26 Febrero 2021].
- [15] C. Arenas, F. Campuzano, M. Betancur, T. Tamayo, R. Pedrozo y J. Marinez, «Virtulapro,» Enero 2017. [En línea]. Available: https://www.virtualpro.co/biblioteca/valorizacion-de-cascarilla-de-arroz-para-laproduccion-de-calor-y-materiales-abrasivos-para-el-sector-textil. [Último acceso: 1 Marzo 2021].
- P. N. N. Williams, «science direct,» Junio 2000. [En línea]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0360544200000098.
 [Último acceso: 1 Marzo 2021].
- [17] M. Echeverría y O. López, «1Library.co,» Mayo 2012. [En línea]. Available: https://1library.co/document/y968d5jy-caracterizacion-energetica-cascarillaarroz-aplicacion-generacion-energia-termoelectrica.html. [Último acceso: 1 Marzo 2021].
- [18] R. C. Flagan y J. H. S. Seinfeld, «Google boks,» 2012. [En línea]. Available: https://books.google.com.co/books?id=-YZHbjUo9IAC&pg=PA59&lpg=PA59&dq=To+understand+the+formation+of+p ollutants+in+combustion+systems,+we+must+first+under%C2%ADstand+the+ nature+of+the+fuels+being+burned,+the+thermodynamics+of+the+combustion +pro%C2%ADcess,. [Último acceso: 26 Mayo 2021].
- [19] Quimitube, «Quimitube,» [En línea]. Available: https://www.quimitube.com/wpcontent/uploads/2013/04/Tabla-entalpias-estandar-formacion-compuestosorganicos-e-inorganicos.pdf. [Último acceso: 15 Febrero 2021].
- [20] H. Portero, «Repositorio Ruidera,» 2018. [En línea]. Available: https://ruidera.uclm.es/xmlui/handle/10578/18416. [Último acceso: 17 04 2021].
- [21] G. Porras, «Cenidet,» 1995. [En línea]. Available: https://www.cenidet.edu.mx/subplan/biblio/seleccion/Tesis/MM%20Gladys%20 Lizbeth%20Porras%20Loaiza%201995.pdf. [Último acceso: 19 Junio 2021].
- [22] UPME, «SIEL,» 2007. [En línea]. Available: http://www.siel.gov.co/siel/documentos/documentacion/Demanda/Agroindustri al/ILM_Tomo_I.pdf. [Último acceso: 19 Abril 2021].

- [23] Fedearroz, «Federacion Nacional De Arroceros,» [En línea]. Available: http://www.fedearroz.com.co/new/plantas.php. [Último acceso: 19 Abril 2021].
- [24] EL NUEVO DIA, «El nuevo dia,» 22 Noviembre 2019. [En línea]. Available: http://www.elnuevodia.com.co/nuevodia/actualidad/economica/441896-entolima-opera-molino-de-arroz-que-produce-su-propia-energia. [Último acceso: 23 Abril 2021].
- [25] P. Patiño, «Repositorio Universidad de Santander,» 2014. [En línea]. Available:

https://repositorio.udes.edu.co/bitstream/001/2882/1/Biomasa%20Estudio%20 de%20factibilidad%20para%20implementar%20un%20sistema%20de%20gen eraci%C3%B3n%20de%20energ%C3%ADa%20a%20partir%20de%20los%20 residuos%20vegetales.pdf. [Último acceso: 30 Abril 2021].

- [26] H. Puente, «e-archivo.uc3m.es,» Junio 2017. [En línea]. Available: https://earchivo.uc3m.es/bitstream/handle/10016/27777/TFG_Elena-Maria_Puente_Aranda_2017.pdf?sequence=1&isAllowed=y. [Último acceso: 30 Abril 2021].
- [27] S. Martinez, «tdx.cat,» Enero 2009. [En línea]. Available: https://www.tdx.cat/bitstream/handle/10803/7920/tsml1de1.pdf. [Último acceso: 30 Abril 2021].
- [28] E. Oralli, «Ontario Tech university,» December 2010. [En línea]. Available: https://ir.library.dcuoit.ca/xmlui/bitstream/handle/10155/142/Oralli_Emre.pdf?sequence=1. [Último acceso: 27 Mayo 2021].
- [29] N. Javanshir, S. Seyed y m. Rosen, «Virtual pro,» 18 Junio 2019. [En línea]. Available: https://www.virtualpro.co/biblioteca/analisis-termodinamico-yexergoeconomico-de-un-nuevo-ciclo-combinado-compuesto-de-refrigeracionpor-compresion-de-vapor-y-ciclos-de-rankine-organicos. [Último acceso: 27 Mayo 2021].
- [30] M. Salazar, A. Mora, A. Bonilla, L. Raúl y H. Lugo, «Revistas unal,» 25 Octubre 2017. [En línea]. Available: https://revistas.unal.edu.co/index.php/dyna/article/view/66126/63487. [Último acceso: 27 Mayo 2021].
- [31] N. Cirincione, «Mountain Scholar Digital Collections of Colorado & Wyoming,» 2011. [En línea]. Available: https://mountainscholar.org/bitstream/handle/10217/70681/Cirincione_colostat e_0053N_10857.pdf?sequence=1&isAllowed=y. [Último acceso: 27 Mayo 2021].
- [32] R. Garrido, «Bibliotecas PUCV Catalogo de recursos Bibliograficos,» 2020.
 [En línea]. Available: http://opac.pucv.cl/pucv_txt/txt-0500/UCB0512_01.pdf.
 [Último acceso: 27 Mayo 2021].

- [33] Ministerio de ambiente, «Minambiente.gov.co,» 5 Junio 2008. [En línea]. Available: https://www.minambiente.gov.co/images/normativa/app/resoluciones/f0-Resoluci%C3%B3n%20909%20de%202008%20%20-%20Normas%20y%20estandares%20de%20emisi%C3%B3n%20Fuentes%20 fijas.pdf. [Último acceso: 11 Junio 2021].
- [34] Virtualexpogroup, «directindustry,» [En línea]. Available: https://www.directindustry.es/prod/siemens-power-genereration/product-23116-2019855.html. [Último acceso: 12 Mayo 2021].
- [35] Virtualexpo group, «direct industry,» [En línea]. Available: https://www.directindustry.es/prod/siemens-power-genereration/product-23116-2019861.html. [Último acceso: 12 Mayo 2021].
- [36] R. Aguerre, «Biblioteca digital,» 1984. [En línea]. Available: https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n1829_Aguerre.pd f. [Último acceso: 15 Mayo 2021].
- [37] M. Arrastria, D. Castillo y A. Hrtnadez, «Organizacion de las naciones unidad para la alimentacion y la agricultura,» 2010. [En línea]. Available: https://agris.fao.org/agrissearch/search.do;jsessionid=5298CD4FB5B4ED5C3E1026E4D7ADC5B4?req uest_locale=es&recordID=CU2009300037&sourceQuery=&query=&sortField= &sortOrder=&countryResource=&agrovocString=&advQuery=¢erString=& enableField=. [Último acceso: 15 Mayo 2021].
- [38] Organizacion de las naciones unidas para la alimentacion y la agricultura, «Organizacion de las naciones unidas para la alimentacion y la agricultura,» [En línea]. Available: http://www.fao.org/3/x5027s/x5027S05.htm. [Último acceso: 15 Mayo 2021].
- [39] A. Allebrandt, «Arroz corrientes,» [En línea]. Available: https://www.acpaarrozcorrientes.org.ar/Jornadas-2011/3%20-%20Kepler%20Weber%20-%20Secado%20y%20almacenaje%20de%20arroz.pdf. [Último acceso: 15 Mayo 2021].
- [40] M. Syahrul, Y. Mirmanto y H. yS, «Springer link,» 2018. [En línea]. Available: https://link.springer.com/article/10.1007/s00231-018-2414-3. [Último acceso: 15 Mayo 2021].
- P. Cifuentes, «Repositorio de la universidad Cesar Vallejo,» 2015. [En línea]. Available: https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/2924/Sifuentes_ GPP.pdf?sequence=1&isAllowed=y. [Último acceso: 15 Mayo 2021].
- [42] Direct Industry, «Direct Industry,» [En línea]. Available: https://www.directindustry.es/prod/spomasz-wronki-grupa-sfpi/product-60070-1696665.html. [Último acceso: 19 Junio 2021].

- [43] GEA, «GEA,» [En línea]. Available: https://www.gea.com/es/products/dryersparticle-processing/rotary-dryers-coolers/rotary-dryer.jsp. [Último acceso: 23 Abril 2021].
- [44] Uralita, «Enginyers agrónoms de Catalunya,» [En línea]. Available: https://www.agronoms.cat/media/upload/editora_24/Cavitacion%20espa%C3 %B1ol%202_editora_241_90.pdf. [Último acceso: 11 Junio 2021].
- [45] F. Rios, «Repositorio de la universidad Cesar Vallejo,» 2018. [En línea]. Available: https://repositorio.ucv.edu.pe/handle/20.500.12692/27115. [Último acceso: 9 Junio 2021].
- [46] Enerca, «Enerca,» Mayo 2021. [En línea]. Available: https://www.enerca.com.co/media/12mdzhfr/tarifa-firma.pdf. [Último acceso: 13 Junio 2021].
- [47] M. Medina, D. Villalba, F. Saavedra, J. Carrasco y W. Rodríguez, «Acueducto agua y alcantarillado de Bogotá,» 2016. [En línea]. Available: https://www.acueducto.com.co/wps/html/resources/2018ag/huella_carbono/feb 12/18Anexo_17Factores_emision_herramienta_MCV_V6.pdf. [Último acceso: 12 Junio 2021].
- [48] J. Ramirez, «Biblioteca UPME,» 13 Marzo 2008. [En línea]. Available: https://bdigital.upme.gov.co/bitstream/001/961/2/InformeFinal.pdf. [Último acceso: 12 Junio 2021].
- [49] A. Romero, «Real academia de ciencias exactas fisicas y naturales de España,» 2010. [En línea]. Available: https://rac.es/ficheros/doc/00979.pdf. [Último acceso: 12 Junio 2021].
- [50] Gobierno de Mexico, «gob.mx,» [En línea]. Available: https://www.gob.mx/semarnat/articulos/beneficios-de-usar-energiasrenovables-172766. [Último acceso: 3 Junio 2021].
- [51] Fundación Universidad de América, «Manual Estructuración del Trabajo de Grado,» 2021. [En línea]. Available: https://www.uamerica.edu.co/wpcontent/documentos/pei/MN_01_Estructuracion_trabajos_de_grado_v3.pdf.

ANEXOS

ANEXO 1: CÁLCULOS TEMPERATURA DE FLAMA ADIABÁTICA

Elemento	Minimo	Maximo	Promedio	Mol/100g	Mol/Mol C		Mf	29,76			
С	39,60	41,13	40,37	3,36	1,00						
N	0,33	1,83	1,08	0,08	0,02		α	0,9737			
н	3,37	4,94	4,16	4,16	1,24						
0	35,30	37,52	36,41	2,28	0,68		Mf/Ma	0,22			
S	0,40	0,40	0,40	0,01	0,0037						
Ceniza	17,89	19,90	18,90		5,62	g/Mol C					
					,	5,					
	C	H1.24N0.02	S _{0.0037} O _{0.68}	$_{3} + \alpha(0_{2} + \alpha)$	$-3,76N_2$)	$- \rightarrow CO_2$	$+0,62H_2$	0 + 0,003	$7SO_2 + (3)$	$,76\alpha + 0,0$	$(1)N_2$
	<i></i>				0.54.11.)	60					
	CH _{1.24} N	0.0250.00370	0,68 + 0,9	$737(0_2 +$	$3,76N_2) -$	$\rightarrow co_2$	$+0,62H_20$	+0,0037	$SO_2 + (3,$	76 * 0, 973	$(7+0,01)N_2$
							1			I I	
Flemento	h	h_0		%Δire	a	C02	H2O	502	N2	02	т (К)
CO2	-393520.00	9364.00		100%	0 9737	1	0.62	0.0037	3.67	0.00	1852.66
420	2/1920.00	9904,00		200%	1 0474	1	0,62	0,0037	3,07	0,00	1224 51
1120	-241820,00	9504,00		200%	2,0211	1	0,02	0,0037	10.00	1.05	060.47
02	0,00	8009,00		300%	2,9211	1	0,62	0,0037	10,99	1,95	900,47
02	0,00	8682,00		400%	3,8948	1	0,62	0,0037	14,05	2,92	
1,24N0,02O0	-233770,60	-		500%	4,8685	1	0,62	0,0037	18,32	3,89	
100%	1	C02	0,62	H2O	3,67	N2	0,00	02	=	1	CH1,24N0,02O0,68
				_		-					
	1	h _{co2}	0,62	h _{H20}	3,67	h_{N_2}	=	357007,15			
Aproximacio	67472,9905										
			Debido a que el compuesto que mayor se presenta es el nitrógeno, por								
Aproximacio	2000K		consecu	uencia se to	ma este val	or aproxima	ado de la ten	nperatura a	2000 K		
		h	Т								
Interpola	cion para	354194,97	1840								
obtener la t	emperatura	358637,02	1860								
		357007,15	1852,66								
200%	1	C02	0.62	H2O	7 33	N2	0.97	02	=	1	CH1 24N0 02O0 68
200/0	-	002	0,02	1120	7,55	112	0,57	02		-	0,0200,00
	1	hea	0.62	$\overline{h}_{\mu,\rho}$	7 33	$\overline{h}_{}$	0.97	h.	_	307108 00	
	1		0,02	-H20	7,55	~~ _{N2}	0,97	<i>no</i> 2	-	337138,33	
Aprovimacio	40016 2242										
Aproximacio	40010,3242		Dobide				nroconta o	s ol nitrógo	no nor		
Anrovimacio	12001		Concoci	ioncia co to	ma osto val		e presenta e	s el filliogel	1200 K		
Aproximacio	12001		CUISECU					iperatura a	1300 K		
		1.	T		425000 45						
		n 402070 2	1		425000,45						
Interpola	ición para	402879,2	1240								
obteneriat	emperatura	395546,02	1220								
		39/198,99	1224,51								
300%	1	C02	0,62	H2O	10,99	N2	1,95	02	=	1	CH1,24N0,02O0,68
				_		-		_			
	1	h _{co2}	0,62	h _{H2} 0	10,99	h_{N_2}	1,95	h_{o_2}	=	437390,84	
Aproximacio	30039,061										
			Debido	a que el c	ompuesto q	ue mayor se	e presenta e	s el nitróger	no, por		
Aproximacio	1000K		consecu	uencia se to	ma este val	or aproxima	ado de la ten	nperatura a	1000 K		
		h	Т		457166,259						
Interpola	icion para	442190,451	970								
obtener la t	emperatura	437154,096	960								
		437390,84	960,47								

Ciclo Bankine Básico 3500KW						Combustió	Unidades	
<u> </u>		C. SIG Hallin				Fluio masico orgánico	4.622.70	Kg/h
	1		,	4		Eluio masico aire		Kg/h
				Tur	bina	Fluio masico gases	25.634.97	Kg/h
			-			Cp. Gases	1,15	KJ/Kg*K
							40.839.882,59	KJ/h
05						Color do outrodo (012)	11.344,41	KJ/S
Quemador Caldera		— ³			Calor de entrada (Q12)	11.344.411,83	W	
				-		11,34	MW	
						3.403.323,55	W	
			Condens	sador =	Potencia suministrada	3.403,32	KW	
				oondon	<u> </u>		3,40	MW
						Eficiencias (consideradas	
						η isoentrópicas Turbina	0,9	-
		2				η isoentrópicas Bomba	0,8	-
					6	η Térmica Ciclo	0,30	-
1		1.00	3	Bomba		Turbina D)-R SST 350	
Mas	a molar ele	mentos	Unidades			Potencia Max	3.500	KW
Ca	arbono	12	Kg/Kmol			T entrada	482	°C
Nit	trógeno	14	Kg/Kmol			P entrada	6.300	Кра
Hic	drógeno	1	Kg/Kmol			P salida	100	Кра
0	xigeno	16	Kg/Kmol			miv	4,27	Kg/s
Calor	especifico g	gases de co	mbustión					
Temper	ratura Prom.	1162,88	К					
Gas	CO2	H2O	N2					
%	19%	12%	69%					
а	22,26	32,24	28,90					
b	0,059810	0,001923	-0,001571					
с	-0,00003501	-0,00001055	0,000008081					
d	7,469E-09	-3,595E-09	-2,873E-09	Unidades				
Cp.	56,21	14,56	33,48	KJ/Kmol*K				
Cp.	1,28	0,81	1,20	KJ/Kg*K				
Cp. total		1,15		KJ/Kg*K				

ANEXO 2: CÁLCULOS CICLO RANKINE BÁSICO

Análisis termodinámico									
Sustancia	Gases de combustión								
Estado	Temperatura								
	K	°C							
1	1852,61	1579,46							
2	473,15	200							
Sustancia	Water								
-	T (°C)	P (Kpa)	h (KJ/Kg)	s (KJ/Kg*K)	m'v (Kg/s)	Vf (M3/Kg)			
3	100,42	6300	425,59	1,31	3,84	-			
4	482	6300	3376,40	6,80	3,84	-			
5s	99,61	100	2466,67	6,80	3,84	-			
5	99,61	100	2557,65	7,04	3,84	-			
6	99,61	100	417,50	1,30	3,84	0,001043			
Ciclo									
mʻv	3,84		Kg/s						
∆miv	-0,43		Kg/s						
	Bomba	Turbina							
Potencias	31,08	3500	KW						
Wneta	3468,92		KW						
ηth	31%		-						
		Ciclo Ranki	ne Básico 25	00KW			Combusti	ón	Unidades
-----------	---------------------------	-------------	--------------	-----------	----------	--------------	-----------------	---------------	----------
					_	Flujo masic	o organico	4.622,70	Kg/h
	1		4			Flujo ma	sico aire	21.012,27	Kg/h
			- i		Turbina	Flujo mas	ico gases	25.634,97	Kg/h
			-			Cp g	ases	1,15	KJ/Kg*K
								40.839.882,59	KJ/h
05					5	Color do oni	trada (012)	11.344.411,83	KJ/S
						Calor de en	uaua (Q12)	11.344,41	W
Quem	nador							11,34	MW
								3.403.323,55	W
	Cald	era		Con		Potencia su	ministrada	3.403,32	KW
				Conc				3,40	MW
						E	ficiencias	considerada	as
						η isoentrópi	cas Turbina	0,9	-
		2				η isoentróp	icas Bomba	0,8	-
		-			6	η Térmi	ca Ciclo	0,3	-
1			3	Bomba			Turbi	na D-R C	
Mas	sa molar ele	ementos	Unidades			Potenc	ia Max	2.500	KW
Ca	arbono	12	Kg/Kmol			Tent	rada	520	°C
Nit	trógeno	14	Kg/Kmol			P ent	rada	12.000	Кра
Hid	Irógeno	1	Kg/Kmol			P sa	lida	100	Кра
0)	xigeno	16	Kg/Kmol			m	v	2,705	Kg/s
Calo	<mark>r especifico</mark>	gases de co	mbustión						
Temper	ratura Prom.	1162,88	К						
Gas	CO2	H2O	N2						
%	19%	12%	69%						
а	22,260000	32,240000	28,900000						
b	0,059810	0,001923	-0,001571						
с	-0,00003501	-0,00001055	0,00008081						
d	7,469E-09	-3,595E-09	-2,873E-09	Unidades					
Cp.	56,21	14,56	33,48	KJ/Kmol*K					
Cp.	1,28	0,81	1,20	KJ/Kg*K					
Cp. total		1,15		KJ/Kg*K	<u>]</u>				

ANEXO 3: CÁLCULOS CICLO RANKINE BÁSICO

		Análisis	termodin	ámico			
Sustancia	Gases de c	ombustión					
Estado	Tempe	eratura					
ESIAUO	К	°C					
1	1852,61	1579,46					
2	473,15	200					
Sustancia	Wa	ter					
-	T (C°)	P (Kpa)	h (KJ/Kg)	s (KJ/Kg*K)	m v (Kg/s)	Vf (M3/Kg)	hg (Kj/Kg)
3	101,17	12000	433,02	1,31	3,82	-	-
4	520,00 12000		3403,39	6,56	3,82	-	2685,45
5s	99,61 100		2376,60	6,56	3,82	-	-
5	99,61	100	2479,28	6,83	3,82	-	-
6	99,61	100	417,50	1,30	3,82	0,001043	-
	Cicle	0					
miv	3,8	82	Kg/s				
Δmiv	1,1	11	Kg/s				
	Bomba Turbina						
Potencias	59,25 2.500		KW				
Wneta	2.440,75		KW				
ηth	22	%	-				

ANEXO 4: CICLO RANKINE MEZCLADO EN 6

	Combustión	1	Unidades
Flujo n	nasico organico	4.622,70	Kg/h
Flujo	o masico aire	21.012,27	Kg/h
Flujo	masico gases	25.634,97	Kg/h
	Cp gases	1,15	KJ/Kg*K
		40.839.882,59	KJ/h
Colord	o optrada (012)	11.344,41	KJ/S
Calor u	e entrada (Q12)	11.344.411,83	W
		11,34	MW
		3.403.323,55	W
Potenc	ia suministrada	3.403,32	KW
		3,40	MW
	Eficiencias co	onsideradas	
η isoen ⁻	trópicas Turbina	0,9	-
η isoen	trópicas Bomba	0,8	-
η Το	érmica Ciclo	0,3	-
	Turbina	D-R C	
Ро	tencia Max	2500	KW
	T entrada	520	°C
I	P entrada	12000	Кра
	P salida	100	Кра
	m'v	2,71	Kg/s
Bala	ince de energia n	nezclador	
Estados	Entradas (h*m [·])	Salidas (h*m v)	
4′′	2148,357016	-	
6	1129,482097	-	
6′	-	3277,839113	Unidades
h6´	936,	53	KJ/Kg

		Ar	nálisis termo	odinámico				
Sustancia	Gases de co	mbustión			Secado		Unidades	
Estado	Temper	ratura		m	iv	-6,10	Kg/s	
Estado	К	°C		Q de s	ecado	-4381,73	KW	
1	1852,61	1579,46		Masa c	le agua	-69.874,74	Kg/h	
2	473,15	200		Masa d	e arroz	-6987,474133	Kg/h	
Sustancia	Wat	er		hfg a 1	00 Kpa	2257,5	Kg/h	
-	T (C°)	P (Kpa)	h (KJ/Kg)	s (KJ/Kg*K)	m'v (Kg/s)	Vf (M3/Kg)	hg (Kj/Kg)	Calidad
3	1.782,86	12000	6.742,07	9,05	-3,40			
4	520	12000	3.403,39	6,56	-3,40		2.685,45	
4 tur	520	12000	3.403,39	6,56	2,7053			
4 sec	520	12000	3.403,39	6,56	-6,10			
4′	324,68	12000	2.685,45	5,49	-6,10			
4´´	104,68	100	2.685,45	7,39	0,80			
5s	99,61	100	2.376,60	6,56	2,7053			
5	99,61	100	2.479,28	6,83	2,7053			
6	99,61	100	417,50	1,30	2,7053	0,001043		
6′	99,61	100	936,53	2,70	3,5000	0,3903		23%
	Cic	lo						
miv	-3,4	10	Kg/s					
Δmiv	-6,1	.0	Kg/s					
	Bomba	Turbina						
Potencias	-21490,04547	2500	KW					
Wneta	19608	3,32	KW					
ηth	173	%	-					

		Ciclo Rankir	ne Básico 250	OKW			Combustión		Unidades
						Flujo masio	o orgánico	4.622,70	Kg/h
	1					Flujo ma	sico aire	21.012,27	Kg/h
		4		4 Tur.		Flujo ma	sico gases	25.634,97	Kg/h
					Turbina	Ср. (gases	1,15	KJ/Kg*K
- F		4	Sec.					40.839.882,59	KJ/h
	>				5	5 Calor de entrada (Q12)		11.344,41	KJ/S
_			Secado	r 🗖				11.344.411,83	W
Quem	lador							11,34	MW
									W
	Caldera			Cond	lensador 🔚	Potencia su	ıministrada	3.403,32	KW
			4	'				3,40	MW
					August -		Eficiencias co	nsideradas	
	-	_				η isoentróp	icas Turbina	0,9	-
	2-		Mezclador			η isoentróp	icas Bomba	0,8	-
			3	3' Bamba	6	η Térmi	ca Ciclo	0,3	-
		h		Bomba			Turbina	D-R C	
Ma	sa molar elen	nentos	Unidades			Potene	cia Max	2500	KW
Ca	irbono	12	Kg/Kmol			Ten	trada	520	°C
Nit	rógeno	14	Kg/Kmol			Pen	trada	12000	Кра
Hid	rógeno	1	Kg/Kmol			P sa	lida	100	Кра
0)	kigeno	16	Kg/Kmol			n	iv	2,71	Kg/s
Calc	or especifico g	ases de comb	oustión						
Temper	atura Prom.	1162,88	К						
Gas	CO2	H2O	N2						
%	19%	12%	69%						
а	22,26	32,24	28,9						
b	0,05981	0,001923	-0,001571						
с	-0,00003501	-0,00001055	0,00008081						
d	7,469E-09	-3,595E-09	-2,873E-09	Unidades					
Cp.	56,21356606	14,55623947	33,4830315	KJ/Kmol*K					
Cp.	1,277581047	0,80867997	1,195822554	KJ/Kg*K					
Cp. total		1,154895033		KJ/Kg*K					

ANEXO 5: -MEZCLA EN 3 (2500)-CAVITACIÓN

			Análisis te	rmodinámico				
Sustancia	Gases de co	mbustión			Secado		Unidades	
Fatada	Temper	atura		mi	v	4,61	Kg/s	
Estado	К	°C		Q de se	cado	3308,61	КW	
1	1852,61	1579,46		Masa de	e agua	5276,190263	Kg/h	
2	473,15	200		Masa de	e arroz	52.761,90	Kg/h	
Sustancia	Wat	er		hfg a 10	Ю Кра	2257,5	Kg/h	
-	T (°C)	P (Kpa)	h (KJ/Kg)	s (KJ/Kg*K)	m'v (Kg/s)	Vf (M3/Kg)	hg (KJ/Kg)	Calidad
3′	101,17	12.000	433,02	1,31	2,71	-	-	-
3	324,68	12.000	1.852,29	4,10	7,31	-	-	30,22%
4	520	12.000	3.403,39	6,56	7,31	-	2.685,45	-
4 Tur.	520	12.000	3.403,39	6,56	2,71	-	-	-
4 Sec.	520	12.000	3.403,39	6,56	4,61	-	-	-
4′	324,68	12.000	2.685,45	5,49	4,61	-	-	-
5s	99,61	100	2.376,60	6,56	2,71	-	-	-
5	99,61	100	2.479,28	6,83	2,71	-	-	-
6	99,61	100	417,50	1,30	2,71	0,001043	-	-
	Ci	clo						
m'v	7,3	1	Kg/s					
∆m'v	4,6	1	Kg/s					
	Bomba	Turbina						
Potencias	41,97204079	2500	KW					
Wneta	5766,	.64	KW					
ηth	519	6	-					
	Cal	dera						
0	$D_{mat} + \dot{m}_{n}h$	$a = \dot{m} h$						
	cent ····3··	3	*					
	IVIezo	clador						
	$\dot{m}_4 \cdot h_4 \cdot + \dot{m}_3 \cdot$	$h_{3'} = \dot{m}_3 h_3$						
		ನ ನೇಶ.						
F	Resultados Bal	ance de ene	rgía					
h3	1852,2	8898	KJ/Kg					
		a (a						

Anexo 6: -Mezcla en 3 (2500)-

		Ciclo Panki					Combustión		
			le Dasico 250	UNVV		Fluis mesis	Compustion	2,076,20	Unitadues
						Flujo masic	o organico	3.976,28	Kg/h
	1	4	4	4 _{Tur}		Flujo ma	sico aire	18.073,98	Kg/h
					Turbina	Flujo mas	ico gases	22.050,26	Kg/h
						Cp. g	ases	1,15	KJ/Kg*K
		-	+Sec					35.128.964,34	KJ/h
					5	Calor de en	trada (Q12)	9.758,05	KJ/S
Quem	ador		Secador					9.758.045,65	W
								9,76	MW
	Caldora							2.927.413,70	W
	Caldera			Cond	densador	Potencia su	ministrada	2.927,41	KW
			4					2,93	MW
					Acres 2		ficiencias co	nsideradas	
	_					η isoentrópi	cas Turbina	0,9	-
	2-	-	Mezclador			η isoentróp	icas Bomba	0,8	-
			3	3' Bomba	6	η Térmi	ca Ciclo	0,3	-
		•		Domba			Turbina	D-R C	
Ma	sa molar elem	ientos	Unidades			Potenc	ia Max	2500	KW
Ca	rbono	12	Kg/Kmol			Tent	rada	520	°C
Nit	rógeno	14	Kg/Kmol			P ent	rada	12000	Кра
Hid	rógeno	1	Kg/Kmol			P sa	lida	100	Кра
Ох	kigeno	16	Kg/Kmol			m	v	2,71	Kg/s
Calo	or especifico g	<mark>ases de com</mark> t	oustión						
Temper	atura Prom.	1162,88	К						
Gas	CO2	H2O	N2						
%	19%	12%	69%						
а	22,26	32,24	28,9						
b	0,05981	0,001923	-0,001571						
с	-0,00003501	-0,00001055	0,00008081						
d	7,469E-09	-3,595E-09	-2,873E-09	Unidades					
Cp.	56,21356606	14,55623947	33,4830315	KJ/Kmol*K					
Cp.	1,277581047	0,80867997	1,195822554	KJ/Kg*K					
Cp. total		1,154895033		KJ/Kg*K	1				

			Análisis te	rmodinámico				
Sustancia	Gases de co	mbustión			Secado		Unidades	
Fatada	Temper	atura		mi	v	2,40	Kg/s	
Estado	К	°C		Q de se	cado	1722,24	KW	
1	1852,61	1579,46		Masa de	e agua	2746,436885	Kg/h	
2	473,15	200		Masa de	e arroz	27.464,37	Kg/h	
Sustancia	Wat	er		hfg a 10	0 Kpa	2257,5	Kg/h	
-	T (°C)	P (Kpa)	h (KJ/Kg)	s (KJ/Kg*K)	m'v (Kg/s)	Vf (M3/Kg)	hg (KJ/Kg)	Calidad
3´	101,17	12.000	433,02	1,31	2,71	-	-	-
3	324,68	12.000	1.491,61	3,50	5,10	-	-	0,00
4	520	12.000	3.403,39	6,56	5,10	-	2.685,45	-
4 Tur.	520	12.000	3.403,39	6,56	2,71	-	-	-
4 Sec.	520	12.000	3.403,39	6,56	2,40	-	-	-
4′	324,68	12.000	2.685,45	5,49	2,40	-	-	-
5s	99,61	100	2.376,60	6,56	2,71	-	-	-
5	99,61	100	2.479,28	6,83	2,71	-	-	-
6	99,61	100	417,50	1,30	2,71	0,001043	-	-
	Ci	clo						
m' v	5,1	0	Kg/s					
∆miv	2,4	0	Kg/s					
	Bomba	Turbina						
Potencias	41,97204079	2500	KW					
Wneta	4180,	.27	KW					
ηth	43%	6	-					
	Cal	dera						
($Q_{ent} + \dot{m}_3 h$	$_{3} = \dot{m}_{4}h_{4}$	1					
	Mez	clador						
	$\dot{m}_{4'}h_{4'} + \dot{m}_{3'}$	$h_{3'} = \dot{m}_3 h_3$						
			-					
I	Resultados Bal	ance de ene	ergía					
h3	1491,61	4801	KJ/Kg					

		Ciclo Rank	ine Básico 3500K	W			Combustio	ón	Unidades
						Flujo ma	sico orgánico	4.622,70	Kg/h
		1			Flujo r	nasico aire	21.012,27	Kg/h	
			4 4	Tur.		Flujo n	nasico gases	25.634,97	Kg/h
				Turc	bina	Ср	. gases	1,15	KJ/Kg*K
			4 Sec	and the second				40.839.882,59	KJ/h
1					5	Color do	entrada (012)	11.344,41	KJ/S
	Quemador		Secador			Calor de	entraŭa (Q12)	11.344.411,83	W
	auomauon				-			11,34	MW
		Caldera						3.403.323,55	W
		Caldela		Condens	sador	Potencia	suministrada	3.403,32	KW
			4'					3,40	MW
							Eficiencia	as consideradas	
						η isoentro	ópicas Turbina	0,9	-
		2	Mezclador		6	η isoentr	ópicas Bomba	0,8	-
			3	Bomba		η Tér	mica Ciclo	0,3	-
							Turbina	a D-R SST 350	
M	asa molar e	elementos	Unidades			Pote	ncia Max	3500	KW
Car	bono	12	Kg/Kmol			Τe	entrada	482	°C
Nitró	ógeno	14	Kg/Kmol			Pe	entrada	6300	Кра
Hidro	ógeno	1	Kg/Kmol			Р	salida	100	Кра
Oxi	geno	16	Kg/Kmol				miv	4,274795167	Kg/s
C	Calor espec	ifico gases de con	nbustión						
Tempera	tura Prom.	1162,88	К						
Gas	CO2	H2O	N2						
%	19%	12%	69%						
а	22,26	32,24	28,9						
b	0,05981	0,001923	-0,001571						
с	-0,00003501	-0,00001055	0,000008081						
d	7,469E-09	-3,595E-09	-2,873E-09	Unidades					
Cp.	56,21357	14,55624	33,48303	KJ/Kmol*K					
Cp.	1,27758	0,80868	1,19582	KJ/Kg*K					
Cp. total		1,154895033		KJ/Kg*K					

ANEXO 7: MEZCLA EN 3 (3500)

			Análisis te	rmodinámic	0			
Sustancia	Gases de co	mbustión			Secado		Unidades	
Estado	Temper	atura			m'v	-2,13	Kg/s	
Estado	К	°C		Qd	e secado	-1269,70	KW	
1	1852,61	1579,46		Mas	a de agua	-2024,773782	Kg/h	
2	473,15	200		Mas	a de arroz	-20.247,74	Kg/h	
Sustancia	Wat	er		hfg	a 100 Kpa	2257,5	Kg/h	
-	T (°C)	P (Kpa)	h (KJ/Kg)	s (KJ/Kg*K)	m'v (Kg/s)	Vf (M3/Kg)	hg (KJ/Kg)	Calidad
3´	100,42	6.300	425,59	1,31	4,27	-	-	-
3	#jVALOR!	6.300	-1.921,12	#jVALOR!	2,14	-	2781,2272	-
4	482,00	6.300	3.376,40	6,80	2,14	-	-	-
4 Tur.	482,00	6.300	3.376,40	6,80	4,27	-	-	-
4 Sec.	482,00	6.300	3.376,40	6,80	-2,13	-	-	-
4´	278,79	6.300	2.781,23	5,87	-2,13	-	-	-
5s	99,61	100	2.466,67	6,80	4,27	-	-	-
5	99,61	100	2.557,65	7,04	4,27	-	-	-
6	99,61	100	417,50	1,30	4,27	0,001043	-	-
Ciclo								
miv	2,14	4	Kg/s					
∆miv	-2,1	3	Kg/s					
	Bomba	Turbina						
Potencias	34,55423803	3500	KW					
Wneta	2195,	74	КW					
ηth	19%	6	-					
	Balances	de energí	а					
	Ca	ldera						
	$0 + \dot{m}$	$h_{-} = \dot{m}_{-} h_{-}$	1.					
	Cent 1113	u3 — 11141	' 4					
	iviez	ciador						
	$\dot{m}_{4'}h_{4'} + \dot{m}_{2'}$	$h_{3'} = \dot{m}_{2}h_{2}$						
			-					
	Resultados Ba	lance de en	ergía					
h3	-1921,12	23797	KJ/Kg					

				<mark>Ciclo Ra</mark>	nkine 2	500KW							Combustion		Unidades
	1										I	lujo r	nasico orgánico	4622,70	Kg/h
		_			4			4 Tur.	Turkina			Fluj	o masico aire	21012,27	Kg/h
					-			-	Turbina			Flujo	masico gases	25634,97	Kg/h
目						4sec.	-		and the second second			Flujo	masico gases	7,12	Kg/s
										5			cp. gases	40 920 992 50	KJ/Kg·K
	dag						Se	cador						40.859.882,59	KJ/II KI/S
Quemac	001						_	_	6	,	0	alor d	e entrada (Q12)	11 344 411 83	W
														11.34	MW
	C	Caldera					6							3,403,323,55	W
					h to a set of the set			4' co	ondensador		F	oten	cia suministrada	3.403,32	KW
					de calo	2'			-					3,40	MW
		-											Eficiencias cor	nsideradas	
				3			Mezclade	or the second			η	isoen	trópicas Turbina	0,9	-
				·				3' B	omba		r	isoer	trópicas Bomba	0,8	-
					-	2"						ηT	érmica Ciclo	0,3	-
				2	_	3							Turbina I	D-R C	
M	lasa mo	olar el	ementos		Unic	lades						Po	otencia Max	2500	ĸw
Car	rhono			12	Kø/	Kmol							Tentrada	500	°C
Nitr	ógeno			12	Ka/	Kmol							P entrada	12000	Kna
Hidr	rógeno			14	Ka/	Kmol							P salida	12000	Kna
Oxi	igeno			16	Kø/	Kmol							m'v	2 71	Ka/e
5/	Calor e	speci	fico gases	de com	oustión								Balances de	energía	
Tempera	atura Pro	m.		1162.88	Kg/	Kmol							Intercambiado	or de calor	
Gas	со)2	H2O	1102,00		N2					Q. entra	da	1069,09)	КW
%		19%		12%		69%							$0 \perp \dot{m} h$	$-\dot{m}h$	
а		22,26		32,24		28,9							$Q_{int} + m_3 m$	3" – m ₃ n ₃	
b	0	,05981		0,001923		-0,001571							Calder	ra	
с	-0,000	003501	-0,	00001055	C	,000008081							$Q_{mt} + \dot{m}_2 h$	$h_2 = \dot{m}_1 h_2$	
d	7,4	69E-09	-3	3,595E-09		-2,873E-09	Unic	lades					Cent	3 4 4	
Cp.	5	6,2136		14,5562		33,4830	KJ/Ki	mol*K					Mezclad	dor	
Cp.		1,2776		0,8087		1,1958	KJ/I	Kg*K					\dot{m} $h + \dot{m}$	h — m h	
Cp. total			1,	,1549			KJ/I	кg≁к					$m_4 m_4 + m_3$	$m_{3'} = m_{3''}m_{3''}$	
													Resultados Balan	ce de energía	
											m3	- 1	8.80		Kg/s
											h3		2114,68	3	KJ/Kg
											h3´´		1993,23	3	KJ/Kg
						An	álisis t	termo	dinámico	0					
Sustan	cia		Gases de co	omhustió	in					-	Secado			Unidades	
Justan	cia		Tompo	ratura	/11				mi		500000		6.10	Va/c	
Estade	0		v rempe	°/	~				 0 do si	obcodo			0,10 /277 71	KG/3	
1			1052.61		1570 46				Macad				4377,71	Kw/b	
2			1032,01		1379,40				Masa d	e agua			6961,00	Kg/II	
2			473,13		200				hfa a 1	00 Kma			03810,33	Kg/II	4
2 Custom	ai a		545,15		70				iiig a 1	оо кра			2257,50	Kg/II	J
Sustant	uid	V		B ///		L /1/1	(K-)	. 110	1/-*/-		Wa la		14 (142/1/-)	h = (1/1 /1/-)	Call de d
-			101 17	P (K	12000	п (КЈ/	422.02	S (KJ	1 2114	m v ((NB/S)		vi (ivi3/Kg)	ng (KJ/Kg)	
3			101,17		12000		433,02		1,3111		2,/1		-	-	-1,00
3			324,68		12000		1993,23		4,3360		8,80		-	-	0,42
3			324,68		12000		2114,68		4,5392		8,80		-	2685,45	0,52
4			520,00		12000		5403,39		6,5585		8,80		-	-	-1,00
4 tur			520,00	_	12000		3403,39		6,5585		2,71		-	-	-1,00
4sec	:		520,00		12000		3403,39		6,5585		6,10		-	-	-1,00
4′			324,68		12000		2685,45		5,4939		6,10		-	-	1,00
5s			99,61		100		2376,60		6,5585		2,71		-	-	0,87
5			99,61		100		2479,28		6,8339		2,71		-	-	0,91
6			99.61		100		417.50		1,3028		2.71		0.001043	-	0.00
						·	,20		,		-,		-,10		-,00
	-			.10		,					Setie	ne u	namezcla en 3. lo cual	generauna	
miv			8,8	sU		Kg/	5				cavit	ación			
Δmív	/	-	6,1			Kg/	5				_				
_		B	omba	Turk	na						_				
Potenci	ias		41,97		2500,00	KW	1								
Wnet	a		7904	1,83		KW	1								
ηth			70	%		-									

ANEXO 8: MEZCLA EN 3 2500KW INTER CAV.

		Ciclo Ra	nkine 2500KW				Combustión		Unidades
						Flujo	masico orgánico	3455,82	Kg/h
	1		4	4-		Flu	jo masico aire	15708,28	Kg/h
				100	Turbina	Fluj	o masico gases	19164,10	Kg/h
	No. of Concession, Name				and the second se	Fluj	o masico gases	5,32	Kg/s
			Hore.				Cp. gases	1,15	KJ/Kg*K
1	T			Secador	5			30.530.926,70	KJ/h
	Quemador					Calor	do ontrada (013)	8.480,81	KJ/S
						Calor		8.480.812,97	W
	C	aldera						8,48	MW
				4' Conc	lensador			2.544.243,89	W
			de calor 2'		100 B	Poter	icia suministrada	2.544,24	KW
	-							2,54	MW
				Mezzlador	6		Eficiencias con	sideradas	
				Bom	Ба	η isoe	ntrópicas Turbina	0,9	-
			2 3"			η isoe	ntrópicas Bomba	0,8	-
						η.	Térmica Ciclo	0,3	-
							Turbina D	D-R C	
M	asa molar e	lementos	Unidades			Potencia Max 2500			KW
Car	bono	12	Kg/Kmol				T entrada	520	°C
Nitr	ógeno	14	Kg/Kmol				P entrada	12000	Кра
Hidr	ógeno	1	Kg/Kmol				P salida	100	Кра
Oxi	igeno	16	Kg/Kmol				miv	2,71	Kg/s
(Calor especi	ifico gases de com	bustión				Balances de	energía	
Tempera	tura Prom.	1162,88	Kg/Kmol				Intercambiado	r de calor	
Gas	CO2	H2O	N2			Q. entrada	799,23		KW
%	19%	12%	69%				$0 + \dot{m}_{a'}h$	$m = \dot{m}_{a}h_{a}$	
а	22,26	32,24	28,9				seint i ma n	3 1103103	
b	0,05981	0,001923	-0,001571				Calder	а	
с	-0,00003501	-0,00001055	0,00008081				$0 + \dot{m}_{a}h$	$a = \dot{m} \cdot h$.	
d	7,469E-09	-3,595E-09	-2,873E-09	Unidades			Sent 1 mar	3	
Cp.	56,2136	14,5562	33,4830	KJ/Kmol*K			Mezclad	lor	
Cp.	1,2776	0,8087	1,1958	KJ/Kg*K					
Cp. total		1,15		KJ/Kg*K		1	$\dot{m}_{4'}h_{4'} + \dot{m}_{3'}$	$h_{3'} = m_{3''}h_{3''}$	
							Resultados Balanc	e de energia	K = l =
						m3	4,44		Kg/s
						h3	1492,60		KJ/Kg
						h3''	1312,53		KJ/Kg

ANEXO 9: FLUJO MÁXIMO COMBUSTIBLE

			Análisis tei	modinámico				
Sustancia	Gases de cor	nbustión			Secado		Unidades	
Estado	Tempera	atura		m	iv	1,73	Kg/s	
Estado	К	°C		Q de s	ecado	1.244,24	КW	
1	1852,61	1579,46		Masa c	le agua	1.984,17	Kg/h	
2	473,15	200		Masa d	le arroz	19.841,73	Kg/h	
2'	343,15	70		hfg a 1	00 Kpa	2.257,50	Kg/h	
Sustancia	Water							
-	T (°C)	P (Kpa)	h (KJ/Kg)	s (KJ/Kg*K)	m'v (Kg/s)	Vf (M3/Kg)	hg (KJ/Kg)	Calidad
3′	101,17	12000	433,02	1,3111	2,71	-	-	-1,00
3´´	294,81	12000	1.312,53	3,1900	4,44	-	-	-1,00
3	324,68	12000	1.492,60	3,4986	4,44	-	2.685,45	0,00
4	520,00	12000	3.403,39	6,5585	4,44	-	-	-1,00
4 tur	520,00	12000	3.403,39	6,5585	2,71	-	-	-1,00
4sec	520,00	12000	3.403,39	6,5585	1,73	-	-	-1,00
4′	324,68	12000	2.685,45	5,4939	1,73	-	-	1,00
5s	99,61	100	2.376,60	6,5585	2,71	-	-	0,87
5	99,61	100	2.479,28	6,8339	2,71	-	-	0,91
6	99,61	100	417,50	1,3028	2,71	0,00	-	0,00

	Ciclo)			Conde	ensador	Unidades	
miv	4,4	4	Kg/s		Q sal	5.577,77	KJ/s	
∆miv	1,7	3	Kg/s					
	Bomba	Turbina						
Potencias	41,97	2.500	KW					
Wneta	4.501	,50	KW					
ηth	53%	6	-					
	Constante d	el gas R		Unidades				
Gas	CO2	H2O	N2	-				
%	19%	12%	69%	-				
R	0,1889	0,4615	0,2968	KJ/Kg K				
R total		0,2929		KJ/Kg K				
	Análisis exe	ergético		Temperatur	a ambiente	Unidades		
η Carnot		81%		2	5	°C		
η Ex		66%		298	,15	К		
Equipo	Turbina	Condensador	Bomba	Mezclador	Intercambiador	Caldera	Secador	Unidades
ΔSirr.	0,75	0,00	0.02	1 09	1 02	12.00	0.24	KI/K*s
Ex Dest.		,	•,•=	1,05	1,02	12,00	0,24	16/10
	222,18	0,00	6,76	324,95	303,29	3.579,14	70,46	KW
η Exergética	222,18 97%	0,00	6,76 94%	324,95 73%	303,29 77%	3.579,14 67%	70,46 90%	KW -
η Exergética horas /mes	222,18 97% 720	0,00 100% 720	6,76 94% 720	324,95 73%	303,29 77%	3.579,14 67% 720	70,46 90% 720	KW - h
η Exergética horas /mes Perdidas	222,18 97% 720 159.970,63	0,00 100% 720 0,00	6,76 94% 720 4.865,62	324,95 73% 720 233.961,83	1,02 303,29 77% 720 218.367,64	12,00 3.579,14 67% 720 2.576.977,78	70,46 90% 720 50.734,75	KW - h KWh
η Exergética horas /mes Perdidas Perdidas \$	222,18 97% 720 159.970,63 99.258.575,20	0,00 100% 720 0,00 0,00	6,76 94% 720 4.865,62 3.019.018,86	1,00 324,95 73% 720 233.961,83 145.168.637,26	1,02 303,29 77% 720 218.367,64 135.492.755,48	3.579,14 67% 720 2.576.977,78 1.598.963.175,07	70,46 90% 720 50.734,75 31.479.900,35	KW - h KWh \$
η Exergética horas /mes Perdidas Perdidas \$	222,18 97% 720 159.970,63 99.258.575,20	0,00 100% 720 0,00 0,00	6,76 94% 720 4.865,62 3.019.018,86	1,00 324,95 73% 720 233.961,83 145.168.637,26	1,02 303,29 77% 720 218.367,64 135.492.755,48	12,00 3.579,14 67% 2.576.977,78 1.598.963.175,07	70,46 90% 720 50.734,75 31.479.900,35	KW - h KWh \$
η Exergética horas /mes Perdidas Perdidas \$	222,18 97% 720 159.970,63 99.258.575,20	0,00 100% 720 0,00 0,00	6,76 94% 720 4.865,62 3.019.018,86	1,05 324,95 73% 720 233.961,83 145.168.637,26	1,02 303,29 77% 218.367,64 135.492.755,48	12,00 3.579,14 67% 2.576.977,78 1.598.963.175,07 \$ KWh	70,46 90% 720 50.734,75 31.479.900,35	KW - h KWh \$

Energía por Kg de Cas	carilla	Unidades		Emisio	nes CO2 Caso	arilla	Unidades
Flujo Cascarilla	4.108,97	Kg/h		Eluia es	aarilla	4.108,97	Kg/h
Flujo de vapor	15.978,21	Kg/h		Flujo cas	Scarilla	4,11	Ton/h
Relación F.Casc/F.Vap.	3,89	-		Emision	es CO2	6.382,26	KgCO2/h
Trabajo turbina	924,10	KJ/Kg					
Energía por Kg de Cascarilla	3.593,49	KJ/Kg					
Combustible	Factor E	misión CO2	Unidad				
Carbón Genérico	2.534,81		kg CO2/Ton				
Gas Natural Genérico	1,98		kg CO2/m3				
Cascarilla de arroz	1.5	1.553,25					
Termoeléctrica	Termodorad	<mark>a 1 Gas Natura</mark> l	Unidades	Zipa 2 C	arbón	Unidad	
Consumo Combustible	78.5	60.000	Ft3/año	22.63	1.42	Ton/año	
	2.224	4.567,81	m3/año		_,		
Canacidad efectiva neta		51	MW/año	34	1	MW/año	
	5:	1.000	KW/año	34.0	000	KW/año	
Emisiones de CO2	4.40	5.979,00	Kg CO2/año	57.366.4	417,62	Kg CO2/año	
Emisiones de CO2	4.4	105,98	Ton. CO2/año	57.36	6,42	Ton. CO2/año	
	Emisio	nes de CO2					
-	Gas natural	Unidades	Carbón	Unidades			
Consumo de combustible	172,294,96	m3 GasN-año	2,629,24	Ton Carbón			
Molino	1, 2, 20 1,00		2:020)2:				
Emisiones CO2	341.247,39	kg de CO2-año	6.664.627,93	Kg CO2 /Año			
Nuevo consumo	63.247,52	m3 GasN	965,16	Ton Carbón			
Nuevas emisiones	125.268,03	Kg CO2/Año	2.446.508,99	Kg CO2 /Año			
Emisiones CO2 reducidas	215.979,36	Kg CO2/Año	4.218.118,94	Kg CO2/Año			

ANEXO 10: T2=250

				Ciclo Rai	nkine 250	окм						Combustión		Unidades
											Flu	ujo masico orgánico	3396,58	Kg/h
		1			4		4 Tur.			ļ		Flujo masico aire	15439,00	Kg/h
				-	1		-	Т	urbina	-	1	Flujo masico gases	18835,58	Kg/h
	- H	1				45ec.	-			-		-iujo masico gases	5,23	Kg/s
1	1	1							5	ŀ		cp. gases	28.874.408.34	KJ/h
	Quemado	ж					Secado					lan da anton da (012)	8.020,67	KJ/S
											Ca	lor de entrada (Q12)	8.020.668,98	W
		Caid	era										8,02	MW
					Intercambiado	r.	4	Conder	nsador				2.406.200,69	W
					de calor	2'					Po	tencia suministrada	2.406,20	KW
				.3		-	Mezclador	-		-		Eficiencias con	2,41	IVIV
				<u> </u>			-	3' Bomba	6	-	nic	Eliciencias con		
				2	100	3"				-	n is	soentrópicas Pomba	0,9	
				-		-				Ē		η Térmica Ciclo	0,3	-
												Turbina D	D-R C	
M	lasa mo	olar ele	mentos		Unidad	les						Potencia Max	2500	KW
Car	rbono			12	Kg/Km	ol						T entrada	520	°C
Nitro	ógeno			14	Kg/Km	ol						P entrada	12000	Кра
Hidro	rógeno			1	Kg/Km	ol						P salida	100	Кра
Oxi	igeno			16	Kg/Km	ol						m 'v	2,71	Kg/s
(Calor e	specifi	co gases	de comb	oustión							Balances de	energía	
Tempera	atura Pro	m. 🗌		1187,88	Kg/Km	ol						Intercambiado	r de calor	
Gas	CO	2	H2O		N2						Q. entrad	a 1085,94		KW
%		19%		12%		69%						$Q_{int} + \dot{m}_3 - h_3$	$_{3''} = \dot{m}_{3}h_{3}$	
a b	0	22,26		32,24	-(28,9						Calder	3	
c	-0,000	03501	-0.	00001055	0.00	0008081						Caluer	1	
d	7 46	59F-09		3 595E-09	-2	873E-09	Unida	des				$Q_{ent} + \dot{m}_3 h$	$_{3} = \dot{m}_{4}h_{4}$	
Cp.	54	5 4252		12 6119	-,	22 6210	KJ/Kmc	ol*K				Mezclad	lor	
Cp.	1	1,2824		0,7562		1,2007	KJ/Kg	*К						
Cp. total				1,15			KJ/Kg	*К				$\dot{m}_{4'}h_{4'} + \dot{m}_{3'}$	$h_{3'} = \dot{m}_{3''} h_{3''}$	
												Resultados Balanc	e de energía	
											m3	4,20		Kg/s
											h3''	1492,20		KJ/Kg
	1						411-1-1	1	lin forst			1233,31	I	,
	. 1				(An	alisis to	ermod	inamico		Casada			
Sustand	cia		Gases de d	ombustic	on						Secado		Unidades	_
												1 49		
Estade	0		Temp	eratura	c				m O do cr	v		1 070 81	Kg/s	_
Estado	0		1952.61	eratura °	C				Q de se Masa d	v ecado		1.070,81	Kg/s KW	_
Estado 1	0		K 1852,61 523 15	eratura °	C 1579,46 250				m Q de se Masa de Masa de	v ecado e agua		1.070,81 1.707,61 17,076,09	Kg/s KW Kg/h	
Estado 1 2	lo -		K 1852,61 523,15	eratura °	C 1579,46 250 70				Masa de Masa de bfg a 10	v ecado e agua e arroz 0 Kna		1.070,81 1.707,61 17.076,09 2.257,50	Kg/s KW Kg/h Kg/h	
Estado 1 2 2' Sustano	o -	W	K 1852,61 523,15 343,15 ater	eratura °	C 1579,46 250 70				Masa d Masa d Masa d hfg a 10	v ecado e agua e arroz 00 Kpa		1.070,81 1.707,61 17.076,09 2.257,50	Kg/s KW Kg/h Kg/h Kg/h	
Estado 1 2 2' Sustano	cia	W	K 1852,61 523,15 343,15 ater (°C)	P (K	C 1579,46 250 70	h (KI	/Kg)	s (K	M Q de se Masa d Masa d hfg a 10	v ecado e agua e arroz 00 Kpa mi v	(Kg/s)	1.070,81 1.707,61 17.076,09 2.257,50	Kg/s KW Kg/h Kg/h Kg/h	Calidad
Estado 1 2' Sustano - 3'	o - cia	W	K 1852,61 523,15 343,15 ater (°C) 101.17	P (K	C 1579,46 250 70 (pa) 12000	h (KJ,	<mark>/Кg)</mark> 433,02	s (KJ	Masa d Masa d Masa d hfg a 10 /Kg*K) 1,3111	v ecado e agua e arroz 00 Kpa m' v	(Kg/s) 2.71	1.070,81 1.707,61 17.076,09 2.257,50 Vf (M3/Kg)	Kg/s KW Kg/h Kg/h Kg/h hg (KJ/Kg)	Calidad -1.00
Estado 1 2' Sustano - 3' 3'	o cia	W T	K 1852,61 523,15 343,15 ater (°C) 101,17 279.88	P (K	C 1579,46 250 70 (pa) 12000 12000	h (KJ,	/Кg) 433,02 1.233.51	s (KJ	m Q de se Masa d Masa d hfg a 10 /Kg*K) 1,3111 3.0490	v ecado e agua e arroz D0 Kpa m' v	(Kg/s) 2,71 4.20	1.070,81 1.707,61 17.076,09 2.257,50 Vf (M3/Kg)	Kg/s KW Kg/h Kg/h Kg/h hg (KJ/Kg) -	Calidad -1,00 -1.00
Estado 1 2' Sustano - 3' 3'' 3'' 3	cia	Wa T	K 1852,61 523,15 343,15 ater (°C) 101,17 279,88 324,68	P (K	C 1579,46 250 70 (pa) 12000 12000	h (KJ,	/Кg) 433,02 1.233,51 1.492,26	s (KJ	т Q de se Masa d Masa d hfg a 10 /Kg*K) 1,3111 3,0490 3,4980	v ecado e agua e arroz 00 Kpa m' v	(Kg/s) 2,71 4,20 4,20	1.070,81 1.707,61 17.076,09 2.257,50 Vf (M3/Kg) - -	Kg/s KW Kg/h Kg/h Kg/h - - - - - 2.685.4	Calidad -1,00 -1,00 50,00
Estado 1 2' Sustant - 3' 3' 3' 3 4	cia	W T	K 1852,61 523,15 343,15 ater (°C) 101,17 279,88 324,68 520,00	P (K	C 1579,46 250 70 (pa) 12000 12000 12000	h (K),	/Kg) 433,02 1.233,51 1.492,26 3.403,39	s (KJ	m Q de se Masa d Masa d hfg a 10 /Kg*K) 1,3111 3,0490 3,4980 6,5585	v ecado e agua e arroz D0 Kpa m' v	(Kg/s) 2,71 4,20 4,20 4,20	1.070,81 1.707,61 17.076,09 2.257,50 Vf (M3/Kg) - - - -	Kg/s KW Kg/h Kg/h Kg/h - - - 2.685,4	Calidad -1,00 -1,00 -1,00 -1,00 -1,00 -1,00
Estado 1 2' Sustano - 3' 3' 3' 3 4 4 tur	cia	W: T	K 1852,61 523,15 343,15 ater (°C) 101,17 279,88 324,68 520,00 520,00	P (K	C 1579,46 250 70 (pa) 12000 12000 12000 12000 12000	h (K),	/Kg) 433,02 1.233,51 1.492,26 3.403,39 3.403,39	s (KJ	m Q de se Masa d Mfg a 10 /Kg*K) 1,3111 3,0490 3,4980 6,5585 6,5585	v ecado e agua e arroz D0 Kpa m' v	(Kg/s) 2,71 4,20 4,20 4,20 2,71	1.070,81 1.707,61 17.076,09 2.257,50 Vf (M3/kg) - - - - - - -	Kg/s KW Kg/h Kg/h Kg/h - - - 2.685,4 - -	Calidad -1,00 -1,00 (5) -1,00 -1,00 -1,00 -1,00
Estado 1 2' Sustano - 3' 3' 3' 4 4 tur 4sec	cia	W: T	K 1852,61 523,15 343,15 ater (°C) 101,17 279,88 324,68 520,00 520,00 520,00 520,00	P (K	C 1579,46 250 70 12000 12000 12000 12000 12000 12000	h (KJ,	/Kg) 433,02 1.233,51 1.492,26 3.403,39 3.403,39 3.403,39	s (K)	m Q de se Masa d Masa d hfg a 10 /Kg*K) 1,3111 3,0490 3,4980 6,5585 6,5585 6,5585 6,5585	v ecado e agua e arroz 00 Kpa m v	(Kg/s) 2,71 4,20 4,20 4,20 2,71 1.49		Kg/s KW Kg/h Kg/h Kg/h - - - - - - - -	Calidad -1,00 -1,00 (5 0,00 -1,00 -1,00 -1,00 -1,00
Estado 1 2' Sustano - 3' 3 4 4 tur 4secc 4'	cia	W/ T	K 1852,61 523,15 343,15 ater 101,17 279,88 324,68 520,00 520,00 520,00 324,68	P (K	C 1579,46 250 70 12000 12000 12000 12000 12000 12000 12000 12000	h (KJ,	/Kg) 433,02 1.233,51 1.492,26 3.403,39 3.403,39 3.403,39 2.685,45	s (KJ	m Q de se Masa d hfga 10 /Kg*K) 1,3111 3,0490 3,4980 6,5585 6,5585 6,5585 5,4939	v ecado e agua e arroz 00 Kpa mi v	(Kg/s) 2,71 4,20 4,20 4,20 2,71 1,49 1,49		Kg/s KW Kg/h Kg/h - - - - - - - - - - - - -	Calidad -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 1,00
Estado 1 2 Sustano - 3' 3' 4 4 4 tur 4 sec 4' 5	cia	W T	Temp K 1852,61 523,15 343,15 ater (°C) 101,17 279,88 324,68 520,00 520,00 520,00 324,68 99,61	۲۹۵۲ ۹ P (K	C 1579,46 250 70 12000 1000 12000 10	h (KI,	/Kg) 433,02 1.233,51 1.492,26 3.403,39 3.403,39 3.403,39 2.685,45 2.376,60	s (KJ	m Q de se Masa d hfg a 10 /Kg*K) 1,3111 3,0490 3,4980 6,5585 6,5585 6,5585 5,4939 6,5585	v eacado e agua e arroz D0 Kpa mi v	(Kg/s) 2,71 4,20 4,20 2,71 1,49 1,49 2,71		Kg/s KW Kg/h Kg/h Kg/h - - - 2.685,4 - - - - - - - - - - - - -	Calidad -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 0,87
Estado 1 2' Sustano - 3' 3'' 3'' 3'' 4 4 tur 4 sec 4' 5s 5	cia	W: T(K 1852,61 523,15 343,15 ater (*C) 101,17 279,88 324,68 520,00 520,00 520,00 520,00 324,68 99,61 99,61	۲۹۲۲ ۹ P (K	C 1579,46 250 70 12000 100	h (K),	/Kg) 433,02 1.233,51 1.492,26 3.403,39 3.403,39 3.403,39 2.685,45 2.376,60 2.479,28	s (K)	m Q de se Masa d hfg a 10 /Kg*K) 1,3111 3,0490 3,4980 6,5585 6,5585 6,5585 5,4939 6,5585 5,4939 6,5585 6,8339	v ecado e agua e arroz D0 Kpa mi v	(Kg/s) 2,71 4,20 4,20 2,71 1,49 1,49 2,71 2,71		Kg/s KW Kg/h Kg/h - - - - - - - - - - - - -	Calidad -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 0,87 0,91
Estado 1 2 3' 3'' 3'' 3 4 4 tur 4 sec 4' 5s 5 6	cia	W: T(K 1852,61 523,15 343,15 ater (°C) 101,17 279,88 324,68 520,00 520,00 520,00 324,68 99,61 99,61 99,61 90,61	P (K	C 1579,46 250 70 12000 1000 12000 1000	h (K),	/Kg) 433,02 1.233,51 1.492,26 3.403,39 3.403,39 2.685,45 2.376,60 2.376,60 2.479,28 417 50	s (K)	m Q de se Masa d hfg a 10 /Kg*K) 1,3111 3,0490 3,4980 6,5585 6,5585 6,5585 5,4939 6,5585 5,4939 6,5585 5,4939 6,5585	v eacado e agua e arroz D0 Kpa mi v	(Kg/s) 2,71 4,20 4,20 2,71 1,49 1,49 2,71 2,71 2,71		Kg/s KW Kg/h Kg/h - - - - - - - - - - - - -	Calidad -1,00 -1,0
Estado 1 2 3' 3' 3' 4 4 tur 4 sec 4' 5s 5 6	cia	W/ T(Temp K 1852,615 343,15 ater (°C) 101,17 279,88 324,68 520,00 520,00 324,68 99,61 99,61 99,61	P (K	C 1579,46 250 70 12000 1000 1	h (К),	/Kg) 433,02 1.233,51 1.492,26 3.403,39 3.403,39 2.685,45 2.376,60 2.479,28 417,50	s (KJ	m Q de se Masa d hfg a 10 /Kg*K) 1,3111 3,0490 3,4980 6,5585 6,5585 6,5585 6,5585 5,4939 6,5585 6,8339 1,3028	v ecado e agua e arroz D0 Kpa mi v	(Kg/s) 2,71 4,20 4,20 4,20 2,71 1,49 2,71 2,71 2,71 2,71	1.070,81 1.707,61 17.076,09 2.257,50 Vf (M3/Kg) - - - - - - - - - - 0,00	Kg/s KW Kg/h Kg/h - - - - - - - - - - - - -	Calidad -1,00 -0,00 -0,0
Estado 1 2 3' 3' 3' 4 4 tur 4 sec 4' 5s 5 6	cia	W/ T(K 1852,61 343,15 ater (°C) 1279,88 324,68 520,00 520,00 520,00 324,68 99,61 99,61 99,61 Ci	P (K	C 1579,46 250 70 12000 12000 12000 12000 12000 12000 12000 12000 12000 1000 1000 1000	h (KJ,	/Kg) 433,02 433,02 3.403,39 3.403,39 3.403,39 3.403,39 2.685,45 2.376,60 2.479,28 417,50	s (KJ	m Q de se Masa d hfg a 10 /Kg*K) 1,3111 3,0490 3,4980 6,5585 6,5585 6,5585 6,5585 5,4939 6,5585 6,8339 1,3028	v e agua e arroz 00 Kpa m v	(Kg/s) 2,71 4,20 4,20 2,71 1,49 2,71 2,71 2,71 2,71 2,71 Co	1.070,81 1.707,61 17.076,09 2.257,50 Vf (M3/Kg) - - - - - - - - - - - - -	Kg/s KW Kg/h Kg/h - - - - - - - - - - - - -	Calidad -1,00 -0,00 -0,0
Estado 1 2 3' 3' 4 4 tur 4 sec 4' 5s 5 6 0 miv		WA T(K 1852,61 343,15 ater (*C) 171,78 324,68 324,68 520,000 520,0000 500,000 500,000 500,0000000000	P (K	C 1579,46 250 70 12000 100	h (К),	/Kg) 433,02 1.233,51 1.492,26 3.403,39 3.403,39 3.403,39 2.685,45 2.376,60 2.479,28 417,50 /s	s (K)	m Q de se Masa d Masa da hfg a 10 (Kg*K) 1,3111 3,0490 3,4980 6,5585 6,5	v ecado e agua e arroz 200 Kpa m' v	(Kg/s) 2,71 4,20 4,20 2,71 1,49 2,71 2,71 2,71 2,71 2,71 2,71 2,71 2,71	1.070,81 1.707,61 17.076,09 2.257,50 Vf (M3/Kg) - - - - - - - - - - 0,00 ndensador 5.577,77	Kg/s KW Kg/h Kg/h Kg/h - - - - - - - - - - - - -	Calidad -1,00 -0,00 -1,00 -0,0
Estado 1 2 2' Sustano 3' 3' 4 4 tur 4 sec 4' 5s 5 6 0 μ μ ν ν ν ν ν ν ν ν ν ν ν ν ν		W. T	K 1852,61 343,15 ater (°C) 101,17 279,88 324,68 99,61 99,61 99,61 99,61 Ci 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	P (K P (K 20 49	C 1579,46 250 70 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000	h (К),	/Kg) 433,02 1.233,51 1.492,26 3.403,39 3.403,39 3.403,39 3.403,39 2.685,45 2.376,60 2.479,28 417,50 /s /s	s (KJ	m Q de se Masa d Masa d hfg a 10 1,3111 3,0490 3,4980 6,5585 6,5585 6,5585 6,5585 5,4939 6,5585 6,8339 1,3028	v ecado e agua e arroz 200 Kpa m' v	(Kg/s) 2,71 4,20 4,20 2,71 1,49 2,71 2,71 2,71 2,71 2,71 2,71 2,71 2,71	1.070,81 1.070,81 17.076,09 2.257,50 Vf (M3/Kg) - - - - - - - - - - - - -	Kg/s KW Kg/h Kg/h Kg/h - - - - - - - - - - - - -	Calidad -1,00 -1,00 5 0,00 -1,
Estado 1 2 Sustano 3 3 4 4 4 tur 4 5 5 6 0 μ μ ν Δ m ν Δ m ν 2 1 1 1 1 1 1 1 1 1 1 1 1 1		W. T	K 1852,61 343,15 ater (*C) 101,17 279,88 324,68 520,00 520,00 520,00 520,00 324,68 99,61 99,61 99,61 0,61 4,1 1,1 mba	P (K P (K Clo 20 49 Turt	C 1579,46 250 70 12000 1000 1	h (KJ,	/Kg) 433,02 1.233,51 1.492,26 3.403,39 3.403,39 3.403,39 2.685,45 2.376,60 2.479,28 417,50 /s /s	s (KJ	m Q de se Masa d Masa d hfg a 10 /Kg*k() 1,3111 3,0490 3,4980 6,5585 6,5585 6,5585 6,5585 5,4939 6,5585 6,8339 1,3028	v e agua e arroz D0 Kpa m' v	(Kg/s) 2,71 4,20 4,20 2,71 1,49 1,49 2,71 2,71 2,71 2,71 2,71 2,71 2,71 2,71	1.070,81 1.707,61 17.076,09 2.257,50 Vf (M3/Kg) - - - - - - - - - - - - 0,00 ndensador 5.577,77	Kg/s KW Kg/h Kg/h Kg/h - - - - - - - - - - - - -	Calidad -1,00 -1,00 (5) -1,00
Estado 1 2 3' Sustano 3' 3' 4 4 tur 4 tur 4 sec 4' 5s 5 6 0 μ ν ν ν ν ν ν α γ γ γ γ γ γ γ γ γ γ γ γ γ	cia cia v cias	W. T (K 1852,61 523,15 343,15 ater (*C) 101,17 279,88 322,68 520,00 520,00 520,00 520,00 520,00 324,68 99,61 99,61 99,61 99,61 0,61 99,61 0,61 4,7 1,7 mba 41,97	P (K	C 1579,46 250 70 12000 100	h (KJ,	/Kg) 433,02 1.233,51 1.492,26 3.403,39 3.403,39 2.685,45 2.376,60 2.479,28 417,50 /s /s /s	s (KJ	m Q de se Masa d Masa d hfg a 10 /Kg*K) 1,3111 3,0490 3,4980 6,5585 6,5585 6,5585 6,5585 6,5585 6,5585 6,8339 1,3028	v eccado e agua a arroz O Kpa m' v	(кg/s) 2,71 4,20 4,20 2,71 1,49 2,71 2,71 2,71 2,71 2,71 2,71 2,71 2,71	1.070,81 1.707,81 17.076,09 2.257,50 Vf (M3/Kg) - - - - - - - - - - 0,00 ndensador 5.577,77	Kg/s KW Kg/h Kg/h - - - - - - - - - - - - -	Calidad -1,00 -1,00 (5 0,00 -1,00 -1,00 -1,00 -1,00 -1,00 0,87 0,91 0,00
Estado 1 2 3 3 4 4 4 4 5 5 6 - - 3 4 4 4 5 5 6 - - - - - - - - - - - - -	cia cia v cia v cias cias cias cias cias cias cias cias	W. T	K 1852,61 523,15 343,15 ater (*C) 101,17 279,88 322,68 520,00 520,00 520,00 520,00 520,00 324,68 99,61 99,61 99,61 99,61 44,197 41,97 41,97 44,97 44,97 44,97	P (K P (K clo 20 49 Turt	C 1579,46 250 70 12000 100 1000 1	h (KJ,	/Kg) 433,02 1.233,51 1.492,26 3.403,39 3.403,39 3.403,39 2.685,45 2.376,60 2.479,28 417,50 /s /s /s V V	s (KJ	m Q de se Masa d Masa d hfg a 10 /Kg*K) 1,3111 3,0490 3,4980 6,5585 6,5585 6,5585 6,5585 6,5585 6,8339 1,3028	v ecado e agua e arroz O Kpa m' v	(Kg/s) 2,71 4,20 4,20 2,71 1,49 2,71 2,71 2,71 2,71 2,71 2,71 2,71 2,71	1.070,81 1.707,81 17.076,09 2.257,50 Vf (M3/Kg) - - - - - - - - - 0,00 ndensador 5.577,77	Kg/s KW Kg/h Kg/h - - - - - - - - - - - - -	Calidad -1,00 -1,00 (5 0,00 -1
Estado 1 2 Sustano 3' 3' 4 4 tur 4 sec 4' 5s 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0	cia cia vias cias cia	W W	K 1852,61 1852,315 343,15 ater (*C) 101,17 279,88 324,68 520,00 520,00 520,00 520,00 520,00 324,68 99,61 99,61 99,61 99,61 0,61 4,4 1,1 mba 41,97 4.65 53	Clo 20 49 Turt 14,79 3%	C 1579,46 250 70 12000 100	h (KJ,	/Kg) 433,02 1.233,51 1.492,26 3.403,39 3.403,39 3.403,39 2.685,45 2.376,60 2.479,28 417,50 /s /s V V	s (KJ	m Q de se Masa d Masa d hfg a 10 /Kg*K) 1,3111 3,0490 3,4980 6,5585 6,5585 6,5585 6,5585 6,5585 6,5585 6,5585 6,5585 6,8339 1,3028	v e cado e agua e arroz Mo Kpa mi v	(Kg/s) 2,71 4,20 4,20 2,71 1,49 1,49 2,71 2,71 2,71 2,71 2,71 2,71 2,71 2,71	1.070,81 1.707,81 17.076,09 2.257,50 Vf (M3/Kg) - - - - - - - - - 0,00 ndensador 5.577,77	Kg/s KW Kg/h Kg/h (KJ/Kg) - - - - - - - - - - - - -	Calidad -1,00 -1,00 (5) -1,00
Estado 1 2 Sustano 3 3 4 4 4 tur 4 5 5 6 0 Μ ν Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ	cia cias cias cias cias cias cias cias c	W T Bo	K 1852,61 1852,315 343,15 ater (*C) 101,17 279,88 324,68 99,61 99,61 99,61 99,61 99,61 0,61 4,1 1,1 mba 41,97 4.65 54 54 54 54 54 54 54 54 54 5	Clo 20 49 Turk 14,79 3% Const	C 1579,46 250 70 12000 100	h (KJ,	/Kg) 433,02 1.233,51 1.492,26 3.403,39 4.17,50 5.57 5	s (KJ	m Q de se Masa d Masa d hfg a 10 1,3111 3,0490 3,4980 6,5585 6,5585 6,5585 6,5585 6,5585 6,5585 6,5585 6,5585 6,8339 1,3028	v eccado e agua a arroz mi v mi v	(Kg/s) 2,71 4,20 4,20 2,71 1,49 2,71 2,71 2,71 2,71 2,71 2,71 2,71 2,71	1.070,81 1.707,61 17.076,09 2.257,50 Vf (M3/Kg) - - - - - - - - 0,00 ndensador 5.577,77 Unidades	Kg/s KW Kg/h Kg/h - - - - - - - - - - - - - - - - - - -	Calidad -1,00 -1,00 5 0,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 0,87 0,91 0,00
Estado 1 2 3 3 3 4 4 4 4 5 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0	lo - cia r cia r cias cias ci	W W	K 1852,61 343,15 ater (°C) 177,97 324,68 520,000 520,000 520,	Clo P (K P (K P (K P (K Clo 20 49 Turt 44,79 3% Const CO2	C 1579,46 250 70 12000 100 10000 1000 1000 1000 1000 1000 1000 1000 1000	h (KJ,	/Kg) 433,02 1.233,51 1.492,26 3.403,39 3.403,39 3.403,39 2.685,45 2.376,60 2.479,28 417,50 	s (KJ	m Q de se Masa d Masa d hfg a 10 (Kg*K) 1,3111 3,0490 3,4980 6,5585	v eccado e agua a arroz 00 Kpa mi v mi v	(Kg/s) 2,71 4,20 4,20 2,71 1,49 2,71 2,71 2,71 2,71 2,71 2,71 2,71 2,71	1.070,81 1.707,61 17.076,09 2.257,50 Vf (M3/Kg) - - - - - - - 0,00 ndensador 5.577,77 Unidades -	Kg/s KW Kg/h Kg/h - - - - - - - - - - - - - - - - - - -	Calidad -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 0,87 0,91 0,00 0,87 0,91 0,00
Estado 1 2 3' 3' 3' 4 4 tur 4 sec 4' 5s 5 6 Μυν Potenci Wnet qth	cia cia cia cias cias cias cias cias cia	W W	K 1852,61 323,15 343,15 ater (*C) 101,17 279,88 324,68 520,00	Clo 20 49 Turt 14,79 3% Const CO2	C 1579,46 250 70 12000 1000	h (K),	/Kg) 433,02 1.233,51 1.492,26 3.403,39 3.403,39 3.403,39 3.403,39 2.685,45 2.376,60 2.479,28 417,50 .479,28 417,50 .479,28 417,50 .479,28 417,50 .479,28 417,50 .479,28 .479,29 .479,28 .479,29 .47	s (K)	m Q de se Masa d Masa d hfg a 10 (Kg*K) 1,3111 3,0490 3,4980 6,5585 6,56	v eccado e agua a arroz 00 Kpa mi v mi v C C	(Kg/s) 2,71 4,20 4,20 2,71 1,49 2,71 2,71 2,71 2,71 0 € sal	1.070,81 1.707,61 17.076,09 2.257,50 Vf (M3/Kg) - - - - - - - 0,00 ndensador 5.577,77 Unidades - - - - - - - - - - - - -	Kg/s KW Kg/h Kg/h - - - - - - - - - - - - - - - - - - -	Calidad -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 0,87 0,91 0,00 0,87 0,91 0,00
Estado 1 2 2' Sustano 3' 3' 3' 4 4 tur 4 sec 4' 5s 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0	ias cias cias cias cias cias cias cias c	W W	K 1852,61 343,15 ater (°C) 101,78 324,68 520,000 520,000 520,000 520,000 520,000 520,000 520,000 520,000 520,000 520,000 520,	Clo P (K P (K Clo 20 49 Turt 4,79 3% Const CO2 0	C 1579,46 250 70 12000 10000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10	<u>h</u> (К), 	/Kg) 433,02 1.233,51 1.492,26 3.403,39 3.403,39 3.403,39 2.685,45 2.376,60 2.479,28 417,50 	s (K)	m Q de se Masa d hfg a 10 1,3111 3,0490 3,4980 6,5585 6,5585 6,5585 6,5585 6,8339 1,3028	v eccado 2 agua a arroz 00 Kpa m' v m' v C C C	(Kg/s) 2,71 4,20 4,20 2,71 1,49 2,71 2,71 2,71 2,71 2,71 0 (sal	1.070,81 1.707,61 17.076,09 2.257,50 Vf (M3/Kg) - - - - - - 0,00 ndensador 5.577,77 Unidades - - KJ/Kø K	Kg/s KW Kg/h Kg/h - - - - - - - - - - - - - - - - - - -	Calidad -1,00 -1,0
Estado 1 2 2' Sustano 3' 3' 3' 4 4 tur 4sec 4' 5s 5 6 0 miv Potenci Wnet nth	cia cia cia cia cia cia cia cia cia cia	Bo	K 1852,61 523,15 343,15 ater (°C) 101,17 279,88 324,68 520,00 520,00 520,00 520,00 520,00 324,68 99,61 99,61 99,61 99,61 99,61 99,61 52,55 (°C) 44,97 41,97 4.62 55 (°C) (Clo 20 49 Turt 14,79 3% CONST CO2	C 1579,46 250 70 12000 12000 12000 12000 12000 12000 10000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1	h (K),	/Kg) 433,02 1.233,51 1.492,26 3.403,39 3.403,39 3.403,39 2.685,45 2.376,60 2.479,28 417,50 2.479,28 417,50 	s (K)	m Q de se Masa d hfg a 10 /Kg*K) 1,3111 3,0490 3,4980 6,5585 6,5585 6,5585 6,5585 6,5585 6,5585 6,8339 1,3028	v ccado a agua a arroz 00 Kpa mi v c C N2 ((Kg/s) 2,71 4,20 4,20 2,71 1,49 1,49 2,71 2,71 2,71 2,71 2,71 2,71 2,71 2,71 2,71 0,00	1.070,81 1.070,81 17.076,09 2.257,50 Vf (M3/Kg) - - - - - - 0,00 ndensador 5.577,77 Unidades - KJ/Kg K	Kg/s KW Kg/h Kg/h - - - 2.685,4 - - - - - - - - - - - - - - - - - - -	Calidad -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 -1,00 0,87 0,91 0,91

	Análisis e	exergético		Temperatu	ra ambier	nte	Unidad	des	\$ KWh	
η Carnot		81%		2	5		°C		620,48	
ηEx		71%		298	3,15		к			
Equipo	Turbina	Condensador	Bomba	Mezclador	Intercar	nbiador	Calde	ra	Secador	Unidades
ΔSirr.	0,75	0,00	0,02	1,05		1,42		11,39	0,20	KJ/K*s
Ex Dest.	222,18	0,00	6,76	314,48		423,30		3.394,75	60,64	KW
η Exergética	97%	100%	94%	71%		76%		67%	90%	
horas /mes	720	720	720	720		720		720	720	h
Perdidas	159.970,63	0,00	4.865,62	226.425,11	30	4.773,34	2.	444.218,24	43.663,08	KWh
Perdidas \$	99.258.575,20	0,00	3.019.018,86	140.492.255,05	189.10	5.763,14	1.516.	588.531,29	27.092.068,38	\$
	Calor espe	<mark>cifico gases</mark>	<mark>de combu</mark>	stión						
Tem	peratura Pron	า.	433,1	5 Kg/Km	ol					
Gas	C	02	H20	N2						

%	19%	12%	69%	
а	22,26	32,24	28,9	
b	0,05981	0,001923	-0,001571	
С	-0,00003501	-0,00001055	0,000008081	
d	7,469E-09	-3,595E-09	-2,873E-09	Unidades
Cp.	42,2051	30,8014	29,5022	KJ/Kmol*K
Cp.	0,9592	1,7112	1,0536	KJ/Kg*K
Cp. total		1,10		KJ/Kg*K

Energía por Kg de Cas	carilla	Unidades	Emisio	ones CO2 Cas	scarilla	Unidades
Flujo Cascarilla	4.038,53	Kg/h	Factor e	misiones	1.553,25	KgCO2/Ton
Flujo de vapor	15.108,58	Kg/h	Eluio e	accorilla	4.038,53	Kg/h
Relación F.Casc/F.Vap.	3,74	-	Flujo C	ascanna	4,04	Ton/h
Trabajo turbina	924,10	KJ/Kg	Emisio	nes CO2	6.272,86	KgCO2/h
Energía por Kg de Cascarilla	3.457,17	KJ/Kg				

ANEXO 11: T2 =150

			Ciclo Ra	nkine 25	00KW						Combustión		Unidades
									Flu	ujo m	asico orgánico	3517,64	Kg/h
	_	1		4		4 _{Tur}				Flujo	masico aire	15989,27	Kg/h
			-		_	-	Turbina			Flujo	nasico gases	19506,90	Kg/h
	H. In				45ec.	-				Fiujo	n gases	5,42	Kg/S
1								5			p. gases	32 245 947 74	KI/h
	Quemador				6	Secado						8.957,21	KJ/S
									Ca	lor de	entrada (Q12)	8.957.207,71	W
		Caldera						-				8,96	MW
						4	Condensador	-				2.687.162,31	W
				de calor	2'				Po	otenci	a suministrada	2.687,16	KW
			2		-	-						2,69	MW
		-	Y°	-/ 🔚		Mezclador	3' 6				Eficiencias con	sideradas	
							Bomba		ηis	soent	rópicas Turbina	0,9	-
				2	3"				ηi	soent	rópicas Bomba	0,8	-
										ηie	rmica Cicio	0,3	-
											i urbina L	J-к С	
M	asa molar	elementos		Unida	des 🛛					Pot	encia Max	2500	KW
Car	bono		12	Kg/Kn	nol					т	entrada	520	°C
Nitr	ógeno		14	Kg/Kn	nol					Р	entrada	12000	Кра
Hidr	ógeno		1	Kg/Kn	nol				L	1	P salida	100	Кра
Oxi	igeno		16	Kg/Kn	nol						m v	2,71	Kg/s
	Calor espe	cifico gases	de com	bustión							Balances de	energía	
Tempera	itura Prom.		1137,88	Kg/Kn	nol					_	Intercambiado	r de calor	10.11
Gas	CO2	H2O)	N2					Q. entrad	la	501,29		KW
%	19	%	12%		69%						$Q_{int} + \dot{m}_3 - h$	$_{3''} = \dot{m}_{3}h_{3}$	
a h	22,2	20	32,24		28,9						Caldor	2	
с С	-0.0000350	-0	0,001923	0.0	0,001371						Caluer	a	
d	7 4605 0	<u>, 2</u> 0,	2 5055 00	0,0	9725 00	Unida	dos				$Q_{ent} + \dot{m}_3 h$	$_{3} = \dot{m}_{4}h_{4}$	
	7,409E-0		5,595E-09	- 4	2,075E-09	KI/Km					Mezclar	lor	
ср. Сп	55,990	07	15,4/18		33,3427		*/				Wiezciac	101	
Cn total	1,272	.5	1 16		1,1906	KJ/Kg	*K				$\dot{m}_{}h_{} + \dot{m}_{}$	$h_{av} = \dot{m}_{av}h_{av}$	
epitotai			1,10			10/16	N .				4.4	-3 -3 -3	
											Resultados Balano	e de energía	
									m3		4,69		Kg/s
									h3		1492,30)	KJ/Kg
									h3´´		1385,34		KJ/Kg
					Δr	álisis t	ermodinámi	0					
Sustan	aia I	Gases de a	combusti	ión			crinouniani		Secado			Unidadas	
Sustan	LId	Tomp	oratura					ຕຳນ	Jecauo	r –	1.09	Unidades	-
Estad	o —	remp	eratura	°C			0.40	cocodo			1,90	Kg/S	
- 1		1052.01		1570.40			Que	de aque			1.422,70	K VV	_
1		1852,61		1579,46			IvidSd	de agua			2.268,76	Kg/h	
2		423,15		150			IVIdSd	100 Kmg	2		22.087,55	Kg/h	
2		343,15		/0			ntg a	100 кра			2.257,50	Kg/h	
Sustan	cia	water					1		<i>in</i> , 1)			1 (14) (14)	
-		1 (°C)	Р(крај	n (K.	1/Kg)	s (KJ/Kg*K)	1 1	v (Kg/S)		vt (IVI3/Kg)	ng (KJ/Kg)	Calidad
3		101,17		12000		433,02	1,311	1	2,71	L	-	-	-1,00
3″		307,73		12000		1.385,34	3,316	/	4,69	L	-	-	-1,00
3		324,68		12000		1.492,30	3,498	1	4,69	<u> </u>	-	2.685,4	5 0,00
4		520,00		12000		3.403,39	6,558	5	4,69		-	-	-1,00
4 tur	·	520,00		12000		3.403,39	6,558	5	2,71		-	-	-1,00
4sec		520,00		12000		3.403,39	6,558	5	1,98		-	-	-1,00
4		324,68		12000		2.685,45	5,493	9	1,98		-	-	1,00
5s		99,61		100		2.376,60	6,558	5	2,71		-	-	0,87
5		99,61		100		2.479,28	6,833	9	2,71		-	-	0,91
6		99 61		100		417 50	1 200	8	2 71		0.00	-	0.00
		55,61	L	100		-17,30	1,302	~	2,/1	L	5,00	-	0,00
		Ci	clo						Co	nder	sador	Unidades	
miv		4,69			Kg	/s			Q sal		5.577,77	KJ/s	
Δmiv	/	1	,98		Kg	g/s					,		
		Bomba	Tu	rbina									
Potenc	ias	41 97		2 500	K	w							
Wnot	· · · ·	4.29	22.02	2.500		A/							
****EL	~	4.50	52,02		ĸ	••							
ាហ	I	Constant		ac R			Unidadas			-			
				a3 N			Unidades	_					
Con		constant		20		2							
Gas		CO2	Н	120	N	2	-	-					
Gas %		CO13tant	Н	120 12%	N	69%	- - VI/V-V						
Gas % R		CO2 19% 0,1889	Н	120 12% 0,4615	N	2 69% 0,2968	- - KJ/Kg K						

	Análisis e	xergético		1	Temperatu	ra ambien	te		Unidades	\$ KWh		
η Carnot		81%			2	25			°C	620	,48	
η Ex		61%			298	3,15			К			
Equipo	Turbina	Condensador	Bomba	Me	zclador	Intercam	nbiador		Caldera	Secador		Unidades
ΔSirr.	0,75	0,00	0,02		1,11		0,62		12,64	0	,27	KJ/K*s
Ex Dest.	222,18	0,00	6,76		331,31		185,18		3.767,49	80	,57	KW
η Exergética	97%	100%	94%		74%		78%		68%	9	0%	
horas /mes	720	720	720		720		720		720		720	h
Perdidas	159.970,63	0,00	4.865,62		238.545,61	133	3.332,44		2.712.593,92	58.011	,44	KWh
Perdidas \$	99.258.575,20	0,00	3.019.018,86	148.	012.779,17	82.730	0.113,10		1.683.110.277,90	35.994.936	,49	\$
Energi	a por Kg de C	ascarilla	Unidade	s				Emisic	ones CO2 Cas	carilla	U	Inidades
Flujo	Cascarilla	4.182,47	Kg/h				Fa	actor e	misiones	1.553,25	Kg	gCO2/Ton
Flujo	de vapor	16.873,05	Kg/h						accarilla	4.182,47		Kg/h
Relación F	Casc/F.Vap.	4,03	-					rujo ca	ascarilla	4,18		Ton/h
Trabaj	o turbina	924,10	KJ/Kg				I	Emisio	nes CO2	6.496,43	k	<gco2 h<="" td=""></gco2>
Energía por	Kg de Cascarilla	3.728,05	KJ/Kg									

Anexo 12: T2=100

4

5s

5

6

324.68

99,61

99,61

99,61

12000

100

100

100

2,685,45

2.376,60

2.479,28

417,50

6.5585

6,8339

1,3028

2,24

2,71

2,71

2,71

-

0,00

-

-

-

0.87

0,91

0,00

	Ci	clo			Co	ndensador	Unidades	
miv	4,95		Kg/s		Q sal	5.577,77	/ KJ/s	
∆m'v	2,24		Kg/s					
	Bomba	Turbina						
Potencias	41,97	2.500	KW					
Wneta	4.25	8,08	KW					
ηth	45%		-					
	Constante	e del gas R		Unidades				
Gas	CO2	H2O	N2	-				
%	19%	12%	69%	-				
R	0,1889	0,4615	0,2968	KJ/Kg K				
R total		0,2929		KJ/Kg K				
	Análisis e	xergético		Temperatu	ra ambiente	Unidades	\$ KWh	
η Carnot		81%		2	25	°C	620,48	
ηEx		56%		298	3,15	К		
Equipo	Turbina	Condensador	Bomba	Mezclador	Intercambiador	Caldera	Secador	Unidades
ΔSirr.	0,75	0,00	0,02	1,12	0,23	13,28	3 0,31	KJ/K*s
Ex Dest.	222,18	0,00	6,76	334,35	68,84	3.960,05	91,09	KW
η Exergética	97%	100%	94%	76%	79%	68%	90%	
horas /mes	720	720	720	720	720	720	720	h
Perdidas	159.970,63	0,00	4.865,62	240.733,63	49.566,27	2.851.233,75	65.582,63	KWh
Perdidas \$	99.258.575,20	0,00	3.019.018,86	149.370.405,49	30.754.882,09	1.769.133.519,82	40.692.708,90	\$

Calo	r especifico	o ga	ses de	combus	stió	in			
Temperat	ura Prom.			358,15		Kg/Kmol			
Gas	CO2		H2	20		N2			
%	1	.9%		12%		69%			
а	22	,26		32,24		28,9			
b	0,05	981	0,001923			-0,001571			
С	-0,00003	501	-0,00001055			0,000008081			
d	7,469E	-09	-3,595E-09			-2,873E-09		Unidad	es
Cp.	39,5	333		31,4103		29,2419		.9 KJ/Kmol*	
Cp.	0,8	985		1,7450		1,0444	4 KJ/Kg*K		<
Cp. total			1,09					KJ/Kg*I	<
Energía por Kg o	de Cascarilla	U	Inidades			Emisiones CO2	Cas	carilla	Unidad
Eluio Cascarilla	4 250 02 Kg/b Eactor amisiones 1 552 25 Kg				Kacoo/T				

Energia por Kg de Cas	carilla	Unidades		Emisiones CO2 Cascarilla			Unidades
Flujo Cascarilla	4.260,03	Kg/h		Factor emisiones		1.553,25	KgCO2/Ton
Flujo de vapor	17.804,11	Kg/h		Flujo cascarilla Emisiones CO2		4.260,03	Kg/h
Relación F.Casc/F.Vap.	4,18	-				4,26	Ton/h
Trabajo turbina	924,10	KJ/Kg				6.616,89	KgCO2/h
Energía por Kg de Cascarilla	3,862,15	KI/Kg					

ANEXO 13: T2'=100

				Ciclo Ra	nkine 25	00KW							Combustión		Unidades
											Flu	ujo m	asico orgánico	3563,28	Kg/h
	_	1	_		4		4 Tur.					Flujo	masico aire	16196,75	Kg/h
				-		1		TI	urbina			Flujo	masico gases	19760,03	Kg/h
	1	1				45ec.	-					riujo	masico gases	5,49	Kg/s
									5				p. gases	31 480 330 49	KI/h
	Quemador	-					Secado							8.744,54	KJ/S
											Ca	lor de	entrada (Q12)	8.744.536,25	W
		Cal	idera						8					8,74	MW
					later en bie	day.	4	Conder	rsador					2.623.360,87	W
					de calor	2'					Po	tenci	a suministrada	2.623,36	KW
				2			_							2,62	MW
			-	4	-/ 📔		Mezclador	3'	6				Eficiencias con	sideradas	
								Bomba			ηis	oent	rópicas Turbina	0,9	-
					2	3"					ηis	soent	rópicas Bomba	0,8	-
												il le	Turbing		-
IVI	asa moi	ar ei	ementos		Unida	aes						POT	encia iviax	2500	KVV
Carl	bono			12	Kg/Kr	nol						Т	entrada	520	°C
Nitro	ógeno			14	Kg/Kr	nol						Р	entrada	12000	Кра
Hidro	ogeno			1	Kg/Kr	nol							r sallūa miv	100	Кра
		necif			kg/Kr								Balancas da		Ng/5
Tomnorr	tura Drom	peul	ico gases	1162.00	Valu-	nol							Intercombinde	r de calor	
Gas			H20	1102,88	ND ND						0. entrad	a	622 01		K/W/
%	02	19%		12%	N2	69%					<u>. enuad</u>	u	053,91		N¥V
а	2	2,26		32.24		28.9							$Q_{int} + m_3 - h_3$	$_{3''} = m_3 h_3$	
b	0,0	5981		0,001923		-0,001571							Calder	а	
с	-0,00003	3501	-0,	00001055	0,0	00008081							$0 \perp \dot{m} h$	$-\dot{m}h$	
d	7,469	E-09	-3	3,595E-09	-	2,873E-09	Unida	des					Vent + m3n	$_{3} - m_{4}n_{4}$	
Cp.	56.3	2136		14.5562		33,4830	KJ/Km	ol*K					Mezclad	lor	
Cp.	1,2	2776		0,8087		1,1958	KJ/Kg	*К							
Cp. total				1,15			KJ/Kg	*К					$\dot{m}_{4'}h_{4'} + \dot{m}_{3'}$	$h_{3'} = \dot{m}_{3''} h_{3''}$	
													Resultados Balanc	e de energía	
											m3		4,58		Kg/s
											n3 b2''		1492,20		KJ/Kg
											115		1355,00		KJ/ Kg
						An	álisis t	ermod	linámico)					
Sustanc	cia		Gases de o	ombusti	ión						Secado			Unidades	
Estado	<u> </u>		Temp	eratura					mi	v			1,87	Kg/s	
Lotada	•		К		°C				Q de s	ecado			1.342,65	KW	
1			1852,61		1579,46				Masa d	e agua			2.141,10	Kg/h	
2			473,15		200				Masa d	e arroz			21.410,96	Kg/h	
2'			373,15		100				hfg a 1	00 Kpa			2.257,50	Kg/h	
Sustanc	cia	N	Vater												
-		Т	(°C)	Р(Кра)	h (KJ	/Kg)	s (KJ	/Kg*K)	۳N	/ (Kg/s)		Vf (M3/Kg)	hg (KJ/Kg)	Calidad
3′			101,17		12000		433,02		1,3111		2,71		-	-	-1,00
3´´			302,22		12000		1.353,66		3,2619		4,58		-	-	-1,00
3			324,68		12000		1.492,20		3,4980		4,58		-	2.685,4	5 0,00
4			520,00		12000		3.403,39		6,5585		4,58		-	-	-1,00
4 tur			520,00		12000		3.403,39		6,5585		2,71		-	-	-1,00
4sec			520,00	·	12000		3.403,39		6,5585		1,87		-	-	-1,00
4′			324,68		12000		2.685,45		5,4939		1,87		-	-	1,00
5s			99,61		100		2.376,60		6,5585		2,71		-	-	0,87
5			99.61		100		2.479.28		6,8339		2.71		-	-	0.91
6			00.61		100		117 50		1 2020		, _ 7 71		0.00		0.00
0			39,01		100		417,50		1,3028		2,71		0,00	-	0,00
			Ci	clo					Ţ		Co	nder	sador	Unidades	
miv			4,	58		Kg	/s			(Q sal		5.577,77	KJ/s	
∆miv	,		1.	87		Kg	/s						,		
		Bo	omba	Tu	rbina										
Potenci	ias		<i>4</i> 1 97		2 500	K/	N								_
Wnet	a		1 1	24 52	2.500	11	N								_
nth	-		4.43 510/	טכידי		~	-								
iju		0	onstant	del a	as R			l lei	dadec						
Gar			CO2	uci ge	120	N	2	UIII	uuuco						
9%			19%		12%	IN	- 69%								
R			0 1880		0 4615		0 2968	KI	/Kø K						+
N	. +		0,1009		0,7013		3,2300		······						-
				0	2929			I KJ/	'Kg K						

	Análisis e	xergético		Т	emperatur	a ambient	te	U	nidades	\$ KWh	
η Carnot		81%			2	5			°C	620	48
η Ex		63%			298	8,15			К		
Equipo	ipo Turbina Condensador Bomba				Mezclador Intercambiad			C C	Caldera	Secador	Unidades
ΔSirr.	0,75	0,75 0,00 0,02			1,10		0,82 12,43		0	26 KJ/K*s	
Ex Dest.	222,18	0,00	6,76		328,93		244,10		3.705,09	76	04 KW
η Exergética	η Exergética 97% 100% 9				74%		76%		67%	9	0%
horas /mes	noras /mes 720 720 7.				720		720	720) 7	'20 h
Perdidas	159.970,63	0,00	4.865,62	2	236.832,70	175	5.750,42		2.667.663,49	54.747	22 KWh
Perdidas \$	99.258.575,20	0,00	3.019.018,86	146.9	949.950,85	109.049	9.617,83	1	1.655.231.839,77	33.969.553	71 \$
Energi	a por Kg de C	ascarilla	Unidade	s				Emisior	nes CO2 Cas	carilla	Unidades
Flujo	Cascarilla	4.236,75	Kg/h				Fa	actor em	nisiones	1.553,25	KgCO2/Ton
Flujo	de vapor	16.471,64	Kg/h					EL 1		4.236,75	Kg/h
Relación F	Relación F.Casc/F.Vap. 3,89 -		-					Flujo cas	Scarilla	4,24	Ton/h
Trabaj	Trabajo turbina 924,10 KJ/K		KJ/Kg				E	Emisione	es CO2	6.580,73	KgCO2/h
Energía por	Kg de Cascarilla	3.592,74	KJ/Kg								

ANEXO 14: T2'=90

	Ciclo Rankine 2500KW							Combustión				Unidades			
											Flu	uio masico	orgánico	3526 58	Kg/h
		1			4		4-	-				Fluio mas	ico aire	16029.92	Kg/h
	-	-		-	Ĩ		4 Tur.	π	urbina			Flujo masi	co gases	19556.51	Kg/h
	No. of Concession, Name	-		1		4					I	Flujo masi	co gases	5,43	Kg/s
	H					45ec	T					Cp. ga	ises	1,15	KJ/Kg*K
1	1						Secado							31.156.085,79	KJ/h
	Quemad	or					A summer				6	lor de ent	rada (012)	8.654,47	KJ/S
											Cu	ioi ac ciit	iuuu (QIL)	8.654.468,28	W
		Ca	aidera											8,65	MW
					Intercambia	for	4	Conden	rsador		_			2.596.340,48	W
					de calor	2'			-		Po	otencia sur	ninistrada	2.596,34	KW
				.3		-	Merclador	-						2,60	MW
			7	4			-	3' Bomba	6		nis	soentrónio	as Turbina		
					2	3"					ni	soentrópi	cas Bomba	0.8	-
												n Térmic	a Ciclo	0,3	-
													Turbina D	-R C	
М	asa m	olar el	lementos		Unida	des						Potenci	a Max	2500	КW
Car	bono			12	Kg/Kn	nol						Tentr	rada	520	°C
Nitro	ógeno			14	Kg/Kn	nol						Pentr	rada	12000	Кра
Hidr	ógeno			1	Kg/Kn	nol						P sal	ida	100	Кра
Oxi	igeno			16	Kg/Kn	nol						min	v	2,71	Kg/s
(Calor e	especi	fico gases	de com	bustión								Balances de	energía	
Tempera	itura Pro	om.		1162,88	Kg/Kn	nol							Intercambiador	de calor	
Gas %	CC	10%	H2O	120/	N2	c0%					Q. entrad	а	690,12		KW
a		22.26		32,24 28 0.001923 -0.00157		28.9							$Q_{int} + \dot{m}_3 \cdot h_3$	$h_{3''} = \dot{m}_{3}h_{3}$	
b	0	,05981		0,001923	24 28,9 23 -0,001571								Caldera	3	
с	-0,00	003501	-0,	00001055	0,00008081								$Q_{ant} + \dot{m}_2 h_3$	$a = \dot{m}_A h_A$	
d	7,4	69E-09	-3	3,595E-09	-1	2,873E-09	Unida	ides							
Cp.	5	6,2136		14,5562		33,4830	KJ/Km	01*K					Wiezciad	or	
Cp. total		1,2770		1,15		1,1956	KJ/Kg	;*K					$\dot{m}_{4'}h_{4'} + \dot{m}_{3'}h$	$h_{3'} = \dot{m}_{3''} h_{3''}$	
												I	Resultados Balanco	e de energía	
											m3		4,53		Kg/s
											h3		1492,19		KJ/Kg
											h3´´		1339,79		KJ/Kg
						Ar	nálisis t	ermod	linámico)					
Sustan	cia		Gases de o	ombusti	ión						Secado			Unidades	
			Temp	eratura					m	iv			1,82	Kg/s	
Estad	0		К		°C				Q de s	ecado			1.308.79	KW	
1			1852.61		1579.46				Masa d	le agua			2.087.10	Kg/h	
2			473.15		200				Masa d	e arroz			20.871.01	Kg/h	
2'			363.15		90				hfg a 1	00 Kpa			2.257.50	Kg/h	
Sustan	cia	v	Vater										- /	0/	
-		1	Г (°C)	Р(Kpa)	h (K.	J/Kg)	s (KJ	/Kg*K)	miv	(Kg/s)	v	f (M3/Kg)	hg (KJ/Kg)	Calidad
3´			101,17	•	12000		433,02		1,3111		2,71		-	-	-1,00
3′′			299,75		12000		1.339,79		3,2377		4,53		-	-	-1,00
3	324,68 12000 1.492,19			3,4979		4,53		-	2.685,4	5 0,00					
4			520,00		12000	3.403,39			6,5585		4,53		-	-	-1,00
4 tur	•		520,00		12000		3.403,39		6,5585		2,71		-	-	-1,00
4sec	:		520,00	,	12000		3.403,39		6,5585		1,82		-	-	-1,00
4′			324,68		12000		2.685,45		5,4939		1,82		-	-	1,00
5s			99,61		100		2.376,60		6,5585		2,71		-	-	0,87
5			99,61		100		2.479,28		6,8339		2,71		-	-	0,91
6			99,61		100		417.50	1	1,3028		2.71	1	0,00	-	0,00

	Ci	clo			Co	ndensador	Unidades	
miv	4,	.53	Kg/s		Q sal	5.577,77	KJ/s	
∆miv	1,	.82	Kg/s					
	Bomba	Turbina						
Potencias	41,97	2.500	KW					
Wneta	4.4	56,93	KW					
ηth	51%		-					
	Constant	e del gas R		Unidades				
Gas	CO2	H2O	N2	-				
%	19%	12%	69%	-				
R	0,1889	0,4615	0,2968	KJ/Kg K				
R total		0,2929		KJ/Kg K				
	Análisis e	exergético		Temperatu	ra ambiente	Unidades	\$ KWh	
η Carnot		81%		2	5	°C	620,48	
ηEx		64%		298	3,15	К		
Equipo	Turbina	Condensador	Bomba	Mezclador	Intercambiador	Caldera	Secador	Unidades
ΔSirr.	0,75	0,00	0,02	1,10	0,89	12,28	0,25	KJ/K*s
Ex Dest.	222,18	0,00	6,76	327,70	264,52	3.662,09	74,12	KW
η Exergética	97%	100%	94%	73%	77%	67%	90%	
horas /mes	720	720	720	720	720	720	720	h
Perdidas	159.970,63	0,00	4.865,62	235.945,82	190.453,29	2.636.702,36	53.366,59	KWh
Perdidas \$	99.258.575,20	0,00	3.019.018,86	146.399.660,20	118.172.456,61	1.636.021.082,67	33.112.902,66	\$

Calor es	specifico gases do	e combustion				
Temperat	ura Prom.		418,15	Kg/Kmol		
Gas	CO2	н	20	N2		
%	1	.9%	12%	69%		
а	22	2,26	32,24	28,9)	
b	0,05	981	0,001923	-0,001571	-	
С	c -0,000035		,00001055	0,000008081	-	
d	d 7,469E-		·3,595E-09	-2,873E-09	Unidac	les
Cp.	41,6	942	30,9366	29,4460) KJ/Kmo	*К
Cp.	0,9	476	1,7187	1,0516	6 KJ/Kg*	K
Cp. total		1	,10		KJ/Kg*	K
Energía por Kg o	le Cascarilla	Unidades		Emisiones CO	2 Cascarilla	Unidades
Flujo Cascarilla	Flujo Cascarilla 4.193,11			Factor emisione	s 1.553,2	5 KgCO2/Ton
Flujo de vapor	Flujo de vapor 16.301,86			Eluio cascarilla	4.193,12	1 Kg/h
Relación F.Casc/F.Va	ción F.Casc/F.Vap. 3,89		-		4,19	Ton/h
Trabajo turbina	924,10	KJ/Kg		Emisiones CO2	6.512,9	5 KgCO2/h
Energía por Kg de Casca	arilla 3.592,71	KJ/Kg				

ANEXO 15: T2'=50

				<mark>Ciclo Ra</mark>	nkine 2500	KW							Combustión		Unidades
											Flu	ijo masic	o orgánico	3387,31	Kg/h
		1			4		4 _{Tur.}					Flujo ma	sico aire	15396,86	Kg/h
	-					-		-	Turbina		F	lujo mas	ico gases	18784,16	Kg/h
	1					45ec.			and the second		F	lujo mas	ico gases	5,22	Kg/s
1									5			Cp. g	ases	1,15	KJ/Kg*K
	Quemed	lor					Secado		- 3					29.925.643,69	KJ/h
	Guernou							-			Cal	or de en	trada (Q12)	8.312,68	KJ/S
		0	aldera											8.312.678,80	VV
									=_					8,31	IVIV
					Intercambiador		4	Cond	lensador		Dot	toncia cu	ministrada	2.493.803,64	VV
					100 2						FU	lencia su	mmsuaua	2.495,60	N VV
				.3		-	Merrinder	-					Eficiencies con	2,49	10100
								3' Bom	6				Eliciencias con	Sideradas	
								Dom			η is	oentrop	cas Turbina	0,9	-
					2	3					ηıs	oentrop	icas Bomba	0,8	-
												η Iermi		0,3	-
													Turbina D	р-к С	
M	lasa m	olar e	lementos		Unidade	s						Potenc	ia Max	2500	KW
Car	rbono			12	Kg/Kmol							Tent	rada	520	°C
Nitr	rógeno			14	Kg/Kmol							P ent	rada	12000	Кра
Hidr	rógeno			1	Kg/Kmol							P sa	lida	100	Kpa
Ox	igeno			16	Kg/Kmol							m	v	2.71	Kg/s
	Calor e	especi	fico gases	de com	bustión								Balances de	energía	- بر <u>ل</u>
Temper	atura Dro	om		1162 99	Kø/Kmol								Intercambiado	r de calor	
Gas			HOO	1102,08	N2						0. entrada		Q02 01		K/W/
- Uas %		10%	ΠźŪ	12%	142	60%						- 1	905,91		IX V V
/0 2	+	22.26		32.24		28 0							$Q_{int} + \dot{m}_3 - h_3$	$_{3''} = \dot{m}_{3}h_{3}$	
h	n	05981		0.001923	-n r	01571							Calder	a	
c	-0.00	003501	-0	00001055	0.0000	08081									
d	7.4	005501	0,		0,0000	225.00	Unida	doc					$Q_{ent} + \dot{m}_3 h_3$	$_{3} = \dot{m}_{4}h_{4}$	
	7,4	109E-09	-:	3,595E-09	-2,8	3E-09	Uniua	ues							
Ср.	5	6,2136		14,5562	3	3,4830	KJ/Kmc	DI*K					Iviezciad	or	
Cp.		1,2776		0,8087		L,1958	KJ/Kg	*K					and the stands	h sin h	
Cp. total				1,15			KJ/Kg	*K					$m_{4'}n_{4'} + m_{3'}n_{3'}$	$n_{3'} = m_{3''}n_{3'}$	*
													Desultadas Dalaus		
												-	Resultados Balanc	e de energia	H - L
											m3		4,35		Kg/S
											n3		1492,43		KJ/Kg
											n3		1284,63	-	KJ/Kg
						An	álisis t	ermo	dinámico						
Sustan	ria		Gases de o	ombusti	ón						Secado			Unidades	
Justan	icia		Tomp	oratura				_	m	v	occuro		1.64	Vals	
Estad	lo		remp	eratura						v			1,04	Ng/S	
-			K		L				Ques	ecauo			1.180,78	KVV	
1			1852,61		1579,46				iviasa d	e agua			1.882,98	Kg/h	
2			473,15		200	Masa de arroz						18.829,77	Kg/h		
2'			323,15		50	hfg a 100 Kpa						2.257,50	Kg/h		
Sustan	icia	۱	Nater												
-			T (°C)	Р(Kpa)	h (KJ	/Kg)	s (ł	(J/Kg*K)	m' v	(Kg/s)	۱	/f (M3/Kg)	hg (KJ/Kg)	Calidad
3′			101,17		12000		433,02		1,3111		2,71		-	-	-1,00
3″			289,64		12000		1.284,63		3,1406		4,35		-	-	-1.00
3			324.68		12000		1.492.43		3,4983		4.35		-	2.685	45 0.00
4			520.00		12000		3.403 20		6 5585		4 35		-	-	
44			E 20,00		12000		2 402 20		6 5505		-,55				1,00
4 tur	I I		520,00		12000		5.403,39		0,5585		2,71		-	-	-1,00
4sec	C		520,00		12000		3.403,39		6,5585		1,64		-	-	-1,00
4′			324,68		12000		2.685,45		5,4939		1,64		-	-	1,00
5s			99,61		100		2.376,60		6,5585		2,71		-	-	0,87
5			99,61		100		2.479,28		6,8339		2,71		-	-	0,91
¢			00 61		100		117 50		1 2020		2 71		0.00		0.00
3		<u> </u>	55,01		100		417,30		1,3020		2,71		0,00	-	0,00
				Ciclo								c	ondensador		Unidades
miv	v	T		4 35		T	Kø/s				0.6	al		5 577 77	KI/s
·	- •	+		1.04		+	116/3						+	5.577,77	13/3
Δm	v			1,04			rg/s								
			Bomba		Turbina										
Poten	cias		41.	97	2.50	0	КW								
Wno	ota)	1 5/12 72	2.50		K/W								
whe	- .a	+		+. 542,72		+	IX VV								
ηth	ηth 55%			1	-										
			Consta	nte de	l gas R				Unidad	es					
Ga	s		CO2		H2O		N2		-						
%			19	9%	129	6		69%	-						
P		1	<u>د ا</u>	89	0 /61	5	0	2968	K1/Ka	к	1				
		+	0,10		0,401	~	0,	,2000	v) vg	**	1				
	tal	1			0,2929				KJ/Kg	К	1				

	Análisis e	xergético		Т	emperatur	a ambiente	2	Unidades	\$ KWh	
η Carnot		81%			2	5		°C	620,	48
ηEx		68%			298	3,15		К		
Equipo	Turbina	Condensador	Bomba	Me	zclador	Intercamb	biador	Caldera	Secador	Unidades
ΔSirr.	0,75	0,00	0,02		1,08		1,14	11,74	0,	22 KJ/K*s
Ex Dest.	222,18	0,00	6,76		321,67		339,32	3.498,88	66,	87 KW
η Exergética	97%	100%	94%		72%		78%	67%	90	0%
horas /mes	720	720	720		720		720	720	7	20 h
Perdidas	159.970,63	0,00	4.865,62	4	231.602,69	244.	309,53	2.519.191,46	48.147,	20 KWh
Perdidas \$	99.258.575,20	0,00	3.019.018,86	143.7	704.834,01	151.589.	175,96	1.563.107.914,74	29.874.375,	17 \$
Calo	<mark>r especifico ga</mark>	<mark>ses de combust</mark>	ión							
Temperat	ura Prom.	398,15	Kg/Kmol							
Gas	CO2	H2O	N2							
%	19%	12%	69%							
а	22,26	32,24	28,9							
b	0,05981	0,001923	-0,001571							
c	-0,00003501	-0,00001055	0,00008081							
d	7,469E-09	-3,595E-09	-2,873E-09	Uni	dades					
Cp.	40,9949	31,1063	29,3742	KJ/K	(mol*K					
Cp.	0,9317	1,7281	1,0491	KJ,	/Kg*K					
Cp. total		1,10		KJ,	/Kg*K					
Energi	a por Kg de C	ascarilla	Unidade	s			E	Emisiones CO2 Case	arilla	Unidades
Flujo	Cascarilla	4.027,51	Kg/h				Fa	ctor emisiones	1.553,25	KgCO2/Ton
Flujo	de vapor	15.660,01	Kg/h				-	iluia anna dilla	4.027,51	Kg/h
Relación F	Casc/F.Vap.	3,89	-				F	Tujo cascarilla	4,03	Ton/h
Trabaj	o turbina	924,10	KJ/Kg				E	misiones CO2	6.255,73	KgCO2/h
Energía por	Kg de Cascarilla	3.593,16	KJ/Kg							

ANEXO 16: P5=400

		Ciclo Ra	ankine 2500KW				Combustión		Unidades
						Flujo	masico orgánico	4038,04	Kg/h
	1		4	4		Flu	jo masico aire	18354,75	Kg/h
			Ĩ	4Tur	Turbina	Fluj	o masico gases	22392,79	Kg/h
	and the second s					Fluj	o masico gases	6,22	Kg/s
	Hall		45ec			-	Cp. gases	1,15	KJ/Kg*K
1					5			35.674.662,78	KJ/h
	Quemador			Secador				9.909,63	KJ/S
						Calor	de entrada (Q12)	9.909.628,55	Ŵ
	C	aldera						9,91	MW
				4' Cond	ensador			2.972.888,57	W
			intercambiador de calor Or			Poter	icia suministrada	2.972,89	KW
	_							2,97	MW
				Mezclador			Eficiencias con	sideradas	
				3' Bomi	ba	η isoe	ntrópicas Turbina	0,9	-
			2 3"			η isoe	ntrópicas Bomba	0,8	-
						η.	Térmica Ciclo	0,3	-
							Turbina D	D-R C	
M	lasa molar e	lementos	Unidades			Р	otencia Max	2500	кw
Car	rbono	12	Kg/Kmol				T entrada	520	°C
Nitr	ógeno	14	Kg/Kmol				P entrada	12000	Кра
Hidr	ógeno	1	Kg/Kmol				P salida	400	Кра
Oxi	igeno	16	Kg/Kmol				miv	3,45	Kg/s
(Calor especi	fico gases de com	bustión				Balances de	energía	
Tempera	atura Prom.	1162,88	Kg/Kmol				Intercambiado	r de calor	
Gas	CO2	H2O	N2			Q. entrada	933,88		КW
%	19%	12%	69%				$0 \pm \dot{m} h$	- m h	
а	22,26	32,24	28,9				Vint 1 m3 m	3" — m3n3	
b	0,05981	0,001923	-0,001571				Calder	а	
с	-0,00003501	-0,00001055	0,000008081				$0 \pm \dot{m} h$	$-\dot{m}h$	
d	7,469E-09	-3,595E-09	-2,873E-09	Unidades			Vent 1 m3n	$_{3} = m_{4}n_{4}$	
Cp.	56,2136	14,5562	33,4830	KJ/Kmol*K			Mezclad	or	
Cp.	1,2776	0,8087	1,1958	KJ/Kg*K					
Cp. total		1,15		KJ/Kg*K			$\dot{m}_{4'}h_{4'} + \dot{m}_{3'}$	$h_{3'} = \dot{m}_{3''} h_{3''}$	
							Devultadas D. 1		
							Resultados Balanc	e de energia	
						m3	5,19		Kg/s
						h3	1492,19		KJ/Kg
						h3´´	1312,08		KJ/Kg

Análisis termodinámico													
Sustancia	Gases de c	ombustión			Secado		Unidades						
Estado	Tempe	eratura		m	v	1,7377402	Kg/s						
Estado	К	°C		Q de s	ecado	1.247,59	KW						
1	1852,61	1579,46		Masa d	e agua	1.989,52	Kg/h						
2	473,15	200		Masa d	e arroz	19.895,20	Kg/h						
2'	343,15	70		hfg a 1	00 Kpa	2.257,50	Kg/h						
Sustancia	Water												
-	T (°C)	P (Kpa)	h (KJ/Kg)	s (KJ/Kg*K)	m'v (Kg/s)	Vf (M3/Kg)	hg (KJ/Kg)	Calidad					
3′	145,41	12000	619,78	1,7826	3,45	-	-	-1,00					
3´´	294,73	12000	1.312,08	3,1892	5,19	-	-	-1,00					
3	324,68	12000	1.492,19	3,4979	5,19	-	2.685,45	0,00					
4	520,00	12000	3.403,39	6,5585	5,19	-	-	-1,00					
4 tur	520,00	12000	3.403,39	6,5585	3,45	-	-	-1,00					
4sec	520,00	12000	3.403,39	6,5585	1,74	-	-	-1,00					
4′	324,68	12000	2.685,45	5,4939	1,74	-	-	1,00					
5s	143,61	400	2.597,60	6,5585	3,45	-	-	0,93					
5	143,61	400	2.678,18	6,7518	3,45	-	-	0,97					
6	143,61	400	604,65	1,7765	3,45	0,00	-	0,00					
	Cie	clo			Co	ndensador	Unidades						
miv	5,	19	Kg/s		Q sal	7.148,05	KJ/s						
∆miv	1,	74	Kg/s										
	Bomba	Turbina											
Potencias	52,14	2.500	ĸw										
Wneta	4.62	9,34	KW										
ηth	47%		-										

	Constante	del gas R		Un	idades					
Gas	CO2	H2O	N2		-					
%	19%	12%	69%		-					
R	0,1889	0,4615	0,2968	KJ	I/Kg K					
R total		0,2929		KJ	/Kg K					
	Análisis e	xergético		т	emperatur	ra ambient	te	Unidades	\$ KWh	
η Carnot		72%			2	5		°C	620,	48
ηEx	65%				298	3,15		К		
Equipo	Turbina	Condensador	Bomba	Me	zclador	Intercam	biador	Caldera	Secador	Unidades
ΔSirr.	0,67	0,00	0,02		0,84		1,25	14,29	0,	24 KJ/K*s
Ex Dest.	198,72	0,00	6,36		251,51		372,16	4.261,36	5 70,	65 KW
η Exergética	98%	100%	96%		79%		76%	67%	90)%
horas /mes	720	720	720		720		720	720) 7	20 h
Perdidas	143.080,51	0,00	4.582,21		181.090,14	267	.956,88	3.068.181,56	50.871,	47 KWh
Perdidas \$	88.778.596,95	0,00	2.843.172,71	112.	362.809,02	166.261	.885,73	1.903.745.295,22	31.564.729,	45 \$
Calo	<mark>r especifico ga</mark>	<mark>ses de combust</mark>	ión							
Temperat	tura Prom.	408,15	Kg/Kmol							
Gas	CO2	H2O	N2							
%	19%	12%	69%							
а	22,26	32,24	28,9							
b	0,05981	0,001923	-0,001571							
c	-0,00003501	-0,00001055	0,000008081							
d	7,469E-09	-3,595E-09	-2,873E-09	Uni	dades					
Cp.	41,3471	31,0230	29,4096	KJ/ł	Kmol*K					
Cp.	0,9397	1,7235	1,0503	KJ	/Kg*K					
Cp. total		1,10		KJ	/Kg*K					
Energi	ía por Kg de C	ascarilla	Unidade	s				Emisiones CO2 Cas	carilla	Unidades
Flujo	Cascarilla	4.801,23	Kg/h				Fa	actor emisiones	1.553,25	KgCO2/Ton
									4 001 22	Va/h
Flujo	de vapor	18.666,12	Kg/h						4.801,23	Kg/II
Flujo Relación I	de vapor F.Casc/F.Vap.	18.666,12 3,89	Kg/h -				I	Flujo cascarilla	4.801,23	Ton/h
Flujo Relación I Trabaj	de vapor F.Casc/F.Vap. jo turbina	18.666,12 3,89 725,21	Kg/h - KJ/Kg				E	Flujo cascarilla Emisiones CO2	4.801,23 4,80 7.457,52	Ton/h KgCO2/h

ANEXO 17: P5=300

			Ciclo Ra	ankine 25	00KW						Combustión		Unidades
										Flu	ujo masico orgánico	3886,71	Kg/h
		1		4		4 _{Tur}					Flujo masico aire	17666,88	Kg/h
			-			-	-	Turbina		I	lujo masico gases	21553,59	Kg/h
	E				4sec.	-		-		i	lujo masico gases	5,99	Kg/s
1								5			cp. gases	1,15	KJ/Kg*K KI/h
	Quemador					Secado						9 538 25	KJ/II KI/S
							-			Ca	lor de entrada (Q12)	9.538.251,80	W
		Caldera						3				9,54	MW
				hitere and his	-	4	Conde	ensador				2.861.475,54	W
				de calor	2'					Po	tencia suministrada	2.861,48	KW
			2		-	_						2,86	MW
		5	Y	- 1		Mezclador	3'	6			Eficiencias con	sideradas	
							Bomb	a		ηis	oentrópicas Turbina	0,9	-
				2	3.					η ιε	n Tármica Ciclo	0,8	-
											Turbina C		-
M	aca molar	alamantas		Unida							Potoncia Max		KINI
IVI	asa molar	elementos		Unida	aes							2500	KW
Car	bono		12	Kg/Kn	nol						Tentrada	520	°C
Nitro	ogeno ógeno		14	Kg/Kn							r entrada P salida	12000	Кра
Ovi	geno		16	Kg/Kn Kg/Kn	nol					1	r sanua miv	300	кра Кø/с
	Calor espe	cifico gases	de com	bustión							Balances de	energía	
Tempera	itura Prom.		1162.88	Kg/Kn	nol						Intercambiado	r de calor	
Gas	CO2	H2O)	N2						Q. entrad	a 898,88		KW
%	19	%	12%		69%						$0 + \dot{m} h$	$= \dot{m}_{-}h_{-}$	
а	22,2	6	32,24		28,9						Vint + m3"h	3 - 1113113	
b	0,0598	1	0,001923		0,001571						Calder	а	
с	-0,0000350	1 -0,	00001055	0,0	00008081						$Q_{ent} + \dot{m}_3 h$	$_{3} = \dot{m}_{4}h_{4}$	
d	7,469E-0	69E-09 -3,595E-09 -2,873E 6,2136 14,5562 33,4 1,2776 0,9097 1,1			2,873E-09	Unida	des						
Cp.	56,213	isit is <t< td=""><td>KJ/Km</td><td>ol*K</td><td></td><td></td><td></td><td>Mezclad</td><td>lor</td><td></td></t<>				KJ/Km	ol*K				Mezclad	lor	
Cp.	1,277	1,2776 14,5302 55,40 1,2776 0,8087 1,19 1,15				KJ/Kg	*K				\dot{m} h \perp \dot{m}	h = m h	
Cp. total		1,2776 0,8087 1,15				KJ/Kg	*К				$m_4, n_4, + m_3, + m_$	$n_{3'} = m_{3''}n_{3''}$	
											Resultados Balanc	e de energía	
										m3	4,99		Kg/s
										h3	1492,30		KJ/Kg
										h3´´	1312,20		KJ/Kg
					Ar	nálisis t	ermo	dinámico					
Sustan	ria	Gases de d	combust	ión						Secado		Unidades	_
Justan		Temp	eratura					mi	v	octado	1 74081200	Kg/s	
Estad	0	K		°C				O de se	cado		1 249 80	KW	
1		1852 61		1579 46				Masa d	agua		1 993 04	Kg/h	
2		473.15		200				Masa d	e arroz		19,930.37	Kg/h	
2'		343.15		70				hfg a 10	0 Kpa		2.257 50	Kg/h	
Sustan	cia	Water											
-		T (°C)	P	(Kpa)	h (K.	J/Kg)	s (K	J/Kg*K)	miv	(Kg/s)	Vf (M3/Kg)	hg (KJ/Kg)	Calidad
3′		135.27		12000		576.68		1,6784		3.25	-	-	-1.00
3″		294,75		12000		1.312,20		3,1894		4,99	-	-	-1,00
3		324,68		12000		1.492,30		3,4981		4,99	-	2.685.4	15 0.00
4		520,00		12000		3.403,39		6,5585		4,99	-	-	-1.00
4 tur		520.00		12000		3,403.39		6,5585		3.25	_	-	-1.00
Asoc		520.00	-	12000		3 103 30		6 5585		1 74			-1.00
4300		220,00		12000		2 685 15		5 /020		1,74	-		-1,00
50		122 52		3000		2 548 74		6 5585		2,74	-	-	1,00
	-	100,02		200		2.540,74		6,5505		3,23			0,52
		155,52		500		2.034,20		0,7000		5,25	-	-	0,96
6		133,52		300		561,43		1,6717		3,25	0,00	-	0,00
		Ci	clo							Co	ndensador	Unidades	
miv.		4,	,99		Kg	g/s			C	Q sal	6.736,91	KJ/s	
Δmiv	/	1,	,74		Kg	g/s							
		Bomba	Tu	rbina									
Potenc	ias	49,58		2.500	K	w		T					
Wnet	а	4.59	99,10		K	W							
ŋth		48%				-							

	Constante	e del gas R		Unidades				
Gas	CO2	H2O	N2	-				
%	19%	12%	69%	-				
R	0,1889	0,4615	0,2968	KJ/Kg K				
R total		0,2929		KJ/Kg K				
	Análisis e	exergético		Temperatu	ra ambiente	Unidades	\$ KWh	
η Carnot		74%		2	5	°C	620,48	
ηEx	65%			298	3,15	К		
Equipo	Turbina	Condensador	Bomba	Mezclador	Intercambiador	Caldera	Secador	Unidades
ΔSirr.	0,68	0,00	0,02	0,90	1,19	13,70	0,24	KJ/K*s
Ex Dest.	203,65	0,00	6,49	268,07	354,26	4.084,04	70,78	KW
η Exergética	98%	100%	96%	78%	76%	67%	90%	
horas /mes	720	720	720	720	720	720	720	h
Perdidas	146.629,07	0,00	4.671,44	193.009,25	255.066,30	2.940.507,16	50.961,40	KWh
Perdidas \$	90.980.407,17	0,00	2.898.537,86	119.758.380,48	158.263.537,68	1.824.525.882,58	31.620.526,59	\$
Calo	r especifico ga	ises de combus	tión					
Temperat	ura Prom.	408,15	Kg/Kmol					
Gas	CO2	H2O	N2					
%	19%	12%	69%					
а	22,26	32,24	28,9					
b	0,05981	0,001923	-0,001571					
с	-0,00003501	-0,00001055	0,00008081					
d	7,469E-09	-3,595E-09	-2,873E-09	Unidades				
Cp.	41,3471	31,0230	29,4096	KJ/Kmol*K				
Cp.	0,9397	1,7235	1,0503	KJ/Kg*K				
Cp. total		1,10		KJ/Kg*K				

Energía por Kg de Cas	Unidades	Emisiones CO2 Ca	Unidades		
Flujo Cascarilla	4.621,30	Kg/h	Factor emisiones	1.553,25	KgCO2/Ton
Flujo de vapor	17.967,61	Kg/h	Eluio coscorillo	4.621,30	Kg/h
Relación F.Casc/F.Vap.	3,89	-	Flujo cascallila	4,62	Ton/h
Trabajo turbina	769,19	KJ/Kg	Emisiones CO2	7.178,04	KgCO2/h
Energía por Kg de Cascarilla	2.990,59	KJ/Kg			

ANEXO 18: P5=200

Ciclo Rankine 2500KW							Unidades							
											Flu	ijo masico orgánico	3704,38	Kg/h
4 4nz							-	Flujo masico aire	16838,10	Kg/h				
Turbina					urbina		F	lujo masico gases	20542,48	Kg/h				
	- H					45ec	-				- · ·	Cp. gases	1.15	KJ/Kg*K
1							Secade		5				32.726.879,69	KJ/h
	Quemador						JOCUM		-		Cal	or de entrada (012)	9.090,80	KJ/S
											Cu	of de efficidad (Q12)	9.090.799,91	W
		Ca	idera										9,09	MW
					intercambiad de calor	or of	4	Conder	nsador		Pot	tencia suministrada	2.727.239,97	 KW
					-	2							2,73	MW
				3			Mezclador	-5				Eficiencias co	nsideradas	
				-				3' Bomba	b		ηis	oentrópicas Turbina	0,9	-
						3"					ηis	oentrópicas Bomba	0,8	-
												η Térmica Ciclo	0,3	-
												Turbina	D-R C	
M	lasa mo	lar el	ementos		Unida	des						Potencia Max	2500	KW
Car	rbono			12	Kg/Kn	nol						T entrada	520	°C
Nitr	rógeno			14	Kg/Kn	nol						P entrada	12000	Кра
Hidr	rógeno			1	Kg/Kn	nol						P salida	200	Кра
Ox	Color			16	Kg/Kn	nol						mv	3,02	Kg/s
Terre	calor es	pecit	ico gases	ae com	DUSTION							Balances de	energia	
rempera	atura Pron	n.	L120	1162,88	Kg/Kn	101					0 entrod	intercambiad	or de calor	K/W
%	02	19%		12%	NZ	69%					Q. enuida	000,7		IN VV
a	:	22,26		32,24		28,9						$Q_{int} + m_3 - h$	$h_{3''} = m_3 h_3$	
b	0,0	05981		0,001923		0,001571						Calde	ra	
c	-0,0000	03501	-0,	00001055	0,0	00008081						$0_{-+} + \dot{m}_{a}$	$h_{\alpha} = \dot{m}_{\alpha} h_{\alpha}$	
d	7,46	9E-09	-3	3,595E-09	-2	2,873E-09	Unida	des				Cent 1 113	·3 ···4··4	
Cp.	56	,2136		14,5562		33,4830	KJ/Km	ol*K				Mezcla	dor	
Cp.	1	,2776		0,8087		1,1958	KJ/Kg	*К						
Cp. total				1,15			KJ/Kg	*К				$m_{4'}n_{4'} + m_3$	$m_{3'} = m_{3''} n_{3''}$	
												Resultados Balan	ce de energía	
											m3	4,76	ce de chergia	Kg/s
											h3	1492,1	7	KJ/Kg
											h3´´	1312,0	6	KJ/Kg
						An	álisis t	ermod	linámico					
Sustan	ria		Gases de o	ombusti	ón						Secado		Unidades	-
Justan			Temp	eratura					mi	v	000000	1 739681	Kg/s	_
Estad	lo		K		'C				Q de se	ecado		1,248.9	e kw	
1			1852.61		1579.46				Masa d	e agua		1.991.7	1 Kg/h	
2			473.15		200				Masa d	e arroz		19.917.4	3 Kg/h	
2'			343,15		70				hfg a 10	00 Kpa		2.257,5) Kg/h	
Sustan	cia	N	Vater										1	
-		т	·(°C)	P (I	(pa)	h (K.	/Kg)	s (KJ	/Kg*K)	۳iv	/ (Kg/s)	Vf (M3/Kg)	hg (KJ/Kg)	Calidad
3′			121,88		12000		520,09		1,5375		3,02	-	-	-1,00
3′′			294,73		12000		1.312,06		3,1891		4,76	-	-	-1,00
3			324,68		12000		1.492,17		3,4979		4,76	-	2.685,4	5 <u>0,00</u>
4			520,00		12000		3.403,39		6,5585		4,76	-	-	-1,00
4 tu	r 🗌		520,00		12000		3.403,39		6,5585		3,02	-	-	-1,00
4sec	c i		520,00		12000		3.403,39		6,5585		1,74	-	-	-1,00
4′			324,68		12000		2.685,45		5,4939		1,74	-	-	1,00
5 s			120,21		200		2.482,64		6,5585		3,02	-	-	0,90
5			120,21		200		2.574,71		6,7925		3,02	-	-	0,94
6			120.21		200		504.70		1,5302		3.02	0.0) -	0.00
	1		,						,		-,	0,0		2,00
			Ci	CIO							Cor	ndensador	Unidades	
miv	·		4,	,76		Kg	/s			(Q sal	6.244,9	4 KJ/s	_
Δmi	v	_	1,	,74		Kg	/s							
		Bo	omba	Tur	bina									
Potenc	cias		46,41		2.500	K	N							
Wnet	ta		4.55	59,29		K	N							
ηth			50%			-								
		C	onstante	e del ga	is R			Uni	dades					
Gas	;		CO2	Н	20	N	2		-					
%			19%		12%		69%		-					
R			0,1889		0,4615		0,2968	KJ/	/Kg K					
1	al	0,2929				KJ,	/Kg K							

	Análisis e	exergético	Temperatur	a ambiente	Unidades		\$ KWh		
η Carnot	77%			2	5	°C		620,48	
ηEx	65%			298	,15	К			
Equipo	Turbina	Condensador	Bomba Mezclador I		Intercambiador	Caldera	ra Secador		Unidades
ΔSirr.	0,71	0,00	0,02 0,97		1,12	12,98		0,24	KJ/K*s
Ex Dest.	210,54	0,00	6,62	290,10	332,72	3.870,42		70,73	KW
η Exergética	97%	100%	95%	76%	76%	67%		90%	
horas /mes	720	720	720	720	720	720		720	h
Perdidas	151.591,38	0,00	4.764,31	208.875,29	239.560,87	2.786.698,98		50.928,30	KWh
Perdidas \$	94.059.420,91	0,00	2.956.158,10	129.602.939,77	148.642.726,87	1.729.090.9	80,42	31.599.994,03	\$
	Calor	<mark>especifico</mark>	gases	<mark>de com</mark> b	ustión				
Temperatura Prom.		408,15		Kg/	Kg/Kmol				
Gas		CO2			20 N2				
%		19%	12%			69%			
а		22,26		32,24	28,9				
b		0,05981		0,001923		-0,001571			
С		-0,00003501	-0	,00001055	0,0	000008081			
d		7,469E-09		-3,595E-09)	-2,873E-09	U	Inidade	s
Cp.		41,3471	31,0230		31,0230 29,4096		k	(J/Kmol*K	ζ.
Cp.		0,9397	1,7235		1,7235 1,0503 KJ/Kg*		KJ/Kg*K		
Cp. tota				1,10				KJ/Kg*K	

Energía por Kg de Cascarilla			Unidades	Emisio	Unidades		
Flujo	Cascarilla	4.404,51	Kg/h	Factor emisiones		1.553,25	KgCO2/Ton
Flujo	de vapor	17.123,57	Kg/h			4.404,51	Kg/h
Relación I	F.Casc/F.Vap.	3,89	-	Flujo Cascallia		4,40	Ton/h
Trabaj	jo turbina	828,67	KJ/Kg	Emisiones CO2		6.841,31	KgCO2/h
Energía por Kg de Cascarilla		3.221,67	KJ/Kg				

ANEXO 19: RECOMENDACIONES

Realizar el análisis energético y exergético del ciclo Rankine utilizando cascarilla de arroz como combustible, implementando diferentes fluidos de trabajo en el proceso.

Realizar el estudio de la gasificación de la cascarilla de arroz para conocer la capacidad de generación de energía a través de este método, analizando los parámetros relevantes como costo, potencia generada e impacto ambiental y así poder establecer un análisis comparativo.

Como complemento de este estudio se puede desarrollar una investigación en búsqueda del aprovechamiento de las cenizas generadas como producto de la combustión de la cascarilla de arroz, ya que puede ser utilizada como aditivo en mezcla de concreto o para la fabricación de filtros de carbono activado.