EVALUACIÓN TÉCNICO-FINANCIERA DEL POTENCIAL DEL POZO EXPLORATORIO VINO1 DEL CAMPO CUPIRACO MEDIANTE PRUEBAS DE PRESIÓN DST

SANTIAGO MORALES PAVA

FUNDACIÓN UNIVERSIDAD DE AMÉRICA FACULTAD DE INGENIERÍAS PROGRAMA DE INGENIERÍA DE PETRÓLEOS BOGOTÁ 2019

EVALUACIÓN TÉCNICO-FINANCIERA DEL POTENCIAL DEL POZO EXPLORATORIO VINO1 DEL CAMPO CUPIRACO MEDIANTE PRUEBAS DE PRESIÓN DST

SANTIAGO MORALES PAVA

Proyecto integral de grado para optar al título de: INGENIERO DE PETRÓLEOS

> Director: Juan José Castillo Ingeniero Mecatrónico

FUNDACIÓN UNIVERSIDAD DE AMÉRICA FACULTAD DE INGENIERÍAS PROGRAMA DE INGENIERÍA DE PETRÓLEOS BOGOTÁ 2019

Nota de aceptación

Jurado Ing. Edison Enrique Jiménez Bracho

> Jurado Ing. Jorge Andrés Tovar Moreno

Bogotá, agosto de 2019

DIRECTIVAS DE LA UNIVERSIDAD

Presidente Institucional y Rector del Claustro.

Dr. Mario Posada García-Peña

Vicerrector de Desarrollo y Recursos Humanos.

Dr. Luis Jaime Posada García-Peña

Vicerrectora Académica y de Posgrados.

Dra. Ana Josefa Herrera Vargas

Decano de Facultad de Ingenierías.

Dr. Julio Cesar Fuentes Arismendi

Director Programa Ingeniería de Petróleos.

Dr. Juan Carlos Rodríguez Esparza

Las directivas de la Universidad de América, los jurados calificadores y el cuerpo docente no son responsables por los criterios e ideas expuestas en el presente documento. Estos corresponden únicamente al autor.

AGRADECIMIENTOS

Quiero darle las gracias a Dios, también agradecerle a mi mamá quien es la persona más importante en mi vida, siempre me ha apoyado en los cursos que encamino y a quien debo todo lo que soy hoy. A toda mi familia, desde mi abuela hasta mis primos que me aportan mucha felicidad y amor. A todos mis amigos y colegas, de los cuales aprendo día a día. A Juan Carlos Pava, quién es mi primo, mi amigo, mi hermano, mi soporte absoluto. A Diana Coronel, quien es un apoyo incondicional en todos los aspectos de mi vida. Al cuerpo docente que me brindó su conocimiento y tiempo. A la universidad, sus docentes y empleados que hacen posible un buen ambiente de aprendizaje. A la empresa Halliburton Latín América SRL sucursal Colombia que me dio la oportunidad y todo el apoyo para que este proyecto finalizara exitosamente. A mi director Juan José Castillo, a Julián Diosa y a Oswaldo Jiménez, miembros de Halliburton quienes me brindaron todo su apoyo en este proceso. A los orientadores de seminario y proyecto de grado, especialmente a Adriangela Romero, Yatnielah Pirela y Sebastián Gómez por encaminarme a la terminación de este, por su dedicación y tiempo.

CONTENIDO

	pág.
RESUMEN	25
INTRODUCCIÓN	26
OBJETIVOS	27
 GENERALIDADES DEL CAMPO CUPIRACO HISTORIA DEL CAMPO CUPIRACO LOCALIZACIÓN MARCO GEOLÓGICO 1.3.1 COLUMNA ESTRATIGRÁFICA S ESTRATIGRAFÍA GEOLOGÍA ESTRUCTURAL 4 GEOLOGÍA DEL PETRÓLEO 	28 28 30 30 31 34 35
 2. GENERALIDADES DRILL STEAM TEST (DST) 2.1 GENERALIDADES DE LAS PRUEBAS DST 2.2 OBJETIVOS DE LA PRUEBA DE PRESIÓN DST 2.2.1 OBJETIVOS A CORTO PLAZO 2.2.2 OBJETIVOS A LARGO PLAZO 2.3 TIPOS DE PRUEBAS DST 2.3.1 POZO DESCUBIERTO 2.3.2 POZO ENTUBADO 2.4 COMPONENTES DE UNA SARTA DST 2.4.1 COMPONENTES DE SUPERFICIE 2.5 PROCEDIMIENTO DE UNA DST 2.6 MÉTODO PARA ANALIZAR UNA PRUEBA DST 2.6.1 PRUEBA DE RESTAURACIÓN DE PRESIÓN IDEAL 2.6.2 MÉTODO GRÁFICO DE HORNER 2.7 LIMITACIONES DE LAS PRUEBAS DST 	37 37 38 38 39 39 39 39 40 41 41 43 43 46 50
 EVALUAR LOS DATOS OBTENIDOS Y CALCULADOS DE LAS PRUEBA DE PRESIÓN DST DEL POZO EXPLORATORIO VINO 1 1 PRUEBA DE PRESIÓN DST, FORMACIÓN ARENA T 1.1 SECUENCIA OPERACIONAL 1.2 PROGRAMACIÓN DE MEMORIAS PRUEBAS DE PRESIÓN DST, FORMACIÓN ÁRENA 3.1.3 GRÁFICO GENERAL DST 3.1.4 COMPORTAMIENTO DE PRESIÓN EN PERIODO DE RESTAURACIÓN 3.1.5 TABLA Y GRÁFICA DE PRODUCCIÓN 	S 51 54 56 \T57 57 59 59

3.1.6 Prueba PVT, Formación Arena T	60
3.1.7 Aplicación del método de Horner para la Formación Arena T	61
3.2 PRUEBA DE PRESIÓN DST, FORMACIÓN ARENA U	61
3.2.1 SECUENCIA OPERACIONAL	63
3.2.2 PROGRAMACIÓN MEMORIAS PRUEBAS DE PRESIÓN DST, FORMACIÓN ARENA U.	64
3.2.3 GRÁFICO GENERAL DST	64
3.2.4 COMPORTAMIENTO DE PRESIÓN EN PERIODO DE RESTAURACIÓN.	66
3.2.5 TABLAS Y GRÁFICO DE PRODUCCIÓN	66
3.2.6 PRUEBA PVT, FORMACIÓN ARENA U	68
3.2.7 Aplicación del método de Horner para la Formación Arena U	72
3.3 PRUEBA DE PRESIÓN DST, FORMACIÓN LIMESTONE (CALIZAS A1, A2 Y	
A3)	82
3.3.1 SECUENCIA OPERACIONAL	84
3.3.2 PROGRAMACIÓN MEMORIAS	85
3.3.3 GRÁFICO GENERAL DST	85
3.3.4 COMPORTAMIENTO DE PRESIÓN EN PERIODO DE RESTAURACIÓN.	87
3.3.5 TABLA Y GRÁFICO DE PRODUCCIÓN	88
3.3.6 PRUEBA PVT, FORMACIÓN LIMESTONE (CALIZAS A1, A2 Y A3)	90
3.3.7 APLICACIÓN DEL MÉTODO DE HORNER PARA LA FORMACIÓN LIMESTONE (CALIZAS	3
A1, A2 Y A3)	95
4. REALIZAR UNA CARACTERIZACIÓN DE LA ROCA Y FLUIDOS DE LAS	

FORMACIONES ARENA T, ARENA U Y LIMESTONE (CALIZAS A1, A2 Y A3)	104
4.1 CARACTERIZACIÓN DE ROCA Y FLUIDOS FORMACIÓN ARENAT	105
4.2 CARACTERIZACIÓN DE ROCA Y FLUIDOS FORMACIÓN ARENA U	105
4.2.1 CARACTERÍSTICAS OBTENIDAS DE LA PRUEBA DE PRESIÓN DST	105
4.2.2 CARACTERÍSTICAS OBTENIDAS DE LA PRUEBA PVT	106
4.3 CARACTERIZACIÓN DE ROCA Y FLUIDOS DE LA FORMACIÓN	
LIMESTONE (CALIZAS A1, A2 Y A3)	108
4.3.1 CARACTERÍSTICAS OBTENIDAS DE LA PRUEBA DE PRESIÓN DST	108
4.3.2 CARACTERÍSTICAS OBTENIDAS DE LA PRUEBA PVT	109

5. ESTIMAR POES Y RESERVAS DE LAS FORMACIONES ARENA T, AF	RENA
U Y LIMESTONE A PARTIR DE LOS DATOS OBTENIDOS Y CALCULADO	S DE
LAS PRUEBAS DE PRESIÓN DST Y PVT	112
5.1 MÉTODO VOLUMÉTRICO	112
5.1.1 ESTIMACIÓN DEL POES, GOES Y RESERVAS, FORMACIÓN ARENA T	114
5.1.2 ESTIMACIÓN DEL POES, GOES Y RESERVAS, FORMACIÓN ARENA U	114
5.1.3 ESTIMACIÓN DEL POES, GOES Y RESERVAS, FORMACIÓN LIMESTONE (CALI	ZAS
A1, A2 Y A3)	116
5.2 MÉTODO DE BALANCE DE MATERIALES	117
5.2.1 BALANCE DE MATERIALES FORMACIÓN ARENA T	121
5.2.2 BALANCE DE MATERIALES FORMACIÓN ARENA U	121
5.2.3 BALANCE DE MATERIALES FORMACIÓN LIMESTONE (CALIZAS A1, A2 Y A3)	123

6. DETERMINAR EL POTENCIAL DEL POZO VINO 1 MEDIANTE LOS DATO	OS
OBTENIDOS.	125
6.1 POTENCIAL DE LA FORMACIÓN ARENA T	125
6.2 POTENCIAL DE LA FORMACIÓN ARENA U	125
6.3 POTENCIAL DE LA FORMACIÓN LIMESTONE (CALIZAS A1, A2 Y A3)	128
7. EVALUAR FINANCIERAMENTE EL PROYECTO A PARTIR DEL INDICAD	DOR
VALOR PRESENTE NETO (VPN).	132
7.1 ANALISIS DE COSTOS DE INVERSION	132
7.2 ANALISIS DE COSTOS DE OPERACION	133
7.3 ANALISIS DE INGRESOS	134
	134
7.4.1 VALOR PRESENTE NETO (VPN)	135
8. CONCLUSIONES	138
9 RECOMENDACIONES	140
3. RECOMEND/OICHEC	140
BIBLIOGRAFÍA	141
ANEXOS	143

LISTA DE FIGURAS

Figura 1. Mapa de ubicación y acceso al Campo Cupiraco.	29
Figura 2. Columna estratigráfica del Putumayo.	31
Figura 3. Marco tectónico regional de la cuenca de Putumayo.	35
Figura 4. Drill stem test.	38
Figura 5. Componentes principales de la herramienta DST.	41
Figura 6. Carta típica de una DST.	42
Figura 7. Esquemático común de una prueba DST	43
Figura 8. Tasa histórica de flujo de una prueba ideal de restauración de presió	n 44
Figura 9. Regiones de una prueba de restauración de presión.	44
Figura 10. Tasa histórica de flujo de prueba normal de restauración de presión	ı. 45
Figura 11. Facilidades en superficie del Campo Cupiraco.	52
Figura 12. Estado mecánico del pozo Vino1.	53
Figura 13. Sarta de herramientas DST adecuada para la Formación Arena T.	55
Figura 14. Sarta de herramientas DST adecuada para la Formación Arena U.	62
Figura 15. Sarta de herramientas DST adecuada para la Formación Limestone	e 83
Figura 16. Flujo de caja.	136
Figura 17. Flujo de caja neto.	137

LISTA DE TABLAS

Tabla 1. Rangos de permeabilidad (k).	47
Tabla 2. Valores típicos del daño de formación (S).	48
Tabla 3. Rangos del coeficiente de almacenamiento.	49
Tabla 4. Datos volumétricos (a 205°F), Formación Arena U	68
Tabla 5. Compresibilidades monofásicas promedio, Formación Arena U.	69
Tabla 6. Vaporización diferencial ajustada a las condiciones del separador,	
Formación Arena U.	69
Tabla 7. Condiciones del separador, Formación Arena U.	69
Tabla 8. Viscosidad de los fluidos del yacimiento, Formación Arena U.	70
Tabla 9. Datos iniciales de la Formación Arena U.	73
Tabla 10. Restauración de presión (build-up), Formación Arena U.	74
Tabla 11. Corroboración de datos, build up, Formación Arena U.	77
Tabla 12. Datos principales, Formación Arena U.	79
Tabla 13. Datos volumétricos (a 205°F), Formación Limestone.	90
Tabla 14. Compresibilidades monofásicas promedio, Formación Limestone.	91
Tabla 15. Vaporización diferencial ajustada a las condiciones del separador,	
Formación Limestone.	91
Tabla 16. Condiciones del separador, Formación Limestone.	92
Tabla 17. Viscosidad de los fluidos del yacimiento, Formación Limestone.	92
Tabla 18. Datos iniciales de la Formación Limestone.	96
Tabla 19. Restauración de presión (build-up), Formación Limestone.	96
Tabla 20. Corroboración de datos, build up, Formación Limestone.	99
Tabla 21. Datos principales, Formación Limestone.	101
Tabla 22. Características obtenidas a partir del método de Horner, Formación	
Arena U.	106
Tabla 23. Características obtenidas de las pruebas de presión PVT, Formación	
Arena U.	108
Tabla 24. Características obtenidas a partir del método de Horner, Formación	
Limestone.	109
Tabla 25. Características obtenidas de las pruebas de presión PVT, Formación	
Limestone.	111
Tabla 26. Valores para estimar POES, GOES y reservas, Formación Arena U.	115
Tabla 27. Valores para estimar POES, GOES y reservas, Formación	
Limestone.	116
Tabla 28. Datos balance de materiales, Formación Arena U.	121
Tabla 29. Datos balance de materiales, Formación Limestone.	123

Tabla 30. Datos generados de la prueba de presión DST y método de Horner,	
Formación Arena U.	126
Tabla 31. Datos generados de la prueba de laboratorio PVT, Formación	
Arena U.	127
Tabla 32. Datos generados del método volumétrico, Formación Arena U.	128
Tabla 33. Datos generados del balance de materiales, Formación Arena U.	128
Tabla 34. Datos generados de la prueba de presión DST y método de Horner,	
Formación Limestone.	129
Tabla 35. Datos generados de la prueba de laboratorio PVT, Formación	
Limestone.	130
Tabla 36. Datos generados del método volumétrico, Formación Limestone.	131
Tabla 37. Datos generados del balance de materiales, Formación Limestone.	131
Tabla 38.Costos de inversión.	133
Tabla 39. Costos de operación.	134

LISTA DE GRÁFICOS

Gráfica 1. Carta esquemática de presiones, Formación Arena T.	58
Gráfica 2. Periodo restauración de presión, Formación Arena T.	59
Gráfica 3. Gráfica de producción, Formación Arena T.	60
Gráfica 4. Carta esquemática de presiones, Formación Arena U.	65
Gráfica 5. Periodo restauración de presión, Formación Arena U.	66
Gráfica 6. Gráfica de producción, Formación Arena U.	67
Gráfica 7. Liquidación del gas, Formación Arena U.	68
Gráfica 8. Comportamiento factor volumétrico del petróleo con presión,	
Formación Arena U.	71
Gráfica 9. Comportamiento del gas en solución con presión, Formación	
Arena U.	71
Gráfica 10. Comportamiento viscosidad del petróleo con presión, Formación	
Arena U.	72
Gráfica 11. Pws vs log(($tp+\Delta t$)/ Δt), Formación Arena U.	76
Gráfica 12. Pws vs log(($tp+\Delta t$)/ Δt), mejor tendencia Formación Arena U.	77
Gráfica 13. Corroboración de datos, Pws vs $log((tp+\Delta t)/\Delta t)$, Formación	
Arena U.	78
Gráfica 14. Pws vs log(($tp+\Delta t$)/ Δt), calculo presión inicial P*, Formación	
Arena U.	79
Gráfica 15 . Pws vs log(($tp+\Delta t$)/ Δt), calculo Pws (1hr), Formación Arena U.	80
Gráfica 16. Pws vs log(($tp+\Delta t$)/ Δt), calculo TSSL, Formación Arena U.	81
Gráfica 17. Carta esquemática de presiones, Formación Limestone.	86
Gráfica 18. Periodo restauración de presión, Formación Limestone.	87
Gráfica 19. Gráfica de producción, Formación Limestone.	89
Gráfica 20. Liquidación del gas, Formación Limestone.	90
Gráfica 21. Comportamiento factor volumétrico del petróleo con presión,	
Formación Limestone.	93
Gráfica 22. Comportamiento gas en solución con presión, Formación	
Limestone.	93
Gráfica 23. Comportamiento factor volumétrico del gas con presión,	
Formación Limestone.	94
Gráfica 24. Comportamiento viscosidad del petróleo con presión, Formación	
Limestone.	95
Gráfica 25 . Pws vs $log((tp+\Delta t)/\Delta t)$, Formación Limestone.	98
Gráfica 26. Pws vs $log((tp+\Delta t)/\Delta t)$, mejor tendencia Formación Limestone.	99
Gráfica 27. Corroboración de datos, Pws vs $log((tp+\Delta t)/\Delta t)$, Limestone.	100

Gráfica 28. Pws vs log($(tp+\Delta t)/\Delta t$), calculo Pws (1hr), Formación Limestone	102
Gráfica 29. Pws vs $log((tp+\Delta t)/\Delta t)$, calculo TSSL, Formación Limestone.	103

LISTA DE CUADROS

Cuadro 1. Ventajas y desventajas de las pruebas DST.	50
Cuadro 2. Programación memorias prueba DST, Formación Arena T.	57
Cuadro 3. Programación memorias prueba DST, Formación Arena U.	64
Cuadro 4. Programación memorias prueba DST, Formación Limestone.	85
Cuadro 5. Escala grados API.	105

pág.

LISTA DE ECUACIONES

Ecuación 1. Tiempo de producción.	46
Ecuación 2. Permeabilidad.	47
Ecuación 3. Daño de formación.	48
Ecuación 4. Diferencial de tiempo.	49
Ecuación 5. Coeficiente de almacenamiento.	49
Ecuación 6. Gravedad específica.	104
Ecuación 7. Gravedad API.	104
Ecuación 8. POES método volumétrico.	112
Ecuación 9. FR factor de recobro del petróleo.	113
Ecuación 10. Npr reservas recuperables de petróleo.	113
Ecuación 11. GOES método volumétrico.	113
Ecuación 12. FR factor de recobro del gas.	114
Ecuación 13. Gpr reservas recuperables del gas.	114
Ecuación 14. Volumen original de aceite.	118
Ecuación 15. Volumen original del gas.	118
Ecuación 16. Volumen de hidrocarburos iniciales.	118
Ecuación 17. Volumen de hidrocarburos remanentes.	118
Ecuación 18. Capa de gas original expandida.	118
Ecuación 19. Petróleo remanente.	119
Ecuación 20. Gas liberado neto.	119
Ecuación 21. Gas liberado.	119
Ecuación 22. Gas libre producido.	119
Ecuación 23. Gas en solución producido.	119
Ecuación 24. Gas neto liberado.	119
Ecuación 25. Volumen hidrocarburos remanentes.	119
Ecuación 26. Intrusión neta de agua.	120
Ecuación 27. Concepto compresibilidad.	120
Ecuación 28. Balance de materia.	120
Ecuación 29. Relación de la compresibilidad del petróleo con los factores	
volumétricos.	122
Ecuación 30. Compresibilidad efectiva Ce´.	122
Ecuación 31. Valor presente neto.	135
Ecuación 32. Conversión tasa de interés de oportunidad anual a mensual.	135

pág.

LISTA DE ANEXOS

Anexo A. Características de las facilidades del campo cupiraco.	144
Anexo B. Secuencia operacional de la formación arena t.	145
Anexo C. Cartas bases de permeabilidades.	155
Anexo D. Tablas de producción de la formación arena t.	156
Anexo E. Secuencia operacional de la formación arena u.	159
Anexo F. Tabla de producción de la formación arena u.	166
Anexo G. Comportamiento de los parámetros en función de la presión	
	470

pág.

obtenidos de las pruebas pvt.	172
Anexo H. Memeorias de registro de presión anular y tubería.	175
Anexo I. Secuencia operacional de la formación limestone.	177
Anexo J. Tabla de producción de la formación limestone.	193
Anexo K. Normas astm, tabla 53ª, corrección generalizada de densidad de	
aceites crudos a 60°f.	206

LISTA DE ABREVIATURAS

°: Grados.

°C: Grados Celcius.

°F: Grados Fahrenheit.

 $\Delta \mathbf{P}$: Cambio de presión, psi.

 Δt : Cambio de tiempo, hrs.

ANH: Agencia Nacional de Hidrocarburos.

API: American Petroleum institute.

Bg: Factor volumétrico de la formación de gas, (BY/PCN).

Bo: Factor volumétrico de la formación de petróleo, (BY/BN).

Boi: Factor volumétrico de la formación de petróleo inicial: (BY/BN).

Bw: Factor volumétrico de la formación de agua, (BY/BN).

BOPD: Barriles de petróleo por día.

BWPD: Barriles de agua por día.

BY: Barriles a condiciones de yacimiento.

BN: Barriles a condiciones normales.

cf: Compresibilidad del volumen poroso, (1/psi).

cg: Compresibilidad del gas, (1/psi).

co: Compresibilidad del petróleo, (1/psi).

cP: Centipoise.

cw: Compresibilidad del agua, (1/psi).

ft: Pies.

GOR: Relación gas-petróleo inicial, (PCN/BN).

Gp: Gas producido acumulado, PCN.

h: Espesor, (ft).

m: Tamaño inicial de la capa de gas o volumen inicial de la capa de gas/volumen zona de petróleo N o también es la pendiente en el método de Horner.

mD: Milidarcy.

N: Petróleo original in-situ, BY.

Np: Petróleo producido, BY.

Pb: Presión de burbuja (Psi).

PCN: Pies cúbicos normales.

pg: Densidad del gas (lb/ft3).

Psi: Libra por pulgada cuadrada.

PVT: Presión, volumen, temperatura.

Pwf: Presión de fondo fluyente, (Psi).

Ps: Presión estática del yacimiento, (Psi).

qo: Tasa de producción del pozo, (BOPD).

Rp: Relación gas-petróleo acumulado, (PCN/BY).

Rs: Relación gas-petróleo, (PCN/BY).

ri: Radio de investigación del pozo, (ft).

rw: Radio de pozo, (ft).

S: Factor de daño, adimensional.

Scf: Standard cubic feet.

Sg: Saturación de gas, (%).

So: Saturación de petróleo, (%).

Soi: Saturación de petróleo inicial, (%).

Sw: Saturación de agua, (%).

TVD: True Vertical Deep (ft).

We: Intrusión acumulada de agua, BY.

Wp: Agua producida acumulada, BY.

yg: Gravedad específica del gas (adm).

µg: Viscosidad del gas, (cP).

µo: Viscosidad del aceite o petróleo (cP).

pl: Densidad del líquido, (lb/ft3).

GLOSARIO

ACUÍFERO: formaciones geológicas en las cuales se encuentra agua y son permeables permitiendo así el almacenamiento de agua en espacios subterráneos.

AMBIENTE DE DEPOSITACIÓN: punto geográfico que deposita sedimentos. Cada lugar se caracteriza por una combinación particular de procesos geológicos y condiciones físicas, químicas y biológicas que la diferencian de zonas adyacentes.

ANÁLISIS PVT: se realizan con el propósito de analizar los yacimientos, y partiendo de los resultados, determinar los diversos parámetros y metodologías que se desarrollarán para poner a producir el yacimiento.

ARENISCA: roca sedimentaria con textura detrítica y cuyo tamaño promedio de granos está entre un diámetro de 0,0625mm a 2 mm. Su matriz es generalmente silícea, y se compone de cuarzo feldespato.

BARRIL DE PETRÓLEO: medida internacional del petróleo, se utiliza tanto para el petróleo bruto, como para medir los derivados del petróleo. El equivalente de un barril de petróleo se expresa, en galones americanos y corresponde a 42 galones, o aproximadamente 159 litros.

CABEZAL DE POZO: sistema de bridas dobles, válvulas y adaptadores diversos que proporcionan el control de la presión de un pozo de producción.

CALIZA: roca sedimentaria constituida esencialmente, de carbonatos. Los dos constituyentes más importantes son la calcita y la dolomita, pero pueden aparecer cantidades pequeñas de carbonatos de hierro.

CAMPO: una acumulación o grupo de acumulaciones de petróleo en el subsuelo. Un campo de petróleo está formado por un yacimiento adecuado para el entrampamiento de hidrocarburos y que se encuentra cubierto por una roca impermeable o una roca que actúa como sello.

CAÑONEO: perforación realizada en la tubería de producción de un pozo de aceite o gas que permiten la producción de fluidos de la formación.

COLUMNA ESTRATIGRÁFICA: representación utilizada en geología y sus sub campos de estratigrafía que describe la ubicación vertical de unidades de roca en un área específica. Por lo general muestra una secuencia de rocas sedimentarias, con las rocas más antiguas en la parte inferior y las más recientes en la parte superior.

COMPRESIBILIDAD: cambio relativo en el volumen del fluido en relación con un cambio de una unidad de presión. Se expresa usualmente como cambio de volumen por unidad de volumen de fluido por psi de cambio de presión.

CUENCA: zonas geológicas favorables para la formación y acumulación de hidrocarburos. En ellas se encuentran grandes yacimientos de petróleo.

DAÑO DE FORMACIÓN: reducción de la permeabilidad en la región vecina al pozo de una formación prospectiva.

DENSIDAD: relación entre la masa y el volumen de un cuerpo o fluido.

DST (Drill stem test): prueba que usa herramientas especiales colocadas al final de la sarta de perforación. Generalmente practicada para probar pozos nuevos, ya que solo puede llevarse a cabo con el taladro en sitio.

ESTADO MECÁNICO: define la geometría del pozo para cada fase de perforación, en el que se incluye información de diámetros de tubería utilizada, ángulo de inclinación y herramienta utilizada para completar el pozo.

ESTRATIGRAFIA: parte de la geología que estudia la disposición y las características de las rocas sedimentarias y los estratos.

FACTOR VOLUMÉTRICO: cambio en volumen que experimenta la fase líquida al pasar de las condiciones de yacimiento a las condiciones de superficie como consecuencia de la expansión líquida y/o liberación de gas en solución.

FACTOR VOLUMÉTRICO DEL GAS: factor que relaciona el volumen de gas en el yacimiento (a una determinada presión y temperatura) con el volumen de la misma masa de gas a condiciones de superficie.

FACTOR VOLUMÉTRICO DEL PETRÓLEO: es el volumen en barriles ocupado por un barril normal de petróleo más su gas en solución en superficie en relación con el mismo volumen a condiciones de yacimiento.

FLUIDO SUBSATURADO: una solución que podría contener más soluto que el que ahora tiene disuelto.

FLUJO MULTIFÁSICO: flujo simultáneo de más de una fase fluida a través de un medio poroso. En general los pozos petroleros producen petróleo, gas y agua.

FORMACIÓN: roca suficientemente característica y continua para ser mapeada. En estratigrafía, una formación es un cuerpo de estratos de un tipo predominante o una combinación de diversos tipos; las formaciones múltiples forman tipos, y las subdivisiones de las formaciones son los miembros.

GEOLOGIA ESTRUCTURAL: estudia la corteza terrestre, sus estructuras y la relación de las rocas que las forman. También trabaja la geometría de las rocas y la posición en que aparecen en superficie.

GEOLOGIA DEL PETRÓLEO: parte de la geología que estudia todos los aspectos relacionados con la formación de yacimientos petrolíferos y su prospección, para localizar posibles yacimientos, caracterizar su geometría espacial y estimar reservas potenciales.

GRAVEDAD API: medida de densidad que, en comparación con el agua a temperaturas iguales, precisa cuán pesado o liviano es el petróleo.

GRAVEDAD ESPECÍFICA: es la relación entre la densidad de una sustancia y la densidad de otra sustancia de referencia.

LIMOLITAS: roca sedimentaria detrítica. Está constituida por un tamaño de partícula correspondiente al limo cuyo diámetro está entre 0,0039mm a 0, 0625mm. Este tipo de roca procede de la cementación y compactación de partículas entre arcillas y arenas.

MANIFOLD (Colector múltiple): es la disposición de tuberías o válvulas diseñadas para controlar, distribuir y a menudo monitorear el flujo de fluidos

MARCO GEOLÓGICO: se encargar de describir la geología de una zona en la cual se realiza un estudio. Contiene estratigrafía, tipos de roca presentes, y datos geológicos relevantes.

MD (Measured depth): es la medida de longitud de la perforación realizada, más larga que la profundidad real del yacimiento al tener algún grado de desviación.

PERMEABILIDAD ABSOLUTA: la medición de la permeabilidad, o de la capacidad de flujo o transmisión de fluidos a través de una roca, obtenida cuando existe un solo fluido en la roca.

PERMEABILIDAD EFECTIVA: proceso o procedimiento utilizado para interpretar datos petrofísicos (usualmente de registros adquiridos con herramientas operadas con cable).

PERMEABILIDAD RELATIVA: relación entre la permeabilidad efectiva de un fluido en particular, con una saturación dada, y la permeabilidad absoluta de ese fluido en condiciones de saturación total.

POROSIDAD: es la fracción del volumen total de la roca que corresponde a espacios que pueden almacenar fluidos.

POROSIDAD SECUNDARIA: la porosidad de la roca generada a través de la alteración en procesos como la dolomitización, la disolución y el fracturamiento.

POZO: perforación del subsuelo que busca conectar el yacimiento con la superficie con el objetivo de hallar y extraer combustible, ya sea petróleo o hidrocarburos gaseosos.

PRESIÓN DE FONDO FLUYENTE: es la presión medida en el fondo de un pozo a nivel de la zona del cañoneo a condiciones de flujo.

PRESIÓN ESTÁTICA: presión medida en un pozo después de que se haya cerrado durante un período de tiempo, usualmente después de 24 o 72 horas. La presión estática es igual a la presión inicial en un yacimiento recién descubierto.

PRESIÓN HIDROSTÁTICA: e la presión en cualquier punto en una columna de fluido causada por el peso del fluido arriba de ese punto.

PROPIEDADES PETROFÍSICAS: propiedades que se refieren al comportamiento del fluido en la roca como: la porosidad, la presión capilar, las permeabilidades, las saturaciones irreducibles o las saturaciones.

RECOBRO: es el porcentaje de petróleo o gas en sitio en un yacimiento que como último recurso puede ser retirado mediante técnicas primarias o secundarias.

REVESTIMIENTO: tubería que se baja en un agujero descubierto y se cementa en el lugar. Se instala para proteger formaciones de agua dulce, aislar zonas de pérdida de circulación o aislar formaciones con gradientes de presión muy diferentes.

ROCA: agregado de minerales o de materia orgánica (en el caso del carbón, que no está compuesto de minerales debido a su origen orgánico), o de vidrio volcánico (la obsidiana, que forma una roca, pero no se considera un mineral debido a su naturaleza no cristalina amorfa).

ROCA GENERADORA: contiene materia orgánica que, si recibe calor en grado suficiente, generará petróleo o gas. Las rocas generadoras típicas, normalmente lutitas o calizas, contienen al menos 0,5% de carbono orgánico total (COT). Una roca generadora rica podría contener hasta 10% de materia orgánica.

ROCA RESERVORIO: en la capacidad de almacenar fluidos y permitir su paso atreves de ella. Su principal agente es la permeabilidad, medidas en Darcy, aunque la mayoría de los yacimientos solamente tienen permeabilidades en rango de milidarcy con promedios entre 50 y 600 milidarcys.

ROCA SELLO: roca que por su baja permeabilidad y porosidad hace que el hidrocarburo se acumule en las trampas y forme un yacimiento. Debe ser

impermeable y no estar fracturada para que no haya migración del hidrocarburo. Un sello es un componente vital en el sistema petrolífero completo.

SARTA DE PERFORACIÓN: también llamada tubería de perforación. Es el tipo de tubería utilizada para realizar la perforación de pozos petróleos.

SATURACIÓN DE PETRÓLEO RESIDUAL: fracción de volumen de poro ocupada por petróleo al final del proceso de desplazamiento del petróleo para el que se utilizó un fluido específico.

SATURACIÓN DE PETRÓLEO: la saturación de un medio poroso con respecto a la fase de aceite solamente.

SEDIMENTOS: presencia de finos y material proveniente de la formación.

TRAMPA: configuración de rocas para contener hidrocarburos, selladas por una formación relativamente impermeable para que los hidrocarburos no pueden migrar. Esta rampa es un componente esencial en un sistema petrolífero.

TUBERÍA DE PRODUCCIÓN: tubería encargada de transportar los hidrocarburos desde el fondo del pozo hasta la superficie.

TVD (true vertical depth): la distancia vertical existente entre un punto en el pozo (usualmente la profundidad actual o final) y un punto en la superficie.

VISCOSIDAD: propiedad de los fluidos y lechadas que indica su resistencia al flujo, definida como la relación entre el esfuerzo cortante y la velocidad de corte.

VOLUMEN APARENTE: el volumen por unidad de masa de un material seco más el volumen del aire entre sus partículas.

WIRELINE (Cable eléctrico): usado para operaciones de intervención de pozos que se realizan con un alambre o cable de un solo filamento o multifilamento para intervención en pozos petroleros.

YACIMIENTO: es un volumen de rocas en el subsuelo, cuyas características físicas permiten la acumulación de agua y/o hidrocarburos. Se crea por diferentes períodos de deposición de sedimentos. Y se comporta de forma independiente en cuanto a mecanismos de producción, propiedades petrofísicas y propiedades de los fluidos.

RESUMEN

El Campo Cupiraco actualmente está produciendo hidrocarburos de la Formación Caballos a 7900ft - 8000ft y algunas calizas entre a 8000ft - 8500ft, pero en este, nunca se han evaluado las Formaciones Arena T, Arena U y Limestone (Calizas A1, A2 y A3) que se localizan a una mayor profundidad.

Una vez realizado un estudio geológico y de sísmica, se halló que estas formaciones tienen altas probabilidades de contener hidrocarburos y deben ser evaluadas para establecer sus propiedades y potenciales correspondientes.

Por estas razones se creó el pozo exploratorio Vino1 en el cual se realizaron las pruebas de presión DST a cada formación, donde los resultados se evaluaron a partir del método de Horner. Posteriormente se realizaron las pruebas de laboratorio PVT, las caracterizaciones de rocas y fluidos, las estimaciones de sus reservas y finalmente se determinaron sus potenciales.

Este trabajo se evaluó financieramente a partir del indicador Valor Presente Neto (VPN), el cual es el más indicado para proyectos que van a tener ganancias a largo plazo como es el caso de este.

PALABRAS CLAVES: POZO EXPLORATORIO, VINO1, CAMPO CUPIRACO, EVALUACIÓN FORMACIONES, PRUEBAS DE PRESIÓN DST, PRUEBAS PVT.

INTRODUCCIÓN

El presente trabajo se realiza en el Campo Cupiraco ubicado en territorio colombiano en el departamento de Putumayo y su municipio Villagarzón. En la actualidad este campo está produciendo hidrocarburos de manera comercial de la Formación Caballos y de algunas calizas, pero se quieren evaluar otras tres formaciones con alta probabilidad de contener hidrocarburos.

El trabajo tiene como objetivo evaluar técnico-financieramente el potencial del pozo exploratorio Vino1, analizando y evaluando los resultados de las pruebas de presión DST, para posteriormente aplicar el método de Horner el cual brindará datos de permeabilidad, presiones, tiempos de producción, daño de formación y coeficiente de almacenamiento.

De las pruebas de presión DST se obtienen muestras tanto de superficie como de fondo y por lo tanto dan paso a realizar las pruebas de laboratorio PVT que brindan datos de las características del yacimiento como: el factor volumétrico del petróleo y gas, relación gas en solución y relación gas petróleo en producción.

Los datos mencionados anteriormente se juntan para realizar una caracterización de roca y fluidos, calcular el POES y sus reservas. Todo esto con el fin de determinar el potencial del pozo en estudio. Y finalmente se evalúa financieramente el proyecto con el indicador de valor presente neto VPN.

OBJETIVOS

OBJETIVO GENERAL

Evaluar técnico-financieramente el potencial del pozo exploratorio Vino1 del Campo Cupiraco mediante pruebas de presión DST.

OBJETIVOS ESPECÍFICOS

- 1. Describir las generalidades y geología del Campo Cupiraco.
- 2. Definir las generalidades de las pruebas de presión DST.
- 3. Evaluar los datos obtenidos y calculados de las pruebas de presión DST del pozo exploratorio Vino1.
- 4. Realizar una caracterización de la roca y fluidos de las formaciones Arena T, Arena U y Limestone (Calizas A1, A2 y A3).
- 5. Estimar POES y reservas de las formaciones Arena T, Arena U y Limestone (Calizas A1, A2 y A3) a partir de los datos obtenidos y calculados de las pruebas de presión DST y PVT.
- 6. Determinar el potencial del pozo Vino1 mediante los datos obtenidos.
- 7. Evaluar financieramente el proyecto a partir del indicador Valor Presente Neto (VPN).

1. GENERALIDADES DEL CAMPO CUPIRACO

En el siguiente capítulo se brinda toda la información geológica que se requiere para la elaboración de este estudio por medio de una reseña histórica, localización y marco geológico del Campo Cupiraco del cual se realiza este proyecto.

1.1 HISTORIA DEL CAMPO CUPIRACO

La exploración en el área de la Cuena del Caguán-Putumayo se inició a mediados de los años 70; a partir del interés que despertó la presencia de las numerosas manifestaciones de aceite en superficie (oil seeps) en la parte norte de la Serranía de la Macarena y las areniscas impregnadas correspondientes a la unidad informal denominada "Areniscas del Neme".

La compañía Shell de Colombia comenzó trabajos de exploración a través de una intensa actividad de geología de campo de la cual no se tienen los resultados. Otras compañías que han llevado a cabo actividades de exploración son Intercol, Texaco, Petrocol, ECOPETROL y Occidental entre otras¹.

De acuerdo con la ANH este contrato de este campo es de tipo E&E (exploración y explotación), para el diciembre del 2018 se encuentra en un estado vigente, la cuenca es la del Caguán-Putumayo, el contratista y operador es una reconocida empresa canadiense con una participación del 100% y el cual cuenta con dos áreas de explotación. El Campo Cupiraco fue descubierto en el año 2007, desde ese entonces hasta la actualidad se encuentra operando por esta empresa. Hoy por hoy en este campo los pozos son productores de la Formación Caballos 7900ft - 8000ft y algunas calizas entre 8000ft - 8500ft. Actualmente tiene una producción promedio de 13.709 barriles de crudo por día según datos de un artículo de COLOMBIA ENERGIA, este campo según cálculos realizados tendría unas reservas de 16,4 MMBIs, contando con campos exploratorios y productivos.

Se están evaluando los intervalos 9779ft – 9790ft (11 ft), 9796ft – 9818ft (22 ft) de la Formación Arena T, 9558ft – 9563ft (5 ft), 9568ft – 9575ft (7 ft) y 9589ft – 9598ft (9ft) de la Formación Arena U y finalmente 9445ft – 9507ft (62 ft), 9407ft – 9435ft (28 ft) de la Formación Limestone (calizas A1, A2 Y A3), los cuales tienen una alta probabilidad de producir hidrocarburos de manera comercial.

1.2LOCALIZACIÓN

El Campo Cupiraco, se localiza en Colombia en la Cuenca de Caguán-Putumayo, en el departamento del Putumayo y su municipio Villagarzón.

¹ AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Informe de Cartografía geológica cuenca Caguán-Putumayo. Tunja, 2009, 16p. Universidad Pedagógica y Tecnológica de Colombia.

Para acceder al Campo Cupiraco se puede realizar por vía terrestre o aérea. Vía terrestre desde Bogotá, por la Autopista Sur con un sentido Norte-Sur saliendo hacia Soacha tomando la carretera 40. Esta vía pasa por Soacha, Granada, Silvania, Fusagasugá, Chinauta y Melgar. Una vez ahí, antes de arribar a Girardot se debe encaminar por la variante para tomar la carretera 45 y se prosigue con esta ruta pasando por Espinal, Guamo, Saldaña, Natagaima, Aipé, Neiva, Campoalegre, Hobo, Gigante, Garzón, Altamira, Timaná, Pitalito, Condagua, Mocoa y finalmente Villagarzón. Trayecto con una totalidad de 649.4 km.

Vía aérea desde el aeropuerto El Dorado en Bogotá, se toma un vuelo al aeropuerto de Villagarzón en Putumayo, con una duración de 1hora y 35min aproximadamente. Posteriormente se realiza un traslado terrestre desde el aeropuerto hasta el Campo.

Figura 1. Mapa de ubicación y acceso al Campo Cupiraco.

Fuente: elaboración propia, con base en. Mapa tomado de google maps. Disponible en:

https://www.google.com.co/maps/place/Villagarz%C3%B3n,+Putumayo/@2.40230 06.-

76.7353493,7.25z/data=!4m5!3m4!1s0x8e28af8a7b0310f9:0xb08aeace5a3138de! 8m2!3d1.028507!4d-76.617431?hl=es-419. Consultado en abril del 2018.

1.3 MARCO GEOLÓGICO

La cuenca Caguán-Putumayo es clasificada tradicionalmente como de foreland con respecto a la cadena montañosa Andina. Limita al occidente con el sistema de fallas de vergencia sur oriental que produjo el levantamiento de la Cordillera Oriental durante el Cenozoico Tardío². En el siguiente se describe la estratigrafía, geología estructural y la geología del petróleo para el Campo Cupiraco.

1.3.1 Columna Estratigráfica. La columna estratigráfica generalizada para la cuenca de Caguán-Putumayo está compuesta por una secuencia de sedimentos, cuyas edades están comprendidas entre el Jurásico y el Mioceno. Los pozos del Campo Cupiraco actualmente alcanzan la Formación Caballos y algunas calizas.

² AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Informe de Cartografía geológica cuenca Caguán-Putumayo. Tunja, 2009, 32p. Universidad Pedagógica y Tecnológica de Colombia.

Fuente: elaboración propia, con base en. AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Informe de Cartografía geológica cuenca Caguán-Putumayo. Tunja. Universidad Pedagógica y Tecnológica de Colombia, 2009, p 34. Consultado en abril del 2018.

1.3.2 Estratigrafía. A continuación, se muestra la descripción de las formaciones geológicas de la Cuenca de Caguán-Putumayo empezando desde la más antigua a la más reciente.

1.3.2.1 Formación Motema. Descrita en REPSOL, 2006 como una formación de capas rojas de limolitas, arenas y conglomerados, con ocurrencia ocasional de tobas, brechas volcánicas e intrusiones de rocas hipoabisales. El ambiente asociado a esta unidad es fluvial de bajas condiciones oxidantes y con gran aporte volcánico.

Esta formación puede correlacionarse en el sur con las Formaciones Chapiza, Misahualli, Sarayaquillo de edad Triásico- Jurásico, según Tectonic Analysis Inc, 1998.

1.3.2.2 Formación Saldaña. Descrita por INGEOMINAS, 2003 como una secuencia vulcano sedimentaria con intercalaciones de tobas, flujos de lava, aglomerados, areniscas tobáceas y limolitas del Triásico/Jurásico en la zona sur de la cuenca.

Las rocas vulcano- clásticas del Jurásico afloran en el sector sur del área de estudio y se definen como una franja homogénea continúa buzando hacia el sureste y están en contacto fallado con el basamento. Se observan lineamientos evidentes delimitando el bloque donde aflora la Formación Saldaña³.

1.3.2.3 Formación Caballos. Expresión morfológica fuerte con la estratificación bien desarrollada, litologías generalmente en discordancia con el Macizo de Quetame. La Formación Caballos inicia a veces con conglomerados finos de cuarzo transparente en la base y a veces con cuarzoarenitas. Las cuarzoarenitas son de tamaño de grano medio a grueso interlaminadas con carbón y arcillolitas carbonosas, hacia la parte media y superior de la unidad se observa alternancia de calizas. pelitas arises oscuras areniscas pueden ۷ se interpretar paleoambientalmente como resultado de oscilaciones del mar y de la depositación en ambientes más transicionales a marinos poco profundos (barras de boca de distributario y depósitos de playa). La secuencia en general es transgresiva con algún aporte de material volcánico⁴.

Según REPSOL, 2006, en la base del Cenozoico se encuentran depósitos clásticos provenientes de la Formación Caballos de edad Aptiano-Albiano alcanzando un espesor de 320 pies (en pozo) y 525 pies (en superficie). La unidad tiende a adelgazarse hacia el este.

1.3.2.4. Formación Villeta. Compuesta principalmente por lodolitas de color gris muy oscuro a negro, con estratificación fina y laminación plana paralela a ondulosa paralela, con fósiles de bivalvos que se intercalan con estratos medios a muy gruesos tabulares de "intraesparitas a pelmicritas" de bioclastos, de color gris muy oscuro a negro, bioperturbadas. Son frecuentes fósiles de restos de peces, abundantes pellets y oolitos, fragmentos de materia orgánica, intensa bioperturbación, así como impresiones de amonitas y bivalvos articulados, Nuñez A., 2003⁵.

 ³ AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Informe de Cartografía geológica cuenca Caguán-Putumayo. Tunja, 2009, 37p. Universidad Pedagógica y Tecnológica de Colombia.
 ⁴ AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Informe de Cartografía geológica cuenca Caguán-Putumayo. Tunja, 2009, 28p. Universidad Pedagógica y Tecnológica de Colombia.

⁵ AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Informe de Cartografía geológica cuenca Caguán-Putumayo. Tunja, 2009, 37p. Universidad Pedagógica y Tecnológica de Colombia.

Actualmente se reconocen dos Miembros: el Villeta Inferior y el Villeta Superior⁶:

I. Villeta Inferior (Albiano-Cenomaniano): se reconocen 6 intervalos litoestratigráficos que representan periodos de sedimentación marina interrumpidos por periodos de aporte continental. (BEICIP y FRANLAB, 1988). Las facies más gruesas, grainstone, packstone, packstone /wackstone se caracterizan por la presencia de bivalvos, ostreidos y en menor proporción gasterópodos y equinodermos, fragmentos de conchas generalmente recristalizados y sin una orientación preferencial, peloides micritizados y glauconita con bioclastos.

II. Villeta Superior (Cenomaniano-Maastrichtiano): predominan las facies arcillosas y limosas y en menor proporción facies calcáreas generalmente como delgados niveles de wackestone y packstone de bioclastos. Las facies finas se interpretan como depósitos de plataforma media a externa con ocasionales depósitos de tormenta que corresponderían a las facies calcáreas. La depositación del Miembro Villeta Superior se produce en respuesta a una subida del nivel base (hemiciclo de subida); se evidencia en el cambio facial y en los valores altos del registro Gamma Ray - GR que corresponde a arcillas principalmente.

1.3.2.5. Formación Rumiyaco. La primera referencia corresponde a Saville, 1943, en Miley & McGirk, 1948; y definida posteriormente en el ámbito petrolero por Mc. Girk, 1949, esta formación se compone en la base de niveles arenosos intercalados con delgadas capas conglomeráticas que según Mora et al. 1998 puede ser equivalente con la Arenisca del Neme, en el Valle Superior del Magdalena. El tope de la unidad corresponde a arcillolitas, limolitas rojas y algunos niveles arenosos. La parte central presenta una intercalación de delgadas capas de arenas arcillosas y limolíticas. Hacia el oeste de la cuenca, esta se compone de arcillas y limolitas que hacia el tope se vuelve más arenosa.

El ambiente de depositación varía de marino a continental marcando el cambio de las condiciones marinas que prevalecían en el Cretácico, a continental durante el Cenozoico⁷.

1.3.2.6. Formación Pepino. La unidad correspondiente al Pepino tiene una expresión morfológica característica con una secuencia de tres facetas triangulares, buzamientos altos y litología competente. Aflora en el sector sur del área de estudio, la unidad desaparece hacia el norte cuando la configuración estructural y la nomenclatura estratigráfica cambian⁸.

 ⁶ AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Informe de Cartografía geológica cuenca Caguán-Putumayo. Tunja, 2009, 38p. Universidad Pedagógica y Tecnológica de Colombia.
 ⁷ AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Informe de Cartografía geológica cuenca Caguán-Putumayo. Tunja, 2009, 39p. Universidad Pedagógica y Tecnológica de Colombia.

⁸ AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Informe de Cartografía geológica cuenca Caguán-Putumayo. Tunja, 2009, 29p. Universidad Pedagógica y Tecnológica de Colombia.

Descrita por Saville, 1943, en Miley & McGirk, 1948. Se divide en tres miembros estratigráficos. El miembro inferior está constituido principalmente por conglomerados, el miembro medio por arcillolitas, limolitas rojas ocasionalmente calcáreas y areniscas marrones con matriz arcillosa; el miembro superior presenta lentes de conglomerados gruesos intercalados con areniscas, arcillolitas duras y limolitas no calcáreas. Su espesor aumenta hacia el oeste de la cuenca, de 200 a 300 pies hasta valores superiores a los 1600 pies alcanzados en el depocentro cuya orientación es nortesur, entre los pozos Azul Grande-2 y Tambor-1. Su ambiente deposicional es continental - fluvial. La composición del material sugiere que el área de la fuente para estos sedimentos fue la Cordillera Central.

1.3.2.7. Formación Orteguaza. Esta unidad consiste en una intercalación de arcillolitas, limolitas grises, areniscas finas y ferruginosas y delgadas capas carbonosas. Posee abundantes intercalaciones de lignito. El espesor de esta formación disminuye hacia el oeste, estando ausente en la parte noreste del Putumayo debido a la erosión causada por el tectonismo Andino.

El ambiente de deposición de esta formación es salobre restringido. El contacto inferior con la Formación Pepino es concordante. El contacto superior con el Grupo de Orito-Belén es discordante⁹.

1.3.2.8. Unidad Orito-Belén: formación Belén y formación Ospina. Esta unidad presenta un relieve de suaves colinas simétricas y asimétricas con vegetación densa aflorante en el sector oriental del área. En algunas zonas localizadas se observa los efectos antrópicos en la vegetación¹⁰.

Las formaciones Belén y Ospina se componen de arcillas intercaladas con limolitas con escasos lentes de arenisca arcillosa (algunas de las cuales exhiben estratificación cruzada) y abundantes intercalaciones de lignito. El contacto inferior con la Formación Orteguaza y el superior con los depósitos Cuaternarios sobrepuestos son discordantes¹¹.

1.3.3. Geología Estructural. Se precisan dos provincias tectónicas con la ayuda de los rasgos estructurales generales de la cuenca del Putumayo. Estas se diferencian y se definen a continuación:

I. Una zona altamente plegada asociado a un límite convergente entre placas que ocasiona zonas de cabalgamientos con presencia de fallas inversas y de gran desplazamiento vertical, con rumbos NE – SO y buzamientos al oeste, con pliegues

Caguán-Putumayo. Tunja, 2009, 29p. Universidad Pedagógica y Tecnológica de Colombia. ¹¹ AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Informe de Cartografía geológica cuenca Caguán-Putumayo. Tunja, 2009, 41p. Universidad Pedagógica y Tecnológica de Colombia.

 ⁹ AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Informe de Cartografía geológica cuenca Caguán-Putumayo. Tunja, 2009, 40p. Universidad Pedagógica y Tecnológica de Colombia.
 ¹⁰ AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Informe de Cartografía geológica cuenca
 ¹⁰ CARBUROS. ANH. Informe de Cartografía geológica cuenca

asimétricos que se ubican en la parte occidental de la cuenca, la cual reposa sobre el Piedemonte y está limitada al este por el sistema de fallas Orito, LoroHormiga¹².

II. Una provincia de plataforma, menos tectonizada, conformada por bloques rígidos separados por sistemas de fallas de gran longitud. Presenta estructuras muy sutiles por movimiento diferencial en el salto de las fallas y estructuras asociadas a altos del basamento. Estas fallas con más de 20 Km de longitud separan a los bloques. Las fallas principales por lo general tienen direcciones desde N –S hasta N50E¹³.

Figura 3. Marco tectónico regional de la cuenca de Putumayo.

Fuente: elaboración propia, con base en. AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Colombian sedimentary basins. Bogotá. 2007, p 32. Consultado en abril del 2018.

1.3.4. Geología del Petróleo. A continuación, se presenta la roca generadora, roca reservorio, migración, roca sello y trampa, que conforman el sistema de petrolífero.

1.3.4.1. Roca generadora. Las formaciones generadoras de hidrocarburos son la Formación Caballos y la Formación Villeta¹⁴:

La Formación Caballos está conformada por cuarzoarenitas blancas de tamaño de grano medio a grueso, con fragmentos aislados de cuarcita y neis, cemento calcáreo

¹² AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Información (informes técnicos, registros e imágenes) suministrada, de pozos de la cuenca Caguán Putumayo. 2016. 9 p.

¹³ AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Información (informes técnicos, registros e imágenes) suministrada, de pozos de la cuenca Caguán Putumayo. 2016. 9 p.

¹⁴ AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Informe ejecutivo evaluación del potencial hidrocarburífero de las cuencas colombianas. Santander, 2009, 16p. Universidad Industrial de Santander.

y matriz arcillosa caolinítica. Presenta intercalaciones de lodolitas grises con materia orgánica y trazas de glauconita y pirita.

La Formación Villeta está conformada por una serie de shales, shales calcáreos y calizas, localmente intercalados por areniscas.

Las rocas fuente del Cenomaniano –Turoniano muestran unos valores altos de carbón orgánico, el cual fluctúa entre 1 – 14%, con un valor modal de 3% y un potencial como roca fuente de hidrocarburos excelente, el cual fluctúa entre 100 – 800 mg Hc / gTOC. El kerógeno es tipo II, HC/g de carbón orgánico (Montes, 2009).

1.3.4.2. Roca reservorio. Las areniscas presentes en la Formación Caballos como las areniscas T del Albiano, las areniscas U y M2 del Turoniano y Coniaciano, las areniscas A del Maestrichtiano inferior, pertenecientes todas a la Formación Villeta y los niveles arenosos de la Formación Pepino.

La Arena T, está constituida por un conglomerado basal, una sucesión de cuarzoarenitas y lodolitas oscuras. Las cuarzoarenitas se estratifican como capas gruesas a muy gruesas, tabulares a lenticulares, que se tornan ondulosas hacia el tope. La secuencia que corresponde a la Arena U presenta hacia el tope un predo¹⁵.

1.3.4.3. Migración. La migración de crudos desde las áreas de roca fuente maduras ha sido esencialmente a lo largo de las unidades arenosas adyacentes, mientras la migración vertical ha sido muy limitada¹⁶.

1.3.4.4. Roca sello. Las calizas y shales de la Formación Villeta, los shales de la Formación Rumiyaco y la Formación Orteguaza¹⁷.

1.3.4.5. Trampa. En general, el tipo de trampa predominante es estructural, dadas por unos anticlinales asimétricos limitados al menos en uno de sus flancos por fallas inversas, por pequeñas estructuras dómicas o bien por monoclinales con cierres estructurales favorables contra una falla. También se presentan trampas estratigráficas, dadas principalmente por cambios laterales de facies y/o terminaciones por acuñamiento, características que se pueden presentar en la Formación Villeta¹⁸.

¹⁵ AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Informe ejecutivo evaluación del potencial hidrocarburífero de las cuencas colombianas. Santander, 2009, 16p. Universidad Industrial de Santander.

¹⁶ AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Informe ejecutivo evaluación del potencial hidrocarburífero de las cuencas colombianas. Santander, 2009, 17p. Universidad Industrial de Santander.

¹⁷ AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Informe ejecutivo evaluación del potencial hidrocarburífero de las cuencas colombianas. Santander, 2009, 16p. Universidad Industrial de Santander.

¹⁸ AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Informe ejecutivo evaluación del potencial hidrocarburífero de las cuencas colombianas. Santander, 2009, 16p. Universidad Industrial de Santander.
2. GENERALIDADES DRILL STEAM TEST (DST)

En este capítulo se da una introducción de las generalidades de las pruebas de presión DST el cual involucra sus antecedentes, objetivos, tipos de pruebas DST, componentes, procedimiento, métodos para analizar las pruebas y sus limitaciones.

2.1 GENERALIDADES DE LAS PRUEBAS DST

La DST es una herramienta utilizada para la evaluación de la formación en condiciones dinámicas de flujo, lo cual permite evaluar el potencial de producción de una zona que posee hidrocarburos al realizar un completamiento parcial antes de completar el pozo. Este completamiento conecta la formación con la sarta de perforación en donde los fluidos fluyen y se registra la presión constantemente, esto ayuda determinar la estimación de producción, fluidos, presiones y propiedades de la formación, todo esto con la finalidad de obtener una evaluación de cada intervalo.

Estas pruebas de presión se llevan a cabo la mayoría de las veces en pozos exploratorios y es por lo general implementada en agujeros descubiertos, pero se tiene la facilidad de ser adaptada también para agujeros entubados.

Se requiere crear un análisis de acumulación de presión para estas pruebas, por lo que se requieren de cortos periodos de flujos y cierres. Generalmente se sigue una serie de periodos en los que se abre la válvula para dejar fluir y se cierra, esto se realiza varias veces. Finalmente se obtiene un esquemático de pruebas DST de presiones contra tiempo para ser analizado y evaluado.

Los primeros elementos de medición de presiones registraban un solo punto de presión. Los instrumentos de medición continua de presión fueron introducidos comercialmente en 1930 aunque la primera DST fue implementada por primera vez en 1926, en el Dorado, Arkansas. Los artífices de esta tecnología (DST) fueron los hermanos Johnston, su técnica fue patentada en abril de 1929 por La Johnston Formation Testing Corporation y este sistema se mejoró en los años posteriores. Schlumberger en los años 1956 compró la Johnston Testers ya que ellos previamente desarrollaron un método para evaluar las formaciones usando un equipo wireline, donde los fluidos de la formación salían a través de los perforados donde posteriormente llegaban a un contenedor, finalmente se subía la herramienta y se obtenía el fluido a condiciones de yacimiento. Por esta razón, buscaban con la tecnología Johnston, combinarla y realizar pruebas de formaciones. En la actualidad estas pruebas llevan el nombre de DST y se siguen practicando tanto en pozos descubiertos como entubados¹⁹.

Además, Horner en 1951 presentó un método para analizar pruebas de restauración de presión y determinó que un gráfico de la presión de fondo de cierre, Pws, debía ser una función lineal del log $(t+\Delta t)/\Delta t$. Horner identifica fallas geológicas y presenta

¹⁹ API DIVISION OF PRODUCTION. History of Petroleum Engineering. New York City, 1961.

el primer método para determinar presión estática del yacimiento, usando información del "transient" ²⁰.

Fuente: ESCOBAR, Freddy Humberto. Análisis moderno de pruebas de presión, Neiva. Universidad Surcolombiana, 3^a edición, 2014, p 279. Consultado en mayo del 2018.

2.2 OBJETIVOS DE LA PRUEBA DE PRESIÓN DST

A continuación, se exponen los principales objetivos que tienen las pruebas de presión DST. Estas se dividen en objetivos a corto y largo plazo las cuales depende directamente del tiempo y las circunstancias al realizar estas pruebas.

2.2.1 Objetivos a corto plazo. Para realizar una descripción de la formación en los alrededores del pozo, se tiene la necesidad de juntar y analizar los datos del pozo²¹:

- Identificar fluidos y tasas de formación.
- Presión inicial del yacimiento.
- Permeabilidad.
- Daño de formación.

2.2.2 Objetivos a largo plazo. Para conseguir una descripción estructural de la formación completa, se tiene la necesidad de juntar y analizar datos, los cuales requieren más tiempo de esta prueba de presión²²:

- Existencia de heterogeneidades.
- Discontinuidades.

²⁰ Horner, D.R.: "Pressure Build-up in Wells". Pro.Tercer Congreso Mundial de Petróleo, E.J. Brill, Leiden (1951).

²¹ HALLIBURTON. Drill stem testing overview. Test tool applications. Chapter I.

²² HALLIBURTON. Drill stem testing overview. Test tool applications. Chapter I.

• Conectividad.

2.3 TIPOS DE PRUEBAS DST

La tecnología DST se puede adaptar de acuerdo a las distintas características de las formaciones a evaluar, por esto, la mejor simplificación que se realiza para clasificar los tipos de DST son: pozo descubierto o pozo entubado.

La deliberación de dónde llevar a cabo la prueba se realiza después de un análisis de la información disponible sobre la formación, generalmente registros geofísicos. La elección de cuándo realizar la prueba dependerá de las condiciones del agujero.

2.3.1 Pozo descubierto. Las pruebas DST con pozo descubierto se suele llevar a cabo en tierra "onshore". La tecnología se adapta a las características del subsuelo y pozo con el fin de obtener un medio ágil y módico para determinar el potencial de la formación.

Es de gran importancia que el pozo esté en condiciones óptimas, que sea conciso y se pueda crear un sello efectivo. La estabilidad del pozo juega un papel vital, ya que al realizar estas pruebas en un pozo descubierto, siempre se corre el riesgo de algún derrumbe que puede conllevar a la prisión de la herramienta DST y por lo tanto, se debe realizar una desviación del pozo²³.

2.3.2 Pozo entubado. Las pruebas DST con pozo entubado por lo general se realizan en costa afuera "offshore", debido a que hay un mayor riesgo al realizar estas operaciones, siempre se debe asegurar una ejecución de acuerdo a las normas de seguridad establecidas.

En avances recientes se ha logrado que la herramienta no se mueva después que los empacadores hayan sido instalados, lo que se ha convertido en la práctica más común en costa afuera para realizar una prueba DST²⁴.

2.4 COMPONENTES DE UNA SARTA DST

Para la ejecución de una prueba de presión DST, se necesita de la sarta de perforación, la cual se equipa con los instrumentos de medición, control y muestreo; estas son introducidas en el interior de la sarta de perforación. Básicamente los

²³ HUERTA, Jonathan. Métodos y herramientas para estimar la presión de formación antes y después de la terminación de un pozo. Ciudad de México, 2009, 55p. Trabajo de grado (Métodos y herramientas para estimar la presión de formación antes y después de la terminación de un pozo). Universidad Autónoma de México. Facultad de ingeniería.

²⁴ HUERTA, Jonathan. Métodos y herramientas para estimar la presión de formación antes y después de la terminación de un pozo. Ciudad de México, 2009, 56p. Trabajo de grado (Métodos y herramientas para estimar la presión de formación antes y después de la terminación de un pozo). Universidad Autónoma de México. Facultad de ingeniería.

componentes de una sarta DST se dividen en los componentes de fondo y de superficie.

En seguida se van a presentar estos elementos, pero se debe de tener en cuenta que son los que generalmente constan en esta prueba y que pueden agregarse o quitarse otros componentes dependiendo del pozo y la formación a tratar.

2.4.1 Componentes de fondo. Su función es de ajustar la zona de interés, mantener bajo control los periodos de cierre y apertura de flujo, registrar las presiones en las herramientas, extraer los fluidos de fondo y tener un acceso para recuperar las herramientas en caso de alguna eventualidad.

A continuación se presentan los componentes de fondo generales²⁵:

- Tubería de perforación (tubing).
- Lastrabarrenas.
- Substituto de circulación inversa.
- Válvula de control de flujo.
- Válvula hidráulica.
- Martillo hidráulico.
- Junta de seguridad.
- Empacador.
- Tubo ancla.
- Registrador de presión/temperatura.
- Substituto igualador de presión.
- Válvula maestra submarina.
- Juntas de expansión.

²⁵ HALLIBURTON. Drill stem testing overview. Test tool applications. Chapter I.

Figura 5. Componentes principales de la herramienta DST.

Fuente: ESCOBAR, Freddy Humberto. Análisis moderno de pruebas de presión, Neiva. Universidad Surcolombiana, 2003, p 223. Consultado en mayo del 2018.

2.4.2 Componentes de superficie. Los elementos de superficie que componen las pruebas DST tienen la función y obligación de controlar y brindar seguridad al personal y equipos, con el fin de medir los flujos y situar los fluidos en superficie. A continuación se presentan los componentes de superficie generales²⁶:

- a. Cabeza de control.
- b. Manifold.
- c. Separador línea de flote mechero.

2.5 PROCEDIMIENTO DE UNA DST

Las pruebas de presión DST están divididas en cuatro periodos de flujo y cierre. De este procedimiento se obtiene un esquemático de presión DST del cual se empiezan a determinar características y propiedades de la formación en estudio. Estos periodos se presentan a continuación²⁷:

²⁶ HALLIBURTON. Drill stem testing overview. Test tool applications. Chapter I.

²⁷ Horne, Roland. Modern Well Test Analysis (en línea). Petroway. Octubre de 2013 (18 abril de 2018) disponible en: http://www.portaldelpetroleo.com/2013/08/dst-drill-stem-test.html

a. Primer período de flujo y cierre:

Antes de realizar el cañoneo en la zona de interés, se realiza este periodo el cual consiste en desplazar el lodo de perforación. Este periodo es opcional y la empresa operadora decide si debe realizarse.

b. Segundo período de flujo y cierre:

Si el pozo tiene una respuesta energética elevada, este período puede realizarse con reductores. El equipo de well testing monitorea los parámetros de corte de agua y API hasta desplazar totalmente el lodo de perforación. La BU realizada permitirá analizar la condición de daño que pueda tener la arena productora. Este periodo se considera de limpieza.

- c. Tercer período de flujo (prueba multitasa) y cierre (BU principal):
 Se considera como el más importante, se pueden necesitar hasta 4 reductores cada una de 24 horas debido a la respuesta de la formación. Este periodo de cierre requiere el doble de tiempo del periodo de flujo.
- d. Cuarto período de flujo y cierre:

Una vez terminados los periodos de flujos y cierres, se continúa con la toma de muestras de fondo y superficie para sus respectivas pruebas y análisis.

La prueba de presión DST termina con la cuarta etapa. Luego se sigue con realizar el control del pozo para una siguiente prueba si la hay en otro intervalo o finalmente bajar la completación permanente.

Figura 6. Carta típica de una prueba DST.

Fuente: ESCOBAR, Freddy Humberto. Análisis moderno de pruebas de presión, Neiva. Universidad Surcolombiana, 2003, p 229. Consultado en mayo del 2018.

Figura 7. Esquemático común de una prueba DST, de acuerdo a sus periodos.

Fuente: HORNER, Roland. Modern Well Test Analysis (en línea). Petroway. Octubre de 2013 disponible en: <u>http://www.portaldelpetroleo.com/2013/08/dst-drill-</u> <u>stem-test.html</u>. Consultado en mayo del 2018.

2.6 MÉTODO PARA ANALIZAR UNA PRUEBA DST

Una vez finalizado los periodos de una prueba DST, se obtiene una carta de presión esquemática donde hay que realizar los análisis respectivos con el fin de generar datos que ayuden a determinar el potencial productivo de la formación. Para ello se emplea el método gráfico de Horner.

Es preciso explicar previamente los distintos análisis e interpretaciones que pueden surgir de las pruebas de restauración de presión para dar un mejor entendimiento de este comportamiento.

2.6.1 Prueba de restauración de presión ideal. El término ideal se refiere a un reservorio infinito, homogéneo e isotrópico que contenga un fluido compresible, en una sola fase con propiedades constantes y que no tenga daño de formación a nivel de perforados, y que permita un comportamiento, como se puede observar en la figura 8, en donde la producción pasa de un valor constante y estable en el tiempo a cerrarse totalmente en un instante. Ningún yacimiento posee estas descripciones, sin embargo, los métodos de análisis para este modelo han sido útiles a la hora de analizar pruebas en yacimientos con características más realistas.²⁸

²⁸ LEE, W. John. Well Testing. Society of Petroleum Engineers of AIME, 1982. 21 p.

Figura 8. Tasa histórica de flujo de una prueba ideal de restauración de presión.

Fuente: elaboración propia, con base en. LEE, John. Well testing. Society of Petroleum Engineers of AIME. 1982, p 22. Consultado en mayo del 2018.

Teniendo en cuenta este comportamiento ideal en las pruebas de restauración de presión, se genera una evidencia de sus regiones que se muestran en la siguiente figura.

Figura 9. Regiones de una prueba de restauración de presión.

Fuente: LEE Jhon. Well testing. Society of Petroleum Engineers of AIME. 1982, p 23. Consultado en mayo del 2018.

Los periodos de flujo y las características de la formación hacen que las regiones de las pruebas de presión sean independientes de cada yacimiento, por ende, las

curvas siempre serán distintas para cada formación. A continuación, se muestran los periodos de flujo:

- Período transiente. Se presenta cuando la perturbación de presión viaja a través del yacimiento y no ha llegado a un solo punto del límite exterior del yacimiento. Se comporta como un yacimiento infinito.²⁹
- II. Período post-transiente. Inicia cuando la perturbación de presión ha llegado a algún punto del límite exterior del yacimiento y termina cuando la perturbación de presión haya llegado a todos los puntos del límite exterior del yacimiento. ³⁰
- III. **Período Pseudoestable o Estable.** Inicia cuando todos los puntos del límite exterior del yacimiento han sido afectados por la perturbación de presión. ³¹

2.6.1.2 Región de Tiempo Temprano (ETR). Debido a la alteración de la permeabilidad que ocurre en la cara del pozo ocasionado por un daño de formación, se espera que el comportamiento de la curva en esta sección no sea estrictamente una línea recta. Otra complicación en esta región, el continuo movimiento de fluido hacia el pozo aún después de cerrado el paso de fluido en superficie (efecto postflujo, ocurre como un proceso de almacenamiento). ³²

Figura 10. Tasa histórica de flujo de prueba normal de restauración de presión.

Fuente: elaboración propia, con base en. LEE, John. Well testing. Society of Petroleum Engineers of AIME. 1982, p 24. Consultado en mayo del 2018.

2.6.1.3 Región de Tiempo Medio (MTR). Cuando el radio de investigación se encuentra más allá de la influencia de la zona alterada por el daño de formación y

²⁹ NARANJO AGUDELO, Abel. Evaluación De Yacimientos De Hidrocarburos. 2nd ed. Medellín, Universidad Nacional de Colombia: 2009. 6 p.

³⁰ NARANJO AGUDELO, Abel. Evaluación De Yacimientos De Hidrocarburos. 2nd ed. Medellín, Universidad Nacional de Colombia: 2009. 6 p.

³¹ NARANJO AGUDELO, Abel. Evaluación De Yacimientos De Hidrocarburos. 2nd ed. Medellín, Universidad Nacional de Colombia: 2009. 7 p.

³² LEE, W. John. Well Testing. Society of Petroleum Engineers of AIME, 1982. 24 p.

cuando el período postflujo haya terminado usualmente se observa un comportamiento ideal de la recta en la curva de restauración de presión. Esta línea recta continúa hasta que el radio de investigación se encuentre con uno o más límites de la formación, masivas heterogeneidades o un contacto fluido-fluido que perturben el comportamiento de la curva. Esta región es importante debido a que permite la determinación de la permeabilidad y el factor de daño que son propiedades esenciales de la formación. Tiene un comportamiento de período transiente hasta cuando se encuentre con un límite de formación. ³³

2.6.1.4 Región de Tiempo Tardío (LTR). En esta región el radio de investigación alcanza los límites de drenaje de pozo. El comportamiento de la curva estará influenciado por la configuración que se tenga de los límites de formación como pueden ser: interferencia por presencia de otros pozos, heterogeneidades significantes de formación o contacto fluido-fluido, entre otras. Tiene un comportamiento pseudoestable. Generalmente este comportamiento no se observa en la curva, requieren tiempos muy largos de cierre para que se puedan observar y si el pozo se encuentra cerrado significa sacrificar tiempo de producción. ³⁴

2.6.2 Método gráfico de Horner. Este método se realiza para pruebas de restauración de presiones reales y son actualmente la base de determinación de las características de un yacimiento, considerándose uno de los métodos más representativos en la industria petrolera.

Se lleva a cabo a pozos exploratorios ya que se tiene la presión inicial del pozo y por lo general se practican inmediatamente después de terminar la perforación al llegar a la profundidad deseada. Se realizan con gráficos Semi-Log y Log-Log, los cuales consiste en trazar una recta de pendiente m que coincida con la parte correspondiente al flujo radial de la gráfica de Horner.

De acuerdo a Amanat Chaudhry el método de Horner se divide en los siguientes pasos³⁵:

1. Calcular tiempo de producción, con la producción acumulada y el caudal de producción antes del cierre. Ver ecuación 1.

Ecuación 1. Tiempo de producción.

$$tp = \frac{24Np}{qo}$$

Fuente: LEE, John. Well testing. Society Petroleum Engineers.1982, p 15.

³³ LEE, W. John. Well Testing. Society of Petroleum Engineers of AIME, 1982. 24 p.

³⁴ LEE, W. John. Well Testing. Society of Petroleum Engineers of AIME, 1982. 24 p.

³⁵ CHAUDHRY, Amanat U. Oil Well Testing Handbook. Elsevier, 2003. 157 p.

Dónde:

- tp: Tiempo de producción, hrs.
- Np: Producción acumulada, bbl.
- qo: Caudal, BPD.
- 2. Graficar Pws en función del log(($tp+\Delta t$) / Δt) en papel semilog.

3. Hallar la pendiente m de la porción en línea recta del gráfico de Horner y extrapolar la línea a $((tp+\Delta t) / \Delta t) = 1$ para encontrar *P**.

4. Calcular la permeabilidad con la ecuación 2 (k) y la pendiente (m) hallada en el paso 3.

Ecuación 2. Permeabilidad.

$$k = \frac{126,6qo\mu o\beta o}{\mathrm{mh}}$$

Fuente: CHAUDHRY, Amanat. Oil Well Testing Handbook. Elsevier. 2004, p 165.

Dónde:

- k: Permeabilidad, md.
- qo: Caudal, BPD.
- µo: Viscosidad del crudo, cp.
- βo: Factor Volumétrico, bbl/STB.
- m: Pendiente.
- h: Espesor, ft.

La siguiente tabla muestra los valores de permeabilidades en milidarcys y su clasificación:

Tabla 1. Rangos de	permeabilidad	(k)).
--------------------	---------------	-----	----

Rango de permeabilidad (md)	Clasificación
0 - 0,01	Muy baja
0,01 – 1	Baja
1 – 100	Promedio
100 – 10000	Alta
10000 - 100000	Muy alta

Fuente: GONZALES ,Misael. G. Caracterización dinámica de yacimientos de hidrocarburos. 2012, p 66.

5. En la línea recta leer Pws en $\Delta t = 1$ hora, referida como P1hr. Reemplazando el Δt en la ecuación (($tp + \Delta t$) / Δt) y usando el tp hallado en el paso 1.

6. Calcular el daño de formación ecuación 3, con la P1hr hallada y la pendiente de la recta.

Ecuación 3. Daño de formación.

$$s = 1,151 \left(\frac{P_{1hr} - P_{wf(\Delta t=0)}}{m} - \log\left(\frac{k}{\phi\mu_o c_t r_w^2}\right) + 3,23 \right)$$

Fuente: CHAUDHRY Amanat. Oil Well Testing Handbook. Elsevier.2004, p 166.

Dónde:

- s: Daño de formación.
- P1hr: Presión a una hora, psi.
- Pwf: Presión de fondo, psi.
- k: Permeabilidad, md.
- Ø: Porosidad, %.
- μo: Viscosidad del crudo, cp.
- Ct: Compresibilidad, psi-1
- rw: Radio de pozo, ft.

A continuación se presenta la clasificación del daño de formación³⁶:

- Si Kskin < K, S > 0, el pozo está dañado.
- Si Kskin = K, S = 0, el pozo no tiene daño.
- Si Kskin > K, S < 0, el pozo fue estimulado.

La siguiente tabla muestra los valores de daño que se producen en un pozo:

Condición Del Pozo	Valor Del Daño Verdadero De La
	Formación(S)
Altamente dañado	S > 10
Dañado	S > 0
Sin daño	S = 0
Acidificación	-1 < S < -3
Fracturado	-2 < S < -4
Masivamente fracturado	S < -5

Tabla 2. Valores típicos del daño de formación (S).

Fuente: ISLAS Carlos. Manual de estimulación matricial de pozos petroleros. Colegio de ingenieros petroleros de México. 1991, p 7.

7. Calcular Δt con la ecuación 4, tomando el TSSL como el último punto que está dentro de la tendencia de la gráfica.

³⁶ ISLAS, C. Manual de estimulación matricial de pozos petroleros. Colegio de ingenieros petroleros de México. 1991. 7p.

Ecuación 4. Diferencial de tiempo.

$$\Delta t = \frac{t_p}{TSSL - 1}$$

Fuente: CHAUDHRY Amanat. Oil Well Testing Handbook. Elsevier. 2004, p 166.

Dónde:

- tp: Tiempo de producción, hrs.
- Δt : Diferencia de tiempo, hrs.
- TSSL: Último punto en la tendencia lineal, hrs.

8. Calcular el coeficiente de almacenamiento de pozo con la ecuación 5 y él Δt hallado.

Ecuación 5. Coeficiente de almacenamiento.

c –	$(\Delta t * k * h)$	١
ι =	$170 * \mu * e^{0,14s}$	J

Fuente: CHAUDHRY Amanat. Oil Well Testing Handbook. Elsevier.2004, p 166.

Dónde:

- Δt : Diferencia de tiempo, hrs.
- k: Permeabilidad, md.
- μo: Viscosidad del crudo, cp.
- h: Altura, ft.
- s: Daño de formación.

El coeficiente de almacenamiento es la capacidad que tiene el pozo de almacenar fluido por unidad de cambio de presión. La siguiente tabla muestra su rango y características:

Tabla 3. Rangos del coeficiente de almacenamiento.

Coeficiente de almacenamiento (C)	Característica
C = 0	La condición del pozo es impuesta al frente de la arena (la tasa del flujo viene del yacimiento).
C > 0	La mayoría de la tasa de flujo viene del volumen almacenado en el pozo.

Fuente: Ingeniería de producción del petróleo, ingeniería de yacimientos (en línea). Petroblogger. Octubre de 2012 disponible en:

http://www.ingenieriadepetroleo.com/efecto-almacenamiento-pozo-petroleo-gasnatural/. Consultado el 18 de abril de 2019.

2.7 LIMITACIONES DE LAS PRUEBAS DST

Las herramientas DST se pueden emplear en su mayoría a los distintos pozos que puedan llegar a existir, sin embargo, para una ejecución exitosa, siempre se debe tener precaución.

En la siguiente tabla comparativa se muestran los factores que pueden generar riesgo tanto para la prueba como para los equipos, el personal y el pozo³⁷:

Ventajas	Desventajas					
Realiza un completamiento parcial del pozo, permitiendo evaluar el potencial	Trabajos con altas temperaturas (mavores a 150°C).					
de producción.						
Componentes fáciles de implementar a la sarta de perforación.	Formaciones con problemas de estabilidad.					
Permite estimar producción, fluidos, presiones y propiedades de la formación.	Necesidad de pozo revestido en las operaciones offshore.					
Existen algunas herramientas resistentes al H2S.	Formaciones que contengan H2S, puesto que presenta gran riesgo para los operadores y equipos.					
Facilidad de adaptarse a pozos descubiertos como entubados.	Datos obtenidos de heterogeneidades, discontinuidades y conectividad a largo plazo.					
Determina presión inicial del yacimiento	Fluidos de inyección deben ser compatibles con la herramienta DST.					
Evalúa tanto pozos exploratorios como productores.						
Establece permeabilidad y daño de formación.						
Las pruebas DST son consideradas de corto tiempo y efectivas.						

Cuadro 1. Ventajas y desventajas de las pruebas DST.

Fuente: elaboración propia.

³⁷ HUERTA, Jonathan. Métodos y herramientas para estimar la presión de formación antes y después de la terminación de un pozo. Ciudad de México, 2009, 66p. Trabajo de grado (Métodos y herramientas para estimar la presión de formación antes y después de la terminación de un pozo). Universidad Autónoma de México. Facultad de ingeniería.

3. EVALUAR LOS DATOS OBTENIDOS Y CALCULADOS DE LAS PRUEBAS DE PRESIÓN DST DEL POZO EXPLORATORIO VINO 1

Para el presente se busca calcular y evaluar los datos que puedan derivar de las pruebas de presión DST del pozo exploratorio Vino1. Se va a realizar una prueba de presión a cada una de las formaciones conocidas como Arena T, Arena U inferior y Limestone (Calizas A1, A2 y A3).

Como se mencionó previamente, las formaciones a evaluar se encuentran depositadas una tras otra siendo la Arena T la más profunda (9780ft – 9832ft), posteriormente se encuentran las formaciones BL y S1 las cuales no se evaluarán, le sigue la Arena U inferior (9579ft – 9612ft), luego la Formación LU que tampoco se apreciará y por último esta la Formación Limestone (calizas A1, A2 y A3) a una profundidad de (9313ft – 9511ft). Estas profundidades son en MD (measured depth) considerada como la longitud de profundidad realizada por la perforación.

La primera formación a ser evaluada es la Formación Arena T. Esto es debido a que esta formación se encuentra ubicada a una mayor profundidad y al tener que cañonear, se busca que no haya una afectación a los posteriores trabajos con las formaciones a evaluar. Posteriormente se valorará la Formación Arena U y finalmente la Formación Limestone.

Se debe tener en cuenta que estas pruebas se pueden realizar tanto en pozo descubierto como en pozo entubado, para este caso, el pozo Vino1 se encuentra revestido. Se realizaron las pruebas de presión porque el pozo cuenta con los parámetros de seguridad requeridos y una buena estabilidad, por lo cual hay muy poca probabilidad de un posible incidente o derrumbe.

La sarta de perforación para cada prueba se adecúa con las herramientas DST correspondientes de acuerdo a las profundidades y características de la formación y por lo tanto van a variar de manera mínima para estas tres pruebas.

Con el fin de realizar una implementación de esta tecnología correctamente, se cuenta con los equipos de herramientas de fondo, herramientas DST, memorias de fondo y equipos de Surface Well Testing para las respectivas pruebas de producción en superficie. Todo esto se realiza con el fin de:

- Recuperar muestras representativas en fondo de los fluidos de yacimiento.
- Registrar datos de producción del pozo bajo diferentes escenarios de explotación.
- Permitir la apertura y cierre en fondo requeridos para la prueba de producción.
- Registrar y reportar datos verídicos, y representativos de las variables de pozo en flujo y cierre que permitan una adecuada caracterización del yacimiento.
- No registrar NPT (no production time).

A continuación, se presenta la información de los equipos y de los sensores instalados para las respectivas pruebas de producción en superficie. Se va a mantener el mismo equipamiento para la realización de las diferentes pruebas de presión DST.

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe de los equipos y sensores para pruebas de producción en Campo Cupiraco, año 2018. Consultado en agosto del 2018.

Se puede observar que las facilidades de superficie se componen de equipos y sensores para las pruebas de producción. Se encuentra equipada con una única línea de flujo, un separador trifásico, medidores de presiones, temperaturas y flujos. En el **Anexo A** se puede encontrar una tabla que especifica las características de cada uno de los elementos implicados en estas facilidades.

En seguida se presenta el estado mecánico del Pozo Vino1 con el fin de generar una mejor visualización de la geometría del pozo y de sus componentes principales instalados con su respectiva profundidad.

Figura 12. Estado mecánico del pozo Vino1.

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe general del pozo Vino1, año 2018. Consultado en agosto del 2018.

El nivel inicial del suelo se considera con una diferencia positiva de 26ft, se tiene en cuenta porque esa es la distancia de la mesa rotaria o suelo de la torre de perforación al nivel del suelo.

El revestimiento llega a una profundidad de 6100ft, el casing tiene un ID: 9 5/8" y un OD: 12 ¼". La perforación continua hasta una profundidad de 10291ft, no se realiza un revestimiento ya que en estos intervalos perforados se van a realizar las pruebas de presión DST. El TOC (tope del cemento) se encuentra a una profundidad de 7600ft. El linner tiene un ID: 7" y un OD: 8 ½".

3.1 PRUEBA DE PRESIÓN DST, FORMACIÓN ARENA T

De acuerdo a varios estudios sísmicos y geofísicos se determinó que hay una alta probabilidad de que la Formación Arena T contenga una reserva considerable de hidrocarburos. Por esta razón se desarrolló la primera prueba de presión DST en los intervalos 9779'-9790' (11'), 9796'-9818' (22') correspondiente a la formación en estudio. El trabajo se ejecutó con los equipos de herramientas de fondo, herramientas DST, memorias de fondo y equipos de Surface Well Testing con el fin de realizar las pruebas de producción en superficie. A continuación, se presenta la sarta de herramientas DST con sus respectivos componentes utilizados.

A continuación, se presenta la sarta de perforación equipada con los componentes DST (identificados con color rojo) para realizar la prueba en la Formación Arena T. En esta se especifica cada elemento que compone la sarta, su tracking, su peso, sus medidas de conexiones de tope y fondo, sus diámetros internos y externos con su respectiva longitud y la profundidad en la que se encuentra. La franja señalada en color amarillo es la profundidad que se desea evaluar.

	MAYOR OD 5.650 in	MENOR	D 2.25	50 in	PES() TOTAL	DE CO	LUMNA *2	74868
	DESCRIPCIÓN PROVE	EEDOR TRACKING #	PESOID	TOPE	F0N00	ODin	Dimensio	LONGITUD R	PROF. TOPE ND
612	Arboi de produccion	NA	1800	3-1/2" EUE BRD Box	3-1/2" EUE 8RD Box		2.992	4.00	-10.50
開	Crossover	NA	40	3-1/2" EUE 880 Pm	3 1/2" Hydril 563 Pin	3.500	2.992	6.00	-6.50
	Tubing 3 1/2" TSH563 (1 junta - 31.52) - diferencia cable tuberia (4.01ft)-sentamiento de packer (6.72 ft)	NA	85625	3 1/2" Hydril 563 Box	3 1/2" Hydril 563 Pin	3.500	2.992	20.79	-0.50
	Pup joints 3 1/2" TSH563 (8:20"+8:22)	NA	85625	3 1/2" Hydrii 563 Box	3 1/2" Hydril 563 Pin	3.500	2.992	16.42	20.25
	Tubing 3 1/2" TSH563 (292 juntas)	NA	85625	3 1/2" Hydril 563 Box	3 1/2" Hydril 563 Pin	3.500	2.992	9192.12	36.71
	Crossover (LONG BHA 589.92 ft)	79945401-1	8	3 1/2" Hyddi 563 Bax	3-1/2" EUE 8RD Pin	4.180	3.000	1.06	9228.8
the second	Sliding sleeve 2.81 X Profile	162350-11	60	3-1/2" EUE 8RD Βακ	3-1/2" EUE 8RD Pin	4.875	2.810	2.94	9229.8
盟	Crossover	79945401-16	8	3-1/2" EUE BRD Box	3 1/2" Hydril 563 Pin	4.875	2.875	1.23	9232.0
	Tubing 3 1/2" TSH563	NA	280	3 1/2" Hyddi 563 Box	3 1/2" Hydril 563 Pin	3.500	2.992	31.52	9234.0
Ð	Crossover	79945401-6	12	3 1/2" Hyddi 563 Box	3-1/2" IF Pin	4.680	2.250	1.18	9265.5
	Drill Collars (10 juntas)	NA	7500	3-1/2" ⊯ Box	3-1/2" IF Pin	4.750	2.250	297.81	9266.3
(P)	Sub radiactivo		12	3-1/2" IF Box	3-1/2" IF Pin	4.680	2.250	0.35	9564.5
i.	Marca radiactiva	NA	8	3-1/2" F Box	3-1/2" IF Pin	5.030	2.250	0.35	9564.9
	Crossover	X0L 564	15	3-1/2" IF Box	3-7/8" CAS Pin	5.030	2.250	1.61	9565.2
I	Handling Sub, 3-7/8 CAS	XOL 019	113	3-7/8" CAS Box	3-7/8" CAS Pin	5.000	2.380	3.90	9566.8
	LPR-N Tester Valve 5 0D	SAP 10257972	630	3-7/8" CAS Box	3-7/8" CAS Pin	5.030	2.280	15.83	9570.7
and the second	Drain Valve 5 0D	SAP 11374018	199	3-7/8" CAS Box	3-7/8° CAS Pin	5.030	2.280	3.44	9586.6
-	Handling Sub, 3-7/8 CAS	SAM 002	113	3-7/8" CAS	3-7/8" CAS Pin	5.000	2.380	5.58	9590.0

Figura 13. Sarta de herramientas DST adecuada para la Formación Arena T.

.

	MAYOR OD 5.650 in	MENOR I	D 2.2	50 in	PES	DIDIAL	DE COL	UMNA "	274868
	DESCRIPCIÓN P	IRO VEEDOR TRACKING #	PESOL	C TURE	onexión FON DO	00 m	Dimension	10 MG/100 1	PROF. TOPE M
	Sampler Carrier - Armada 5.38 00	SAP 11897768	1137	3-7/8" CAS	3-778° CAS Pin	5.380	2.280	31.68	9595
	Geoge Carrier 5 00	SAP 10259090	500	3-7/8" CAS Box	3-78° CAS Pn	5.030	2.280	18.71	9527.
T	Handling Sub, 3-7/8 CAS	XOL 215	113	3-7/8" CAS	3-7/8° C/6 Pa	5.000	2.380	3.91	96.46
h	RD TST Valve 5 0D	SAP 12009975	554	3-7/8" CAS	3-7/8° CAS Pin	5.030	2.280	5.00	96-49
	RITIS Safety Joint 5 00	SAP 10257888	120	3-7/8" CAS Box	3-7/8" CAS Pin	5.030	2.250	4.35	96.54
	CHAMP IN Packer 7 IN 17-38 PPF	SAP 10259284	350	3-7/8" CAS Box	3-12° F Pin	5.650	2.370	9.13	96.59
	Shock Absorber, VERTICAL, 5 0D	SAP 12241090	160	3-1/2" IF Box	3-1/2" F Pin	5.000	2.250	4.85	96.68
	SHOCK ABSORBER, RADIAL	SAP 11325458	160	3-1/2" (F Box	3-12" F Pin	3.455	2.250	3.10	9673
	Crossover	X0L 770	15	3-1/2" IF Box	2-78" E.E. BRD Pm	5.030	2.250	1.93	9676
	Pup joint 2-7/8*	NA	210	2-7/P BJE BRD Box	2-78° 8.6 980 Pa	2.875	2.440	6.20	9678
	Tubing, 2-7/8* (1 junta)	NA	210	2-7/8" BJE 940 Box	2-78" BJE BRD Pin	2.875	2.440	31.08	9684
100	Ril Flow Sub	NA	4	2-7/8" ELE 1910 Box	2-78" E.E. IRD Pin	2.875	2.440	0.54	97 15
	Tubing, 2-7/8" (1 junta)	NA	420	2-7/6" BJE 1990 Box	2-78" EJE 880 Pin	2.875	2.440	31.29	97 16
	Top Dual Finiting Head	NA	12	2-7/6" BJE IPD Box	4.58° Gun Pin	3.375		3.38	97 47
	Safety spacer gun + DUB	NA	800	4 5/8" Gut Bax	4-5%* Gun Pin	4.625		28.22	97 50
	Depth Ref: 9779.00 ft, Distance to Top of the Tool: 0.00 ft, HSD Perforating Gun (9779-9790)	NA	800	4-5/8" Gut Box	4-58° Gun Pin	4.625		11.00	97.79
	Spacer gun	NA	800	4.5/8" San Bax	4.5%" Gun Pin	4.625		6.00	9790
П	HSD Perforating Gun (9796 '-98 18')	NA	800	4:5/8" Gun Box	4-5/8" Gun Pro	4.625		22.00	9796
H	Bull plug	NA	20	4.5/8" Gan		4.500		0.75	9818

Figura 13. (Continuación).

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación Arena T, año 2018. Consultado en septiembre del 2018.

3.1.1 Secuencia operacional. El trabajo se realizó en Villa Garzón, Putumayo, Colombia. En el Campo Cupiraco, el pozo exploratorio tratado se le conoce como Vino1. La compañía encargada de las pruebas de presión DST es Halliburton. Los intervalos que se evaluaron fueron 9779'-9790' (11'), 9796'-9818' (22') correspondiente a la Formación Arena T. La plataforma correspondiente es la

Pioneer 303. La serie de las actividades, fechas y horarios de esta prueba de presión DST, se podrán observar en el **Anexo B**.

Para la realización de la prueba de presión DST, primeramente, se realiza la apertura del pozo y su respectivo monitoreo, luego se prosigue a su ejecución con la bomba Jet donde se genera una inyección de fluido motriz de manera continua y finalmente se realiza el cierre de fondo. Durante la prueba de la Arena T, no hubo una evidencia de producción de hidrocarburos y la unidad de bombeo hidráulico empleada en la inyección del fluido motriz de la bomba Jet no era la adecuada para la operación de las herramientas DST.

3.1.2 Programación de memorias pruebas de presión DST, Formación Arena T. Se implementaron las memorias SN 21201 (registro de presión tubería), SN 20990 (registro de presión anular), SN 21202 y SN 21972. En la siguiente tabla se especifica la batería, conexión, programación, ubicación y profundidad.

Nombr	Fecha y	Bataría	Progr	amación	Ubic ación	Profundidad
e (S/N)	conexión de batería	(S/N)	Duració n	Rata de muestreo	Anul ar /Tub	MD-TVD
21201	06/14/201 7 00:11:45	16223023	152 hrs	1 dato 1 seg	Tbg	9640,42 ft md 8215,51 ft tvd
20990	06/14/201 7 00:15:04	17003091	152 hrs	1 dato 5 seg	Ann	9637,62 ft md 8212,94 ft tvd
21202	06/14/201 7 00:21:09	16223024	152 hrs	1 dato 1 seg	Tbg	9640,42 ft md 8215,51 ft tvd
21972	06/14/201 7 00:23:59	17003094	152 hrs	1 dato 5 seg	Ann	9637,62 ft md 8212,94 ft tvd

Cuadro 2. Programación memorias prueba DST, Formación Arena T.

Fuente: elaboración propia, con base en. HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST Formación Arena T, año 2018. Consultado en septiembre del 2018

3.1.3 Gráfico general DST. La siguiente es la Carta Esquemática De Presiones en el pozo Vino1obtenida al finalizar la prueba de presión DST en la Formación Arena T.

Gráfica 1. Carta esquemática de presiones, Formación Arena T.

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación Arena T, año 2018. Consultado en septiembre del 2018.

Dónde los periodos corresponden a:

- 1: programación de memorias, bajada de la herramienta, sarta en fondo.
- 2: comienzo de correlaciones y sarta correlacionada.
- 3: prueba de packer en el anular con 2500psi.
- 4: abre camisa de circulación, desplazamiento con nitrógeno y cierre de camisa.
- 5: líneas en superficie probadas.
- 6: cañoneo.

7: monitoreo del pozo, pesca de barra con slick line, instalación de la bomba jet en la camisa de circulación.

8: prueba de la bomba jet y unidad de bombeo. Comienza prueba de producción. Finaliza prueba de producción.

9: activación de muestradores.

10: descarga presión anular y cierre para periodo de build-up.

11: finaliza periodo de cierre y circulación de pozo.

12: desasento packer con 5klbs de overpull.

13: recuperación de la sarta.

Después de construir y analizar la carta de presión esquemática de la prueba DST, se puede realizar una comparación con las cartas bases de permeabilidades, estas se pueden encontrar en el **Anexo C**, y se determina que hay una permeabilidad (K) moderada y la zona no está dañada.

3.1.4 Comportamiento de Presión en periodo de restauración. La presión es el factor más importante en la realización de las pruebas de presión DST. A continuación, se presenta el comportamiento de la presión en periodo de restauración.

Gráfica 2. Periodo restauración de presión, Formación Arena T.

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación Arena T, año 2018. Consultado en septiembre del 2018.

Una vez realizada la prueba de presión DST, uno de los factores con mayor relevancia es el comportamiento de la presión del periodo de restauración (el cual es el tercer periodo de la prueba) porque este muestra una posible depletación de la formación. En este caso, se puede observar que la presión baja hasta 1311psi y luego se recupera al llegar 2941psi, un valor muy cercano a la presión inicial de la prueba 2967 psi. Esto indica que la formación recupera rápidamente la presión y no hay alto riesgo de una depletación temprana ni una implementación de un mecanismo de producción secundario prematuro.

3.1.5 Tabla y gráfica de producción. La gráfica de producción de la Formación Arena T se obtiene de la tabla que muestra la producción de fluidos al realizar la prueba de presión DST con su fecha y hora, choke, presión y temperatura del cabezal, presión y temperatura de estrangulación, gastos de líquido y aceite y presión de separación. Esta tabla se puede ver en el **Anexo D**.

Gráfica 3. Gráfica de producción, Formación Arena T.

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación Arena T, año 2018. Consultado en septiembre del 2018.

Esta gráfica de producción tiene el fin de representar el cambio de las presiones y temperaturas con respecto al tiempo. En esta se puede observar el WHP (presión de Cabeza reportada en PSI) de color rojo y la temperatura WHT (temperatura en cabeza reportada en grados Celsius) de color morado. También el BHP (Presión de Fondo reportada en PSI) de color verde y el BHT (temperatura de fondo reportada en grados Celsius) de color como la temperatura de fondo reportada en 64 avos de pulgada. Tanto la presión como la temperatura para el cabezal y el fondo son muy similares, esto indica que la prueba de presión DST se realizó exitosamente y no se presentó alguna anomalía.

3.1.6 Prueba PVT, Formación Arena T. Esta prueba de laboratorio se realiza a las muestras de fluidos obtenidas a partir de las pruebas de presión DST para analizar el comportamiento PVT (presión, volumen y temperatura) del yacimiento al cambiar desde las condiciones de fondo hasta condiciones de superficie.

Debido a que no hubo presencia de hidrocarburos en esta formación, las muestras que se tomaron con la prueba de presión DST no fueron enviadas a laboratorios para realizar las pruebas PVT respectivas.

3.1.7 Aplicación del método de Horner para la Formación Arena T. Para este caso, la prueba de presión DST que se realizó a la Formación Arena T se ejecutó de manera exitosa, por lo tanto, su aplicación genera una buena estimación de las características de la formación, pero no hubo una producción de hidrocarburo y por lo tanto no se realizó una evaluación.

3.2 PRUEBA DE PRESIÓN DST, FORMACIÓN ARENA U

Luego de haber realizado las pruebas de presión DST en la formación más profunda a evaluar (Arena T) y la cual no generó producción de hidrocarburos, se prosigue a evaluar la Formación Arena U. Las pruebas de presión DST se ejecutaron en los intervalos (9558ft – 9563ft), (9568ft – 9575ft) y (9589ft – 9598ft).

El trabajo se elaboró con los equipos de herramientas de fondo, herramientas DST, memorias de fondo y equipos de Surface Well Testing con el fin de realizar las pruebas de producción en superficie. A continuación, se presenta la sarta de herramientas DST utilizada para evaluar la Formación Arena U.

La presente es la sarta de perforación equipada con los componentes DST (identificados con color rojo) para realizar la prueba en la Formación Arena U. En esta se especifica cada elemento que compone la sarta, su tracking, su peso, sus medidas de conexiones de tope y fondo, sus diámetros internos y externos con su respectiva longitud y la profundidad en la que se encuentra. La franja señalada en color amarillo es la profundidad que se desea evaluar.

	MAYOR OD 5.875 in		MENOR	D 2.25	i0 in	PESC) TOTAL	de col	.UMNA *2	77464 lb
	DESCRIPCIÓN	PROVEEDOR	TRACKING #	PESO lb	Co Tope	nexión FONDO	ODin	Dimensior ID in	les Longitud ft	PROF. Tope MDft
	Arbol de produccion	Gran Tierra	NA	1800	3-1/2" EUE 8RD Box	3-1/2" EUE 8RD Box		2.992	4.00	-7.50
	Crossover	Gran Tierra	NA	40	3-1/2" EUE 8RD Pin	3 1/2" Hydril 563 Pin	3.500	2.992	2.00	-3.50
	Pup joint 3 1/2" TSH563	Gran Tierra	NA	85625	3 1/2" Hydril 563 Box	3 1/2" Hydril 563 Pin	3.500	2.992	4.28	-1.50
	Tubing 3 1/2" TSH563 (1 jt - 31.48 ft) - Dif cable/tuberia (3.87 ft) - Tronco packer (30klbs - 7.82 ft)	Gran Tierra	NA	85625	3 1/2" Hydril 563 Box	3 1/2" Hydril 563 Pin	3.500	2.992	19.79	2.78
	Tubing 3 1/2" TSH563 9.3 #-ft N-80 (285 juntas)	Gran Tierra	NA	85625	3 1/2" Hydril 563 Box	3 1/2" Hydril 563 Pin	3.500	2.992	8971.60	22.57
	Crossover (LONG BHA 607.22 ft)	Gran Tierra	79945401-1	8	3 1/2" Hydril 563 Box	3-1/2" EUE 8RD Pin	4.180	3.000	1.06	8994.17
	Sliding sleeve 2.81 VL Profile	Weatherford	162350-11	60	3-1/2" EUE 8RD Box	3-1/2" EUE 8RD Pin	4.875	2.810	2.94	8995.23
	Crossover	Gran Tierra	79945401-16	8	3-1/2" EUE 8RD Box	3 1/2" Hydril 563 Pin	4.875	2.875	1.23	8998.17
	Tubing 3 1/2" TSH563	Gran Tierra	NA	280	3 1/2" Hydril 563 Box	3 1/2" Hydril 563 Pin	3.500	2.992	31.48	8999.40
= 7	Crossover	Gran Tierra	79945401-6	12	3 1/2" Hydril 563 Box	3-1/2" IF Pin	4.680	2.250	1.18	9030.88
	Drill Collars (10 juntas)	Gran Tierra	NA	7500	3-1/2" IF Box	3-1/2" IF Pin	4.750	2.250	297.81	9032.06
	Sub radiactivo	Weatherford		12	3-1/2" IF Box	3-1/2" IF Pin	4.680	2.250	0.35	9329.87
	Marca radiactiva	Weatherford	NA	8	3-1/2" IF Box	3-1/2" IF Pin	5.030	2.250	0.35	9330.22
	Crossover	Halliburton	XOL 564	15	3-1/2" IF Box	3-7/8" CAS Pin	5.030	2.250	1.61	9330.57
	Handling Sub, 3-7/8 CAS	Halliburton	SAM 003	113	3-7/8" CAS Box	3-7/8" CAS Pin	5.000	2.380	5.59	9332.18
	OMNI Circulating Valve 5 OD	Halliburton	SAP 12323606	810	3-7/8" CAS Box	3-7/8" CAS Pin	5.030	2.280	21.40	9337.77
	Drain Valve 5 OD	Halliburton	SAP 10259387	199	3-7/8" CAS Box	3-7/8" CAS Pin	5.030	2.280	3.44	9359.17
	Handling Sub, 3-7/8 CAS Box x PIN, 5in OD X 2.25in ID X 91in Make up Length-101724805	Halliburton	019	197	3-7/8" CAS Box	3-7/8" CAS Pin	5.000	2.250	3.90	9362.61
	Figura 14. Sarta de herram	ientas DS	ST adecua	da pa	ra la For	mación Ar	ena U.			

Figura 14. Sarta de herramientas DST adecuada para la Formación Arena U.

5	1	/										-
		LPR-N Tester Valve 5 OD	Halliburton	SAP 10775673	630	3-7/8" CAS Box	3-7/8" CAS Pin	5.030	2.280	15.84	9366.51	
		Drain Valve 5 0D	Halliburton	SAP 12514729	199	3-7/8" CAS Box	3-7/8" CAS Pin	5.030	2.280	3.44	9382.35	
I		Handling Sub, 3-7/8 CAS	Halliburton	SAM 002	113	3-7/8" CAS Bax	3-7/8" CAS Pin	5.000	2.380	5.59	9385.79	
		Sampler Carrier - Armada 5.38 OD	Halliburton	SAP 11897768	1137	3-7/8" CAS Box	3-7/8" CAS Pin	5.375	2.280	31.70	9391.38	
		Gauge Carrier 5 OD	Halliburton	SAP 10259942	500	3-7/8" CAS Box	3-7/8" CAS Pin	5.030	2.280	16.83	9423.08	
I		Handling Sub, 3-7/8 CAS	Halliburton	XOL 215	113	3-7/8" CAS Box	3-7/8" CAS Pin	5.000	2.380	3.91	9439.91	
		TST Valve 5 OD	Halliburton	SAP 10525593	564	3-7/8" CAS Box	3-7/8" CAS Pin	5.030	2.280	4.00	9443.82	
		RTTS Safety Joint 5 0D 15 K	Halliburton	SAP 12104821	120	3-7/8" CAS Bax	3-7/8" CAS Pin	5.030	2.250	3.65	9447.82	
	1	CHAMP IV Packer 7 IN 17-38 PPF	Halliburton	SAP 11325204	350	3-7/8" CAS Box	3-1/2" IF Pin	5.875	2.370	9.20	9451.47	
		Shock Absorber, VERTICAL, 5 OD	Halliburton	SAP 12241090	160	3-1/2" IF Box	3-1/2" IF Pin	5.000	2.250	4.85	9460.67	
5		SHOCK ABSORBER, RADIAL	Halliburton	SAP 11325458	160	3-1/2" IF Box	3-1/2" IF Pin	5.750	2.250	3.11	9465.52	
		Crossover	Halliburton	X0L 770	15	3-1/2" IF Box	2-7/8" EUE 8RD Pin	5.020	2.250	1.94	9468.63	
		Tubing, 2-7/8" (1 junta)	Gran Tierra	NA	210	2-7/8" EUE 8RD Box	2-7/8" EUE 8RD Pin	2.875	2.440	31.30	9470.57	
i d		Fill Flow Sub	Weatherford	NA	4	2-7/8" EUE 8RD Box	2-7/8" EUE 8RD Pin	2.875	2.440	0.54	9501.87	
		Tubing, 2-7/8" (1 junta)	Gran Tierra	NA	420	2-7/8" EUE 8RD Box	2-7/8" EUE 8RD Pin	2.875	2.440	31.09	9502.41	
		Mechanical Firing Head	Weatherford	NA	12	2-7/8" EUE 8RD Box	4-5/8" Gun Pin	3.375		3.28	9533.50	
		Safety spacer gun	Weatherford	NA	800	4-5/8" Gun Bax	4-5/8" Gun Pin	4.625		21.22	9536.78	
		Depth Ref: 9558.00 ft, Distance to Top of the Tool: 0.00 ft, HSD Perforating Gun (9558'-9563')	Weatherford	NA	800	4-5/8" Gun Bax	4-5/8" Gun Pin	4.625		5.00	9558.00	
		Spacer gun	Weatherford	NA	800	4-5/8" Gun Box	4-5/8" Gun Pin	4.625		5.00	9563.00	

Figura 14. (Continuación).

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación Arena U, año 2018. Consultado en octubre del 2018.

3.2.1 Secuencia operacional. El trabajo se realizó en Villa Garzón, Putumayo, Colombia. En el Campo Cupiraco, el pozo exploratorio tratado se le conoce como Vino1. La compañía encargada de las pruebas de presión DST 2 es Halliburton. Los intervalos que se evaluaron fueron (9558ft – 9563ft), (9568ft – 9575ft) y (9589ft – 9598ft) correspondientes a la Formación Arena U. La plataforma correspondiente es la Pioneer 303. La serie de las actividades, fechas y horarios de esta prueba de presión DST, se podrá observar en el **Anexo E**.

Para la realización de la prueba de presión DST, primeramente, se realiza la apertura del pozo y su respectivo monitoreo. Luego se prosigue a la ejecución de la bomba Jet donde se genera una inyección de fluido motriz de manera continua y finalmente se realiza el cierre de fondo.

Para esta formación se evidenció una recuperación de fluido: crudo.

3.2.2 Programación memorias pruebas de presión DST, Formación Arena U. Se implementaron las memorias SN 21201 (registro de presión tubería), SN 20990 (registro de presión anular), SN 21202 y SN 21972. En la siguiente tabla se especifica la batería, conexión, programación, ubicación y profundidad.

Nomb	Fecha y	Patoría	Progra	mación	Ubic ación	Profundidad
re (S/N)	conexión de batería	(S/N)	Duració n	Rata de muestreo	Anul ar /Tub	TVD-MD
21201	06/14/2017 00:11:45	16223023	152 hrs	1 dato 1 seg	Tbg	9640,42 ft md 8215,51 ft tvd
20990	06/14/2017 00:15:04	17003091	152 hrs	1 dato 5 seg	Ann	9637,62 ft md 8212,94 ft tvd
21202	06/14/2017 00:21:09	16223024	152 hrs	1 dato 1 seg	Tbg	9640,42 ft md 8215,51 ft tvd
21972	06/14/2017 00:23:59	17003094	152 hrs	1 dato 5 seg	Ann	9637,62 ft md 8212,94 ft tvd

Cuadro 3. Programación memorias prueba DST, Formación Arena U.

Fuente: elaboración propia, con base en. HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación Arena U, año 2018. Consultado en octubre del 2018.

3.2.3 Gráfico general DST. La siguiente es la Carta Esquemática De Presiones en el pozo Vino1obtenida al finalizar la prueba de presión DST número 2 en la Formación Arena U.

Gráfica 4. Carta esquemática de presiones, Formación Arena U.

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación Arena U, año 2018. Consultado en octubre del 2018.

Dónde los periodos corresponden a:

- 1: bajada y pruebas de integridad de sarta.
- 2: correlaciones, espaciamiento y pruebas de integridad finales.
- 3: prueba de packer en el anular con 2500psi.
- 4: ciclado de OMNI valve a posición de circulación y desplazamiento de nitrógeno.
- 5: OMNI valve en posición well test. Presión de underbalance 2595psi.
- 6: cañoneo y generación de un aumento de nivel en el pozo.

7: apertura de camisa de circulación, cambio de fluido por crudo 73.3ppg y sentamiento de la bomba jet.

8: afinando operación de bombas y verificación de líneas de superficie.

9: prueba de flujo del pozo.

10: activación de muestradores.

11: periodo de build-up.

12: cambio de fluido de pozo por salmuera 8.5ppg y ciclado de válvula OMNI a posición de circulación.

13: desasento packer con 5klbs de overpull. Hay igualación de columnas.

14: recuperación de la sarta.

Después de construir y analizar la carta de presión esquemática de la prueba DST, se puede realizar una comparación con las cartas bases de permeabilidad que se pueden ver en el **Anexo C** y se determina que hay una permeabilidad (K) moderada y zona no dañada, sin embargo, estas se calculan más adelante con el método de Horner.

3.2.4 Comportamiento de Presión en periodo de restauración. La presión es el factor más importante al realizar las pruebas de presión DST. A continuación, se presenta el comportamiento de la presión en el periodo de restauración:

Gráfica 5. Periodo restauración de presión, Formación Arena U.

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación Arena U, año 2018. Consultado en octubre del 2018.

Una vez realizada la prueba de presión DST, uno de los factores con mayor relevancia es el comportamiento de la presión del periodo de restauración (el cual es el tercer periodo de la prueba) porque este indica una posible depletación de la formación. En este caso, se puede observar que la presión baja hasta 172psi y luego se recupera al llegar a 2085psi, un valor un poco cercano a la presión inicial de la prueba que es 2364psi. Esto indica que a la formación le cuesta un poco recupera con rapidez la presión, hay un bajo riesgo de una depletación temprana y por lo tanto se puede requerir en un futuro no cercano una implementación de un mecanismo de producción secundario para compensar la presión perdida.

3.2.5 Tablas y gráfico de producción. La tabla muestra la producción de fluidos al realizar la prueba de presión DST con su fecha y hora, choke, presión y temperatura del cabezal, presión y temperatura de estrangulación, presión estática, presión diferencial y temperatura y gasto de gas. Esta tabla se puede ver en el **Anexo F**.

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación Arena U, año 2018. Consultado en octubre del 2018.

Esta gráfica de producción tiene el fin de representar el cambio de las presiones y temperaturas con respecto al tiempo. En esta se puede observar el WHP (presión de Cabeza reportada en PSI) de color rojo y la temperatura WHT (temperatura en cabeza reportada en grados Celsius) de color amarillo. También el BHP (Presión de Fondo reportada en PSI) de color verde y el BHT (temperatura de fondo reportada en grados Celsius) de color (choke) es ajustable/ fijo, dado en 64 avos de pulgada. La temperatura para el cabezal y el fondo son muy similares, pero en cuanto a la presión de fondo y cabezal hay una diferencia porque al realizar la prueba de presión DST, hubo un descargue de presión anular por problemas con la UBH (unidad de bombeo hidráulico), lo cual afectó directamente la lectura de la presión de cabeza.

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación Arena U, año 2018. Consultado en octubre del 2018.

Al igual que la gráfica de producción, esta representa un cambio con respecto al tiempo. El cambio de SWT presión estática (psi) en color azul, el cambio de SWT presión diferencial (psi) en color verde y finalmente la tasa de gas (MMscfd) en color amarillo. Para la prueba de presión DST se realizó un gasto de gas de 161 MMscfd aproximadamente que se realiza con la bomba jet por el cual se inyecta este fluido motriz y realizar un levantamiento del fluido.

3.2.6 Prueba PVT, Formación Arena U. Esta prueba de laboratorio se realiza a las muestras de fluidos obtenidas a partir de las pruebas de presión DST para analizar el comportamiento PVT (presión, volumen y temperatura) del yacimiento al cambiar desde las condiciones de fondo hasta condiciones de superficie. A continuación, se presentan las pruebas PVT para la Formación Arena U.

Tabla 4. Datos volumétricos	(a 205°F), Formación Arena U
-----------------------------	------------------------------

Presión de saturación (Psat).	149 psig.
Densidad a presión de saturación.	0,8150 gm/cc.
Expansión térmica a 5000psig.	1,04858 V a 205°F / V a 60°F.

Fuente: elaboración propia, con base en. HALLIBURTON Latin America S.A. Testing and Subsea. Informe pruebas de laboratorio PVT Formación Arena U, año 2018.

Т	abla 5. Compresibilidades monofásicas	promedio, Formación Arena U.
	Demande de marellén (mela)	

Rangos de presión (psig).	Compresibilidad monofásica (v/v/psi).
5000 a 3500	5,82 E-6
3500 a 2000	6,17 E-6
2000 a 400	7,23 E-6
400 a 149	13,08 E -6

Fuente: elaboración propia, con base en. HALLIBURTON Latin America S.A. Testing and Subsea. Informe de laboratorio PVT Formación Arena U, año 2018.

Tabla 6. Vaporización diferencial ajustada a las condiciones del separador, Formación Arena U.

Presión psig	Relación gas/aceite	Factor volumétrico	Factor volumétrico	Densidad del aceite	Relación viscosidad
	en	del petróleo	del gas (C)	gm/cc	aceite/gas
	solución	Bo (B)			
	RS (A)				
5000	12	1,041		0,8421	
4500	12	1,044		0,8397	
4000	12	1,047		0,8372	
3574	12	1,050		0,8351	
3500	12	1,050		0,8348	
3000	12	1,054		0,8323	
2500	12	1,057		0,8297	
2000	12	1,060		0,8271	
1500	12	1,064		0,8244	
1000	12	1,067		0,8216	
500	12	1,072		0,8184	
400	12	1,072		0,8177	
300	12	1,074		0,8168	
200	12	1,075		0,8158	
b >> 149	12	1,076		0,8150	
100	7	1,070	0,15625	0,8189	205
50		1,062	0,28115	0,8221	275

Fuente: elaboración propia, con base en. HALLIBURTON Latin America S.A. Testing and Subsea. Informe laboratorio PVT Formación Arena U, año 2018.

Tabla 7. Condiciones del separador, Formación Arena U.

Primera etapa	25 psig a 88°F.
Stock tank	0 psig a 88°F.

(A) Pies cúbicos de gas a 14,7 psia y 60°F por barril del stock tank oil a 60°F.(B) Barril de aceite a presión y temperatura indicadas por barril del stock tank oil

(B) Barrii de aceite a presion y temperatura indicadas por barrii dei stock tank oli a 60°F.

(C) Pies cúbicos de gas a presión y temperatura indicadas por pie cubico a 14,7 psia y 60°F.

abia o. Viscosidad de los fididos del yacimiento, i ormación Arena o.					
Presión (psig).	Viscosidad del	Viscosidad del	Relación de la		
	aceite (cp).	gas (cp).	viscosidad del		
			aceite/gas.		
5000	3,51				
4500	3,36				
4000	3,21				
3574	3,08				
3500	3,06				
3000	2,90				
2500	2,75				
2000	2,60				
1500	2,45				
1000	2,30				
500	2,15				
300	2,09				
b >> 149	2,05				
100	2,21	0,0120	184		
50	2,45	0,0111	220		
0	3,16				

Tabla 8. Viscosidad de los fluidos del yacimiento, Formación Arena U.

Fuente: elaboración propia, con base en. HALLIBURTON Latin America S.A. Testing and Subsea. Informe pruebas de laboratorio PVT Formación Arena U, año 2018.

A continuación, se presenta el comportamiento de los parámetros en función de la presión obtenidos de las pruebas PVT. Para corroborar que sean datos confiables se realiza una comparación a partir de las gráficas estándar del comportamiento de pruebas PVT que se pueden ver en el **Anexo G**.

Gráfica 8. Comportamiento factor volumétrico del petróleo con presión, Formación Arena U.

Se observa en la región monofásica (petróleo) que el factor volumétrico aumenta cuando la presión inicial baja hasta el punto de burbuja (149 psi) a causa de una expansión de líquido por la reducción de presión. Después de ese punto el volumen del petróleo baja al igual que el factor volumétrico por la liberación de gas en solución, acá se presenta la región bifásica (petróleo y gas).

Gráfica 9. Comportamiento del gas en solución con presión, Formación Arena U.

Fuente: elaboración propia.

Fuente: elaboración propia.

Se observa en la región monofásica (petróleo) que la solubilidad del gas es constante a presiones mayores e igual a la presión de burbuja (149 psi), debido a que no hay presencia de gas, pero cuando se baja más de la presión del punto de burbuja se empieza a generar el gas que estaba en el líquido, acá empieza la región bifásica (petróleo y gas) y a medida que baja la temperatura, el gas en solución también lo hace.

Fuente: elaboración propia.

Se observa que en esta región monofásica (petróleo) la viscosidad del petróleo es directamente proporcional a la presión ya que a medida que disminuye la presión hasta el punto burbuja, la viscosidad también disminuye. Pero al pasar el punto de burbuja (149 psi) y llegar a la región bifásica (petróleo y gas) la viscosidad va aumentando a medida que la presión disminuye.

Se puede concluir que las pruebas PVT para esta formación son confiables ya que el muestreo fue exitoso. Asimismo, al comparar el comportamiento en función de la presión del factor volumétrico del petróleo, gas en solución y viscosidad del petróleo, se genera una tendencia muy similar a los comportamientos establecidos. Además, se aprecia claramente la característica del punto de inflexión en el punto de burbujeo (149 psi), marcando las regiones monofásicas y bifásicas.

3.2.7 Aplicación del método de Horner para la Formación Arena U. Para este caso, la prueba de presión DST que se realizó a la Formación Arena U se ejecutó de manera exitosa, por lo tanto, su aplicación genera una buena estimación de las características de la formación. Hay que aclarar que en esta formación hubo
producción de hidrocarburo y por lo tanto se realizará el método de Horner para generar una evaluación.

Los datos iniciales que se presentan durante la prueba de presión DST son de un tiempo de producción total de 37,01 horas y una producción acumulada de 505 bbl. El método de Horner cuenta con 8 pasos que se presentan a continuación con sus respectivos datos y soluciones:

1. Calcular tiempo de producción, con la producción acumulada y el caudal de producción antes del cierre utilizando la **ecuación 1** del tiempo de producción. Como el dato que hace falta es el caudal, se despeja qo:

	24Np	24 * 505
qo =	$\frac{-tp}{tp} =$	$\overline{37,01} = 327,48 BPD$

La siguiente tabla muestra los datos iniciales para desarrollar el método de Horner, con el caudal calculado:

Tabla 9. Datos iniciales de la Formación Arena U.

Tiempo de producción, Tp.	37,01 horas.
Producción acumulada, Np.	505 Bls.
Caudal, qo.	327,48 BPD.

Fuente: elaboración propia.

Las memorias instaladas para esta prueba presentan la fecha con su respectiva hora, el tiempo de duración, la presión y temperatura, de estas memorias se obtienen los datos para realizar el segundo paso del método de Horner. Las memorias se pueden ver en el **Anexo H**.

2. Graficar Pws en función del log($(tp+\Delta t)/\Delta t$) en papel semilog.

Para ello, se utiliza la herramienta Excel donde se genera la gráfica de restauración de presión (build-up), este se tiene en cuenta para ver el comportamiento de la restauración de la presión y se usa para cálculos posteriores. Como las memorias generan datos cada cinco segundos, se realizaron intervalos de 30 minutos para la toma de datos en el periodo de build-up.

La tabla enseña el periodo de la restauración de presión, se repite la columna de Pws a mano derecha para generar un espejo y así realizar la gráfica con $(tp+\Delta t)/\Delta t$ en el eje X y Pws en el eje Y:

			•••
Build-up	TUBING		
Pws	Δt	(tp+Δt)/Δt	Pws
169	0,0	#¡DIV/0!	169
1.034	0,5	75,02	1.034
1.383	1,0	38,01	1.383
1.432	1,5	25,67	1.432
1.461	2,0	19,51	1.461
1.486	2,5	15,80	1.486
1.507	3,0	13,34	1.507
1.528	3,5	11,57	1.528
1.547	4,0	10,25	1.547
1.565	4,5	9,22	1.565
1.582	5,0	8,40	1.582
1.599	5,5	7,73	1.599
1.615	6,0	7,17	1.615
1.630	6,5	6,69	1.630
1.645	7,0	6,29	1.645
1.659	7,5	5,93	1.659
1.673	8,0	5,63	1.673
1.687	8,5	5,35	1.687
1.700	9,0	5,11	1.700
1.712	9,5	4,90	1.712
1.724	10,0	4,70	1.724
1.736	10,5	4,52	1.736
1.748	11,0	4,36	1.748
1.759	11,5	4,22	1.759
1.770	12,0	4,08	1.770
1.781	12,5	3,96	1.781
1.792	13,0	3,85	1.792
1.802	13,5	3,74	1.802
1.812	14,0	3,64	1.812
1.822	14,5	3,55	1.822
1.832	15,0	3,47	1.832
1.841	15,5	3,39	1.841
1.850	16,0	3,31	1.850
1.859	16,5	3,24	1.859
1.868	17,0	3,18	1.868
1.877	17,5	3,11	1.877
1.886	18,0	3,06	1.886

Tabla 10. Restauración de presión (build-up), Formación Arena U.

Tabla10.	Continu	ación).
	00110110		

Build-up	TUBING		
1.894	18,5	3,00	1.894
1.902	19,0	2,95	1.902
1.911	19,5	2,90	1.911
1.918	20,0	2,85	1.918
1.926	20,5	2,81	1.926
1.934	21,0	2,76	1.934
1.942	21,5	2,72	1.942
1.949	22,0	2,68	1.949
1.956	22,5	2,64	1.956
1.963	23,0	2,61	1.963
1.971	23,5	2,57	1.971
1.978	24,0	2,54	1.978
1.984	24,5	2,51	1.984
1.991	25,0	2,48	1.991
1.998	25,5	2,45	1.998
2.004	26,0	2,42	2.004
2.011	26,5	2,40	2.011
2.017	27,0	2,37	2.017
2.024	27,5	2,35	2.024
2.030	28,0	2,32	2.030
2.036	28,5	2,30	2.036
2.043	29,0	2,28	2.043
2.049	29,5	2,25	2.049

Fuente: elaboración propia.

Una vez realizada la tabla con sus respectivos datos, se prosigue a elaborar la gráfica de Pws vs log(($tp+\Delta t$) / Δt). Esta gráfica muestra la relación entre Pws vs log(($tp+\Delta t$) / Δt), teniendo en cuenta todos los valores tomados en el periodo de build-up con intervalos cada 30 minutos. Se muestra también la línea de tendencia que se presenta en color negro.

Gráfica 11. Pws vs log($(tp+\Delta t)/\Delta t$), Formación Arena U.

En esta gráfica se puede evidenciar que el tiempo de producción de 37 horas aproximadamente logró alcanzar el tiempo temprano y el tiempo medio de acuerdo a las regiones de las pruebas de restauraciones de presión. Al no alcanzar el tiempo tardío no se pueden determinar la existencia de heterogeneidades, discontinuidades y conectividad.

A continuación, se presenta la misma gráfica con la diferencia de selección de los datos que mejor representan una tendencia recta debido a que hubo varios que no se ajustaban. Se puede observar que esta línea de tendencia se ajusta mejor a los puntos seleccionados. De esta gráfica se obtiene la presión inicial P* y la pendiente, a partir de la ecuación del gráfico.

Fuente: elaboración propia.

Gráfica 12. Pws vs log($(tp+\Delta t)/\Delta t$), mejor tendencia Formación Arena U.

Para corroborar que los datos seleccionados en el periodo del build-up son los que mejor se ajustan y tienen una mejor aproximación, se elabora una nueva tabla y gráfica seleccionando los puntos con un periodo de cada 4 horas. La presión inicial y la pendiente deben de ser muy similares a las obtenidas previamente. A continuación, se presenta esta la tabla y gráfica:

Pws	Δt	(tp+∆t)/∆t	Pws
1.547	4,0	10,25	1.547
1.673	8,0	5,63	1.673
1.770	12,0	4,08	1.770
1.850	16,0	3,31	1.850
1.918	20,0	2,85	1.918
1.978	24,0	2,54	1.978
2.030	28,0	2,32	2.030
2.049	29,5	2,25	2.049

Tabla 11. Corroboración de datos, build up, Formación Arena U.

Fuente: elaboración propia.

Fuente: elaboración propia.

Fuente: elaboración propia.

Como se puede observar los datos obtenidos de la presión inicial y pendiente son muy similares y por lo tanto indican una buena aproximación siendo P1* = 2364,8 psi; $P2^* = 2366.8$ psi y m1= -418; m2= -414 respectivamente. Se van a tomar los datos de la primera gráfica ya que contiene un mayor número de datos seleccionados para realizar los posteriores pasos del método de Horner.

3. Hallar la pendiente m de la porción en línea recta del gráfico de Horner y extrapolar la línea a $((tp+\Delta t)/\Delta t) = 1$ para encontrar P*.

Con Excel se tiene la facilidad no solo de generar la gráfica, sino que brinda la pendiente y una estimación de la presión inicial al generar una línea de tendencia, donde se obtiene estos valores a partir de la ecuación de la gráfica. En este caso, la ecuación es: $y=-418,1 \ln(x) + 2364,8 psi,$ donde la pendiente es -418,1 y la presión inicial estimada es 2364,8 psi. Como la pendiente esta expresada en In, se multiplica por 2,3 ya que es la relación de un ln y un log base 10, obteniendo un valor de m=961,63. A continuación se presenta el cálculo de la presión inicial y pendiente en la gráfica.

Gráfica 14. Pws vs $\log((tp+\Delta t)/\Delta t)$, calculo presión inicial P*, Formación Arena U.

Fuente: elaboración propia.

4. Calcular la permeabilidad con la pendiente hallada en el paso 3.

Para realizar el cuarto paso, se presenta a continuación una tabla con los datos necesarios obtenidos previamente:

Tabla 12. Datos principales, Forma	ción Arena U.
------------------------------------	---------------

Pendiente, m	961,63
Presión Inicial, Pi	2364,8 psi
Radio, r	1,02 ft
Factor volumétrico, βo	1,06 BY/BN
Viscosidad, μο	2,71 cp
Espesor, h	21 ft
Pws a ∆t=(0)	168,87 psi
Compresibilidad, Ct	0,0000617 psi^-1

Fuente: Elaboración propia.

Se muestran los datos principales para resolver las posteriores ecuaciones. La presión inicial y la pendiente se calculan con la gráfica de Pws vs $\log((tp+\Delta t)/\Delta t)$. El radio es del pozo Vino 1 a la profundidad que se está evaluando la formación. Tanto el factor volumétrico como la viscosidad se calcularon con las tablas generadas por las pruebas de laboratorio PVT, donde se ejecutó una regresión lineal asumiendo el valor en la presión inicial. El espesor es el total de espesores evaluados en pies. El Pws a $\Delta t = (0)$, se adquiere de la tabla de restauración de presión. La compresibilidad se obtiene de los rangos de las pruebas de laboratorio PVT asumiendo el valor de la presión inicial.

Utilizando la ecuación 2 de permeabilidad se obtiene que:

$k = \frac{126,690}{126,690}$	$\frac{126,6(327,479)(2,71)(1,06)}{5.89}$ = 5.89 md
$\kappa = \frac{1}{mh}$	(961,63)(21) = 5,69 ma.

Este yacimiento tiene una permeabilidad de 5,89md, se puede clasificar como una permeabilidad promedio de acuerdo con los rangos establecidos. Asimismo, concuerda con la estimación hecha previamente con la carta esquemática de presiones y las cartas bases de permeabilidades donde se determinó una permeabilidad moderada.

5. En la línea recta leer Pws en $\Delta t = 1$ hora, referida como P1hr. Reemplazando el Δt en la ecuación (($tp+\Delta t$) / Δt) y usando el tp hallado en el paso 1.

Gráfica 15. Pws vs $log((tp+\Delta t)/\Delta t)$, calculo Pws (1hr), Formación Arena U.

Fuente: elaboración propia.

En la gráfica de la restauración de presión (build-up), se puede calcular la P1hr al leer el valor en las tablas del build-up cuando $\Delta t = 1$ hora. Se toma el $\Delta t = 1$ hora y se lleva hasta la línea de tendencia, a partir de ese punto se calcula el valor de Pws paralelamente, este valor corresponde a 1220 psi.

6. Calcular el daño de formación **ecuación 3**, con la P1hr hallada y la pendiente de la recta.

$$1,151\left(\frac{1220 - 168,87}{961,63} - \log\left(\frac{5,89}{0,14 * 2,71 * (6,17 * 10^{-6}) * 1,02^2}\right) + 3,23\right) = -2,37.$$

$$s = 1,151\left(\frac{P_{1hr} - P_{wf(\Delta t=0)}}{m} - \log\left(\frac{k}{\phi\mu_o c_t r_w^2}\right) + 3,23\right)$$

El daño de formación es igual a -2,37, lo cual nos indica que el pozo fue ligeramente estimulado de acuerdo a la clasificación del daño de formación. También se demuestra que sufrió algún cambio en sus propiedades petrofísicas que, de acuerdo a los rangos de daño, puedo estimularse a causa de una acidificación, la cual pudo haber ocurrido por una solución química al realizar las inyecciones a la formación, pero lo más probable es que haya sido por el cañoneo. Además, se infiere que gracias a esta estimulación hubo una mejora en la permeabilidad original del yacimiento y por ende una mejora en la producción.

7. Calcular Δt con la **ecuación 4**, tomando el TSSL como el último punto que está dentro de la tendencia de la gráfica.

Gráfica 16. Pws vs log($(tp+\Delta t)/\Delta t$), calculo TSSL, Formación Arena U.

Fuente: elaboración propia.

Se utiliza la **ecuación 4** de diferencial de tiempo, teniendo en cuenta que el último punto tomado dentro de la tendencia de la gráfica de restauración de presión (build-up) corresponde a 8 hrs.

$$\Delta t = \frac{Tp}{TSSL - 1} = \frac{37,01}{8 - 1} = 5,29 \text{ hrs.}$$

8. Calcular el coeficiente de almacenamiento de pozo con la **ecuación 5** y el Δt hallado.

$$C = \frac{\Delta t * k * h}{170 * \mu * e^{0,14*s}} = \frac{5,29 * 5,89 * 21}{170 * 2,71 * e^{0,14*(-2,37)}} = 1,975.$$

El coeficiente de almacenamiento del pozo es de 1,975. De acuerdo a los rangos establecidos de este coeficiente de almacenamiento una pequeña parte de la tasa de flujo proviene del volumen almacenado en el pozo, además por ser un valor pequeño el pozo tarda poco en estabilizarse.

3.3 PRUEBA DE PRESIÓN DST, FORMACIÓN LIMESTONE (Calizas A1, A2 Y A3)

Al realizar las pruebas de presión DST en la Formación Arena U y la cual generó producción de hidrocarburos, se prosigue a evaluar la última formación. Las pruebas de presión DST en la Formación Limestone se ejecutó en los intervalos (9445ft – 9507ft, calizas A1-A2) y (9407ft – 9435ft, caliza A3).

El trabajo se ejecutó con los equipos de herramientas de fondo, herramientas DST, memorias de fondo y equipos de Surface Well Testing con el fin de realizar las pruebas de producción en superficie. Se debe aclarar que para esta prueba de presión a diferencia de las primeras 2 realizadas, se quiere bajar el ensamble TCP-DST, cañonear con TCP 4 5/8" 5 TPP, inducir pozo a flujo e iniciar evaluación de formación. A continuación, se presenta la sarta de herramientas DST utilizada para evaluar la Formación Limestone.

La presente es la sarta de perforación equipada con los componentes DST (identificados con color rojo) para realizar la prueba en la Formación Limestone. En esta se especifica cada elemento que compone la sarta, su tracking, su peso, sus medidas de conexiones de tope y fondo, sus diámetros internos y externos con su respectiva longitud y la profundidad en la que se encuentra. La franja señalada en color amarillo es la profundidad que se desea evaluar.

Surface Test Tree	Haliburton		6000	5-3/4"-4 TPI ACME Box	5-34°-4 TPI ACME Box		3.060	12.00	
Crossover	Haliburton	11954-11-12	88	5-3/4"-4 TPI Acme Rn	3 1/2" Hydrii 563 Pin		2.900	2.00	
Tubing 3 1/2" TSH563 (1 jta - 31.61") - Dif. cable/tuberia (3.1") - Tronco packer (7.06")	Gran Tierra	NA	85625	3 1/2" Hydri 963 Box	3 1/2" Hydrii 563 Pin	3.500	2.992	21.45	
Tubing 3 1/2" TSH563 9.3 #-ftN-80 (279 JUNT/S)	Gran Tierra	NA	85625	3 1/2" Hydri 563 Bax	3 1/2" Hydrii 563 Pin	3.500	2.992	8782.77	
Crossover (LONG BHA 708.96 ft)	Gran Tierra	83577648-3	8	3 1/2" Hydri 563 Box	3-1/2" EUE BRD Pin	4.250	3.000	1.29	
Stilding slæve 2.81 VL Profile	Weatherford	SS617018	60	3-1/2" EUE 8RD Box	3-1/2" EUE 8RD Pin	4.440	2.810	3.12	
Crossover	Gran Tierra	83577648-15	8	3-1/2" EUE SRD Box	3 1/2" Hydrii 563 Pin	4.440	2.930	1.17	
Tubing 3 1/2" TSH563	Gran Tierra	NA	280	3 1/2" Hydril 563 Bax	3 1/2" Hydrii 563 Pin	3.500	2.992	31.48	
Crossover	Gran Tierra	79945401-6	12	3 1/2" Hydri 563 Box	3-1/2" F Pin	4.680	2.250	1.18	
Drill Collars (10 juntas)	Gran Tierra	NA	13700	3-1/2" IF Box	3-1/2" F Pin	4.750	2.250	297.81	
Sub radiactivo	Weatherford		12	3-1/2" IF Box	3-1/2" F Pin	4.680	2.250	0.35	
Marca radiactiva	Weatherford	NA	8	3-1/2" IF Box	3-1/2" F Pin	5.030	2.250	0.35	
Crossover	Hallibution	XOL 564	15	3-1/2" IF Box	3-7/8" CAS Pin	5.030	2.250	1.62	
Handling Sub, 3-7/8 CAS	Haliburton	SAM 003	113	3-7/8" CAS Box	3-7/8" CAG Pin	5.000	2.380	5.58	
OMNI Sandguard M Circulating Valve 5 0D-100065975	Halliburton	10259374	810	3-7/8" CAS Box	3-7/8" CAS Rn	5.030	2.280	21.15	
Handling Sub, 3 -7/8 CAS Box x PIN, 5in 00 X 2.25in 10 X 91 in Make up Length-101724805	Haliburton	019	197	3-7/8" CAS Box	3-7/8" CAS Pin	5.000	2.250	3.91	
Drain Valve 5 0D	Hallburton	SAP 12410736	199	3-7/8" CAS Box	3-7/8" CAS Pin	5.030	2.280	3.44	
LPR-N Tester Valve 5 0D	Halliburton	SAP 10259440	630	3-7/8" CAS Box	3-7/8" CAS Pin	5.030	2.280	15.83	

Figura 15. Sarta de herramientas DST adecuada para la Formación Limestone.

	Drain Valve 5 0D	Halliburton	SAP 10259380	199	3-7/8" CAS Box	3-7/8" CAS Pin	5.030	2.280	3.44	91 89.50
ľ.	Handling Sub, 3-7/8 CAS	Halliburton	SAM 002	113	3-7/8" CAS Box	3-7/8" CAS Pin	5.000	2.380	5.58	9192.94
	Sampler Carrier - Armada 5.38 0D	Halliburton	SAP 11897768	1137	3-7/8" CAS Box	3-7/8" C#6 Pin	5.375	2.280	31.69	91 98.52
	Gauge Carrier 5 OD	Halliburton	SAP 10259389	500	3-7/8" CAS Box	3-7/8" CAS Pin	5.030	2.280	18.71	9230.21
	Handling Sub, 3-7/8 CAS	Hallburton	X0L 215	113	3-7/8" CAS Box	3-7/8" CAS Pin	5.000	2.380	3.92	9248.92
	RD TSTValve XHP Series 5 0D-101746972	Hallburton	12410733	221	3-7/8" CAS Box	3-7/8" CAS Pin	5.030	2.280	5.00	9252.84
	RTTS Safety Joint 5 00 15 K	Halliburton	SAP 12219681	120	3-7/8" CAS Box	3-7/8" CAS Pin	5.030	2.250	4.35	92.57.84
	CHAMP IV Packer 7 IN 17-38 PPF	Halliburton	SAP 10259283	350	3-7/8" CAS Box	3-1/2" F Pin	5.875	2.370	9.52	9262.19
	Shock Absorber, VERTICAL, 5 0D	Halliburton	SAP 12241090	160	3-1/2" IF Box	3-1/2" F Pin	5.000	2.250	4.85	9271.71
	SHOOK ABSORBER, RADIAL	Halliburton	SAP 11325458	160	3-1/2" IF Box	3-1/2" F Pin	5.750	2.250	3.11	9276.56
	Crossover	Halliburton	XOL 770	15	3-1/2" IF Box	2-778" EUE 8RD Pin	5.020	2.250	1.94	9279.67
	Tubing, 2-7/8" (2 juntas)	Gran Tierra	NA	210	2-7/8" EJE BRD Box	2-7/8" EJE 8RD Pin	2.875	2.440	61.30	9281.61
	RII Flow Sub	Weatherford	NA	4	2-7/8" EUE SRD Box	2-778" EUE SRD Pin	2.875	2.440	0.54	9342.91
	Tubing, 2-7/8" (1 junta)	Gran Tierra	NA	420	2-7/8" EUE 8RD Box	2-7/8" EUE 8RD Pin	2.875	2.440	31.10	9343.45
	Mechanical Firing Head	Weatherford	NA	12	2-7/8" EUE BRD Box	4-5'8" Gun Pin	3.375		3.27	9374.55
	Safety spacer gun	Weatherford	NA	800	4-5/8" Gun Box	4-5/8" Gun Pin	4.625		29.18	9377.82
	Depth Ref: 9407.00 ft, Distance to Top of the Tool: 0.00 ft, HSD Perforating Gun (9407'-9435')	Weatherford	NA	800	4-5/8" Gun Bax	4-5/8" Gun Pin	4.625		28.00	9407.00
	Spacer Gun	Weatherford	NA	800	4-5/8" Gun Box	4-5/8" Gun Pin	4.625		10.00	9435.00
	HSD Perforating Gun (9445' - 9507')	Weatherford	NA	800	4-5/8" Gun Box	4-5/8" Gun Pin	4.625		62.00	9445.00
	Cabeza de activación Hidraulica	Weatherford	NA	20	4-5/8" Gun Box		2.750		3.18	9507.00

Figura 15. (Continuación).

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación Limestone, año 2018. Consultado en noviembre del 2018.

3.3.1 Secuencia operacional. El trabajo se realizó en Villa Garzón, Putumayo, Colombia. En el Campo Cupiraco, el pozo exploratorio tratado se le conoce como Vino1. La compañía encargada pruebas DST 3 es Halliburton. Los intervalos que se evaluaron fueron (9445ft-9507ft, calizas A1-A2), (9407ft–9435ft, caliza A3), correspondientes a la Formación Limestone. La plataforma correspondiente es la Pioneer 303. La serie de las actividades, fechas y horarios de esta prueba de presión DST, se podrá observar en el **Anexo I**.

Para la realización de la prueba de presión DST, primeramente, se realiza la apertura del pozo y su respectivo monitoreo. Se evidencia una recuperación de fluido inicial: crudo. Luego se prosigue a la ejecución de la bomba Jet donde la unidad de bombeo hidráulico empleada en la inyección del fluido motriz de la bomba no era adecuada para la operación de las herramientas DST, puesto que presenta

fallas eléctricas que perjudican la operación de las válvulas de fondo. Finalmente se realiza el cierre del pozo en fondo.

3.3.2 Programación memorias. Se implementaron las memorias SN 21201 (registro de presión tubería), SN 20990 (registro de presión anular), SN 21202 y SN 21972. En la siguiente tabla se especifica la batería, conexión, programación, ubicación y profundidad.

Nomb	Fecha y Hora	Batería	Prog	ıramación	Ubica ción	Profundidad
(S/N)	conexión de batería	(S/N)	Dura ción	Rata de muestreo	Anular /Tub	TVD-MD
21201	06/29/201 7 11:37:00	16223023	364 hrs	1 dato 1 seg	Tbg	9243,32 ft md 7863,69 ft tvd
20990	06/29/201 7 11:44:00	17003091	364 hrs	1 dato 5 seg	Ann	9240,52 ft md 7863,69 ft tvd
21202	06/29/201 7 11:37:00	16223024	364 hrs	1 dato 1 seg	Tbg	9243,32 ft md 7863,69 ft tvd
21972	06/29/201 7 11:44:00	17003094	364 hrs	1 dato 5 seg	Ann	9240,52 ft md 7863,69 ft tvd

Cuadro 4. Programación memorias prueba DST, Formación Limestone.

Fuente: elaboración propia con base en HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación Limestone, año 2018. Consultado en noviembre del 2018.

3.3.3 Gráfico general DST. La siguiente es la Carta Esquemática De Presiones en el pozo Vino1obtenida al finalizar la prueba de presión DST número 3 en la Formación Limestone (Calizas A1, A2 y A3).

Gráfica 17. Carta esquemática de presiones, Formación Limestone.

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación Limestone, año 2018. Consultado en noviembre del 2018.

Dónde los periodos corresponden a:

- 1: prueba de integridad en superficie.
- 2: bajada y pruebas de integridad de sarta.
- 3: verificación y pruebas de integridad de sarta.
- 4: correlaciones, espaciamiento y pruebas de integridad finales.
- 5: prueba de packer en el anular con 2500psi.
- 6: cañoneo y monitoreo de pozo con choke manifold cerrado.
- 7: desarrollo prueba de inyectividad.
- 8: periodo de cierre en fondo previo a tratamiento ácido.
- 9: desarrollo programa de estimulación de pozo.

10: periodo cierre en fondo. Apertura de camisa de circulación y sentamiento de la bomba jet.

- 11: periodo de flujo del pozo.
- 12: activación de muestradores.
- 13: ciclado de OMNI y reanudación periodo de flujo.
- 14: periodo de cierre en fondo por fugas en la sección de las BOP.
- 15: Reanudación periodo de flujo de pozo.
- 16: periodo de build-up.
- 17: control de pozo y recuperación de sarta.

En esta prueba de presión DST hubo eventos relacionados con falla en la UBH (unidad de bombeo hidráulico) y pérdida del suministro de energía eléctrica que causaban caídas en la presión y, por consiguiente, detenciones en el periodo de flujo del pozo. También hubo un periodo de cierre en fondo adicional por fugas en la sección de las BOP.

Por esta razón en esta gráfica se presentan varias etapas adicionales que no son estándar en las pruebas de presión DST y que afectan directamente el éxito y veracidad de esta. Aún con los evidentes problemas se va a realizar un análisis y evaluación de esta formación.

Después de construir y analizar la carta de presión esquemática de la prueba DST, se puede realizar una comparación con las cartas bases y se determina una aproximación donde hay una permeabilidad (K) baja y en la zona está muy dañada, sin embargo, estas se calculan más adelante con el método de Horner.

3.3.4 Comportamiento de Presión en periodo de restauración.

La presión es el factor más importante al realizar las pruebas de presión DST. A continuación, se presenta el comportamiento de la presión en periodo de restauración.

Gráfica 18. Periodo restauración de presión, Formación Limestone.

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación Limestone, año 2018. Consultado en noviembre del 2018.

Una vez realizada la prueba de presión DST, uno de los factores con mayor relevancia es el comportamiento de la presión del periodo de restauración (el cual es el tercer periodo de la prueba) porque este indica una posible depletación de la formación. En este caso, se puede observar que la presión baja hasta 1176 psi y luego llega a 1224 psi, un valor que aumentó muy poco, apenas 48 psi. Esto indica que las fallas eléctricas que se presentaron en la prueba afectaron directamente este factor. Sin embargo, de acuerdo a la gráfica, la formación le cuesta recupera la presión y por lo tanto se puede requerir una futura implementación de un mecanismo de producción secundario prematuro para compensar la presión perdida.

3.3.5 Tabla y gráfico de producción.

La tabla muestra la producción de fluidos al realizar la prueba de presión DST con su fecha y hora, choke, presión y temperatura del cabezal, presión y temperatura de estrangulación, presión estática, presión diferencial y temperatura y gasto de gas. Esta tabla se puede ver en el **Anexo J**.

Gráfica 19. Gráfica de producción, Formación Limestone.

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación Limestone, año 2018. Consultado en noviembre del 2018.

Esta gráfica de producción representa el cambio de las presiones y temperaturas con respecto al tiempo. En esta se puede observar el USCP (presión de Cabeza reportada en PSI) de color rojo y la temperatura USCT (temperatura en cabeza reportada en grados Celsius) de color morado. También el CHP (Presión de Fondo reportada en PSI) de color verde y el DSCT (temperatura de fondo reportada en grados Celsius) de color azul. El estrangulador (choke) es ajustable/ fijo, dado en 64 avos de pulgada. La temperatura para el cabezal y el fondo son muy similares, pero en cuanto a la presión de fondo y cabezal hay una diferencia que indica que la prueba no fue exitosa porque hubo fallas en la UBH y pérdida del suministro de energía eléctrica que causaban caídas en la presión y detenciones en el periodo de flujo del pozo.

Gráfica 20. Liquidación del gas, Formación Limestone.

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación Limestone, año 2018.

Al igual que la gráfica de producción, esta representar un cambio con respecto al tiempo. El cambio de presión estática (psi) en color azul, el cambio de presión diferencial (psi) en color rojo y finalmente la tasa de gas (MMscfd) en color amarillo. Para la prueba de presión DST se realizó un gasto de gas de 1604 MMscfd aproximadamente, este es mucho mayor a las otras pruebas DST debido a los problemas que se presentaron durante esta.

3.3.6 Prueba PVT, Formación Limestone (Calizas A1, A2 y A3). Esta prueba de laboratorio se realiza a las muestras de fluidos obtenidas a partir de las pruebas de presión DST para analizar el comportamiento PVT del yacimiento al cambiar desde las condiciones de fondo hasta condiciones de superficie. A continuación, se presentan las pruebas PVT para la Formación Limestone.

abia 13. Datos volumetricos (a 205 1), 1 ornación Elmestone.			
Presión de saturación (Psat).	215 psig.		
Densidad a presión de saturación.	0,8127 gm/cc.		
Expansión térmica a 5000psig.	1,05556 V a 210°F / V a 60°F.		

Tabla 13. Datos volumétricos (a 205°F), Formación Limestone.

Fuente: elaboración propia, con base en. HALLIBURTON Latin America S.A. Testing and Subsea. Informe pruebas de laboratorio PVT Formación Limestone, año 2018.

Rangos de presión (psig).	Compresibilidad monofásica (v/v/psi).			
5000 a 3485	5,78 E-6			
3485 a 2000	6,37 E-6			
2000 a 500	7,43 E-6			
500 a 215	7,87 E -6			

Tabla 14. Compresibilidades monofásicas promedio, Formación Limestone.

Fuente: elaboración propia, con base en. HALLIBURTON Latin America S.A. Testing and Subsea. Informe pruebas de laboratorio PVT Formación Limestone, año 2018.

Tabla 15. Vaporización diferencial ajustada a las condiciones del separador, Formación Limestone.

Presión	Relación	Factor	Factor	Densidad	Viscosidad
psig	gas/aceite	volumétrico	volumétrico	del aceite	relación
	en	del petróleo	del gas (C)	gm/cc	aceite/gas
	solución	Bo (B)			
	Rs (A)				
5000	25	1,052		0,8386	
4500	25	1,055		0,8363	
4000	25	1,058		0,8339	
3485	25	1,061		0,8313	
3000	25	1,064		0,8289	
2500	25	1,068		0,8263	
2000	25	1,071		0,8236	
1500	25	1,075		0,8207	
1000	25	1,079		0,8177	
700	25	1,081		0,8158	
600	25	1,082		0,8151	
500	25	1,083		0,8145	
400	25	1,084		0,8138	
300	25	1,085		0,8132	
b >> 215	25	1,085		0,8127	
200	23	1,084	0,08462	0,8131	168
150	16	1,079	0,11022	0,8146	188
100		1,073	0,15916	0,8165	213
60		1,065	0,24689	0,8185	
0		1,034		0,8246	

Fuente: elaboración propia, con base en. HALLIBURTON Latin America S.A. Testing and Subsea. Informe pruebas de laboratorio PVT Formación Limestone, año 2018.

Tabla 16. Condiciones del separador, Formación Limestone.

	,	
Primera etapa		25 psig a 88°F.
Stock tank		0 psig a 88°F.

(A) Pies cúbicos de gas a 14,7 psia y 60°F por barril del stock tank oil a 60°F.

(B) Barril de aceite a presión y temperatura indicadas por barril del stock tank oil a 60°F.

(C) Pies cúbicos de gas a presión y temperatura indicadas por pie cubico a 14,7 psia y 60°F.

Presión (psig).	Viscosidad del aceite (cp).	Viscosidad del gas (cp).	Relación de la viscosidad del aceite/gas.
5000	2,76		
4500	2,66		
4000	2,56		
3485	2,46		
3000	2,36		
2500	2,26		
2000	2,16		
1500	2,05		
1000	1,95		
500	1,85		
300	1,81		
b >> 215	1,79		
200	1,82	0,0109	168
150	1,95	0,0107	181
100	2,10	0,0105	200
0	2,99		

Tabla 17. Viscosidad de los fluidos del yacimiento, Formación Limestone.

Fuente: elaboración propia, con base en. HALLIBURTON Latin America S.A. Testing and Subsea. Informe pruebas de laboratorio PVT Formación Limestone, año 2018.

A continuación, se presenta el comportamiento de los parámetros en función de la presión obtenidos de las pruebas PVT. Para corroborar que sean confiables se realiza una comparación a partir de las gráficas estándar del comportamiento de pruebas PVT que se pueden ver en el **Anexo G**.

Gráfica 21. Comportamiento factor volumétrico del petróleo con presión, Formación Limestone.

Fuente: elaboración propia.

Se observa en la región monofásica (petróleo) que el factor volumétrico aumenta cuando la presión inicial baja hasta el punto de burbuja (215 psi) a causa de una expansión de líquido por la reducción de presión. Después de ese punto el volumen del petróleo baja al igual que el factor volumétrico por la liberación de gas en solución, acá se presenta la región bifásica (petróleo y gas).

Gráfica 22. Comportamiento gas en solución con presión, Formación Limestone.

Se observa en la región monofásica (petróleo) que la solubilidad del gas es constante a presiones mayores e igual a la presión de burbuja (215 psi), debido a que no hay presencia de gas, pero cuando se baja más de la presión del punto de burbuja se empieza a generar el gas que estaba en el líquido, acá empieza la región

bifásica (petróleo y gas) y a medida que baja la temperatura, el gas en solución también lo hace.

Gráfica 23. Comportamiento factor volumétrico del gas con presión, Formación Limestone.

Fuente: elaboración propia.

Al ser un yacimiento sub-saturado (P>Pb) el factor volumétrico aparece cuando la presión baja el punto de burbuja (215 psi) porque es cuando el gas en solución aparece y crea la zona bifásica (petróleo y gas). Se observa que a medida que la presión disminuye, el factor volumétrico del gas aumenta, esto se debe a que a medida que baja la presión, se libera más gas del líquido.

Gráfica 24. Comportamiento viscosidad del petróleo con presión, Formación Limestone.

Fuente: elaboración propia.

Se observa que en esta región monofásica (petróleo) la viscosidad del petróleo es directamente proporcional a la presión ya que a medida que disminuye la presión hasta el punto burbuja, la viscosidad también disminuye. Pero al pasar el punto de burbuja (215 psi) y llegar a la región bifásica (petróleo y gas) la viscosidad va aumentando a medida que la presión disminuye.

Se puede concluir que las pruebas PVT para esta formación generan una tendencia muy similar a los establecidos al comparar el comportamiento en función de la presión de los factores volumétricos, gas en solución y viscosidad del petróleo. Además, se aprecia claramente el punto de inflexión en el punto de burbujeo (215 psi), marcando las regiones monofásicas y bifásicas.

3.3.7 Aplicación del método de Horner para la Formación Limestone (Calizas A1, A2 y A3). Para este caso, la prueba de presión DST que se realizó a la Formación Limestone se ejecutó con varios inconvenientes, por lo tanto, su aplicación no genera una buena estimación de las características de formación, sin embargo, se realizará un análisis y evaluación. Hay que aclarar que en esta formación hubo producción de hidrocarburo.

Los datos iniciales que se presentan durante la prueba de presión DST son de un tiempo de producción total de 161 horas y un caudal de 1966 BPD. El método de Horner cuenta con 8 pasos que se presentan a continuación con sus respectivos datos y soluciones:

1. Calcular tiempo de producción, con la producción acumulada y el caudal de producción antes del cierre, utilizando la **ecuación 1** del tiempo de producción. Como el dato que hace falta es la producción acumulada, se despeja Np:

$$Np = \frac{161 * 1966}{24} = 13188,58 Bls$$

La siguiente tabla muestra los datos iniciales para desarrollar el método de Horner:

Tabla 18. Datos iniciales de la Formación Limestone.

Tiempo de producción, Tp.	161 horas.
Producción acumulada, Np.	13188,58 Bls.
Caudal, qo.	1966 BPD.

Fuente: elaboración propia.

Las memorias instaladas para esta prueba presentan la fecha con su respectiva hora, el tiempo de duración, la presión y temperatura, de estas memorias se obtienen los datos para realizar el segundo paso del método de Horner. Las memorias se pueden ver en el **Anexo H.**

2. Graficar Pws en función del log($(tp+\Delta t)/\Delta t$) en papel semilog.

Para ello, se utiliza la herramienta Excel donde se genera la gráfica de restauración de presión (build-up), este se tiene en cuenta para ver el comportamiento de la restauración de la presión y se usa para cálculos posteriores. Como las memorias generan datos cada cinco segundos, se realizaron intervalos de 1 hora para la toma de datos en el periodo de build-up.

La tabla enseña el periodo de la restauración de presión, se repite la columna de Pws a mano derecha para generar un espejo y así realizar la gráfica con (tp+ Δ t) / Δ t en el eje X y Pws en el eje Y:

Build-up	TUBING		
Pws	Δt	(tp+∆t)/∆t	Pws
1.175	0	#¡DIV/0!	1.175
1.192	1	162,00	1.192
1.195	2	81,50	1.195
1.198	3	54,67	1.198
1.200	4	41,25	1.200
1.201	5	33,20	1.201
1.203	6	27,83	1.203
1.204	7	24,00	1.204
1.205	8	21,13	1.205

Tabla 19. Restauración de presión (build-up), Formación Limestone.

Tabla19.(Continuación).

Bulid-up	TUBING		
1.206	9	18,89	1.206
1.207	10	17,10	1.207
1.208	11	15,64	1.208
1.209	12	14,42	1.209
1.210	13	13,38	1.210
1.211	14	12,50	1.211
1.212	15	11,73	1.212
1.212	16	11,06	1.212
1.213	17	10,47	1.213
1.213	18	9,94	1.213
1.214	19	9,47	1.214
1.215	20	9,05	1.215
1.216	21	8,67	1.216
1.217	22	8,32	1.217
1.218	23	8,00	1.218
1.218	24	7,71	1.218
1.219	25	7,44	1.219
1.219	26	7,19	1.219
1.220	27	6,96	1.220
1.221	28	6,75	1.221
1.221	29	6,55	1.221
1.221	30	6,37	1.221
1.221	31	6,19	1.221
1.222	32	6,03	1.222
1.222	33	5,88	1.222
1.222	34	5,74	1.222
1.222	35	5,60	1.222
1.222	36	5,47	1.222
1.223	37	5,35	1.223
1.223	38	5,24	1.223
1.223	39	5,13	1.223
1.223	40	5,03	1.223
1.223	41	4,93	1.223
1.223	42	4,83	1.223
1.224	43	4,74	1.224
1.224	44	4,66	1.224
1.224	45	4,58	1.224

Fuente: Elaboración propia.

Una vez realizada la tabla con sus respectivos datos, se prosigue a elaborar la gráfica de Pws vs log(($tp+\Delta t$) / Δt). Esta muestra la relación entre Pws vs log(($tp+\Delta t$) / Δt), teniendo en cuenta todos los valores tomados en el periodo de build-up con intervalos de una hora. Se muestra también la línea de tendencia en color negro.

Gráfica 25. Pws vs log($(tp+\Delta t)/\Delta t$), Formación Limestone.

En esta gráfica se puede evidenciar que el tiempo de producción de 161 horas aproximadamente logró alcanzar el tiempo temprano y el tiempo medio de acuerdo a las regiones de las pruebas de restauraciones de presión. Esto fue debido a los problemas con la UBH y caídas de presión. Al no alcanzar el tiempo tardío no se pueden determinar la existencia de heterogeneidades, discontinuidades y conectividad.

A continuación, se presenta la misma gráfica con la diferencia de selección de los datos que mejor representan una tendencia recta debido a que hubo varios que no se ajustaban. Se puede observar que esta línea de tendencia se ajusta mejor a los puntos seleccionados. De esta gráfica se obtiene la presión inicial P* y la pendiente, a partir de la ecuación del gráfico.

Fuente: elaboración propia.

Fuente: elaboración propia.

Para corroborar que los datos seleccionados en el periodo del build-up son los que mejor se ajustan y tienen una mejor aproximación, se elabora una nueva tabla y gráfica seleccionando los puntos con un periodo de cada 4 horas. La presión inicial y la pendiente deben de ser muy similares a las obtenidas previamente. A continuación, se presenta la tabla y gráfica:

Pws	∆t	(tp+∆t)/∆t	Pws
1.192	1	162,00	1.192
1.200	4	41,25	1.200
1.205	8	21,13	1.205
1.209	12	14,42	1.209
1.212	16	11,06	1.212
1.215	20	9,05	1.215
1.218	24	7,71	1.218
1.221	28	6,75	1.221
1.222	32	6,03	1.222
1.222	36	5,47	1.222
1.223	40	5,03	1.223
1.224	44	4,66	1.224
1.224	48	4,35	1.224

Tabla 20. Corroboración de datos, build up, Formación Limestone.

Fuente: elaboración propia.

Gráfica 27. Corroboración de datos, Pws vs $log((tp+\Delta t) / \Delta t)$, Limestone.

Fuente: elaboración propia.

Como se puede observar los datos obtenidos de la presión inicial y pendiente son muy similares y por lo tanto indican una buena aproximación siendo $P1^* = 1246,7$ psi; $P2^* = 1246,4$ psi y m1= -14,1; m2= -14,01 respectivamente. Se van a tomar los datos de la primera gráfica ya que contiene un mayor número de datos seleccionados para realizar los posteriores pasos del método de Horner.

3. Hallar la pendiente m de la porción en línea recta del gráfico de Horner y extrapolar la línea a $((tp+\Delta t)/\Delta t) = 1$ para encontrar *P**.

Con Excel se tiene la facilidad no solo de generar la gráfica, sino que brinda la pendiente y una estimación de la presión inicial al generar una línea de tendencia, donde se obtiene estos valores a partir de la ecuación de la gráfica. En este caso, la ecuación es: $y=-14,1 \ln(x) + 1246,7 psi,$ donde la pendiente es -14,1 y la presión inicial estimada es 1246,7 psi. Como la pendiente esta expresada en In, se multiplica por 2,3 ya que es la relación de un ln y un log base 10. Por lo tanto, la pendiente tiene un valor de m= 32,22.

4. Calcular la permeabilidad con la pendiente hallada en el paso 3.

Para realizar el cuarto paso, se presenta a continuación una tabla con los datos necesarios obtenidos previamente:

Pendiente, m	33,22
Presión Inicial, Pi	1246,7 psi
Radio, r	1,02 ft
Factor volumétrico, βo	1,077 BY/BN
Viscosidad, μο	2,002 cp
Espesor, h	90 ft
Pws a ∆t=(0)	1175 psi
Compresibilidad, Ct	0,00000743 psi^-1

 Tabla 21. Datos principales, Formación Limestone.

Fuente: elaboración propia.

Se muestran los datos principales para resolver las posteriores ecuaciones. La presión inicial y la pendiente se calculan con la gráfica de Pws vs log($(tp+\Delta t)/\Delta t$). El radio es del pozo Vino 1 a la profundidad que se está evaluando la formación. Tanto el factor volumétrico como la viscosidad se calcularon con las tablas generadas por las pruebas de laboratorio PVT, donde se ejecutó una regresión lineal asumiendo el valor de la presión inicial. El espesor es el total de espesores evaluados en pies. El Pws a Δt = (0), se adquiere de la tabla de restauración de presión. La compresibilidad se obtiene de los rangos de las pruebas de laboratorio PVT asumiendo el valor de la presión inicial.

Utilizando la ecuación 2 de permeabilidad se obtiene que:

<u>k – 126,6qoμoβo</u> –	$\frac{126,6(1966)(2,002)(1,077)}{-185.01}$	
$\kappa =$	(33,22)(90) = 105,01 ma.	

Este yacimiento tiene una permeabilidad de 185,01 md, se puede clasificar como una permeabilidad alta de acuerdo con los rangos establecidos. Podemos concluir que no concuerda con la estimación hecha previamente con la carta esquemática de presiones y las cartas bases de permeabilidades donde se determinó una permeabilidad baja.

5. En la línea recta leer Pws en $\Delta t = 1$ hora, referida como P1hr. Reemplazando el Δt en la ecuación (($tp+\Delta t$) / Δt) y usando el tp hallado en el paso 1.

Gráfica 28. Pws vs log($(tp+\Delta t)/\Delta t$), calculo Pws (1hr), Formación Limestone.

Fuente: elaboración propia.

En la gráfica de la restauración de presión (build-up), se puede calcular el P1hr al leer el valor en las tablas del build-up cuando $\Delta t = 1$ hora. Se toma $\Delta t = 1$ hora y se lleva hasta la línea de tendencia, a partir de ese punto se calcula el valor de Pws paralelamente, este valor corresponde a 1186 psi.

6. Calcular el daño de formación con la ecuación 3, con la P1hr hallada y la pendiente de la recta.

$$s = 1,151 \left(\frac{P_{1hr} - P_{wf(\Delta t=0)}}{m} - \log\left(\frac{k}{\phi \mu_o c_t r_w^2}\right) + 3,23 \right)$$

$$1,151\left(\frac{1186 - 1175}{32,22} - \log\left(\frac{185,01}{0,14 * 2,002 * (7,43 * 10^{-6}) * 1,02^2}\right) + 3,23\right) = -5,02.$$

El yacimiento tiene un daño de formación igual a -5,02, lo cual nos indica que el pozo fue estimulado de acuerdo a la clasificación del daño de formación, también se demuestra que el cambio en la condición del pozo al estimularse fue a causa de una fracturación, la cual pudo haber ocurrido al realizar tantas inyecciones a la formación porque hubo un gasto de gas de 1604 MMscfd aproximadamente, pero lo más probable es que haya sido por el cañoneo. Además, se infiere que gracias a esta estimulación hubo una mejora notable en la permeabilidad original del yacimiento.

7. Calcular Δt con la ecuación 4, tomando el TSSL como el último punto que está dentro de la tendencia de la gráfica.

Gráfica 29. Pws vs log(($tp+\Delta t$) / Δt), calculo TSSL, Formación Limestone.

Fuente: elaboración propia.

Se utiliza la **ecuación 4** de diferencial de tiempo, teniendo en cuenta que el último punto tomado dentro de la tendencia de la gráfica de restauración de presión (build-up) corresponde a 10 hrs.

$$\Delta t = \frac{Tp}{TSSL - 1} = \frac{161}{10 - 1} = 17,89 \ hrs.$$

8. Calcular el coeficiente de almacenamiento de pozo con la **ecuación 5** y el Δt hallado.

$$C = \frac{\Delta t * k * h}{170 * \mu * e^{0,14*s}} = \frac{17,89 * 185,01 * 90}{170 * 2,002 * e^{0,14*(-5,024)}} = 1768,55.$$

El coeficiente de almacenamiento del pozo es de 1768,55. De acuerdo a los rangos establecidos de este coeficiente de almacenamiento la mayor parte de la tasa de flujo proviene del volumen almacenado en el pozo, además por ser un valor tan grande el pozo tarda en estabilizarse.

4. REALIZAR UNA CARACTERIZACIÓN DE LA ROCA Y FLUIDOS DE LAS FORMACIONES ARENA T, ARENA U Y LIMESTONE (Calizas A1, A2 Y A3)

Una vez realizada las pruebas de presión DST y las pruebas PVT para cada una de las formaciones que se evaluaron, se prosigue a elaborar la caracterización de cada una respectivamente. Esta estará compuesta por información geológica, geofísica y petrofísica, lo cual permite una clasificación de las características generales de la roca y fluido de cada formación.

En este capítulo se desarrollará una caracterización de la roca y fluidos de las formaciones Arena T, Arena U y Limestone (calizas A1, A2 Y A3) respectivamente; a partir de la información y datos obtenidos previamente con el fin de simplificar la información y generar un mejor análisis de las formaciones.

El factor de éxito más importante para la obtención de muestras de fluidos de yacimientos representativos es la de mantener el fluido en una sola fase durante el muestreo y la transferencia según Halliburton.

Las siguientes ecuaciones serán necesarias para el desarrollo de este capítulo:

Ecuación 6. Gravedad específica.

 $GE = \frac{\rho sustancia}{\rho H_2 O}$

Fuente: Robert L. Mott, Mecánica de fluidos, Florida. Universidad de Dayton, 6^a edición, 2006. Pág. 17.

Dónde:

- GE: gravedad específica, adimensional.
- ρ sustancia: densidad de las sustancias, g/cc.
- $\rho H_2 0$: densidad del agua, g/cc.

Ecuación 7. Gravedad API.

$$^{\circ}API = \frac{141,5}{GE} - 131,5$$

Fuente: Robert L. Mott, Mecánica de fluidos, Florida. Universidad de Dayton, 6^a edición, 2006. Pág. 18.

Dónde:

- GE: gravedad específica, adimensional.
- °API: grados API, adimensional.

La gravedad API fue establecida por el "American Petroleum Institute" para establecer la densidad del petróleo en comparación con el agua a las mismas condiciones. A continuación, se presenta esta escala:

	0		
Crudo	Escala API	Densidad	Descripción
Ligero	30°- 40°	0,87 – 0,83 g/cc	Fácil transporte y
_		_	extracción, ideal para
			refinar combustibles y
			derivados.
Mediano	22° - 29,9°	0,92 – 0,87 g/cc	Fácil transporte y
			extracción, ideal para
			combustibles y derivados.
Pesado	10° - 21,9°	1,0 – 0,92 g/cc	Fácil transporte y difícil
			extracción, ideal para
			combustibles y derivados.
Extra pesado	Menor a 10°	>1.0 g/cc	Difícil transporte y difícil
			extracción, ideal para
			derivados.

Cuadro 5. Escala grados API.

Fuente: API, American Petroleum Institute, Washington D.C, Estados Unidos. 1919. Consultado en diciembre del 2018.

4.1 CARACTERIZACIÓN DE ROCA Y FLUIDOS DE LA FORMACIÓN ARENA T

Esta es la formación que se valoró primero ya que se ubica una mayor profundidad, esto con el fin de no afectar las posteriores pruebas de presión DST. Esta formación se comprende desde 9780ft – 9832ft. Una vez realizadas las pruebas respectivas de manera exitosa, se comprobó que para esta formación no hubo producción de hidrocarburos por lo cual las muestras recuperadas no fueron objeto de estudio y no se hará una caracterización.

4.2 CARACTERIZACIÓN DE ROCA Y FLUIDOS DE LA FORMACIÓN ARENA U

La segunda formación se evaluó a una profundidad de 9579ft – 9612ft. Las pruebas se realizaron de manera exitosa y se evidenció una recuperación de hidrocarburo, por lo tanto, las muestras obtenidas se enviaron a laboratorios especializados para obtener los datos PVT y así poder generar la caracterización tanto de la roca como de los fluidos.

4.2.1 Características obtenidas de la prueba de presión DST. Las pruebas de presión DST se implementan para generar una identificación de la formación en estudio, una vez terminada la prueba se implementó el método de Horner para establecer características importantes con el fin de evaluar su potencial. A continuación, se presenta una tabla con los datos correspondientes a la Formación Arena U:

Tabla 22. Características obtenidas a partir del método de Horner, Formación Arena U.

Presión inicial, P*	2364,8 psi.
Permeabilidad, k	5,89 md.
Daño de formación, s	-2,37.
Coeficiente de almacenamiento, C	1,975.

Fuente: elaboración propia.

4.2.2 Características obtenidas de la prueba PVT. La presión de saturación (Psat) se encuentra a 149 psig, a esta presión la fase líquida y la gaseosa se encuentran en equilibrio, y por lo tanto se define en este mismo sitio el punto de burbujeo (Pb), ya que al descender más la presión se comienza a generar la primera burbuja de gas a partir del petróleo.

La densidad suministrada es de 0,8150 g/cc en el punto de saturación a 205°F. Como se va calcular la gravedad específica y gravedad API del crudo, se necesita llevar la densidad a 60°F ya que es un establecimiento internacional y así estar bajo los mismos parámetros para realizar una comparación. Por lo tanto, hay que hacer una corrección a partir de las tablas 53A (Corrección generalizada de densidad de aceites crudos a 60°F) de las normas ASTM, esta tabla se podrá ver en el **Anexo K**.

De acuerdo a las tablas de correcciones 53A, la densidad del crudo llevada hasta una temperatura de 60°F es de 0,8724 g/cc. Una vez obtenida la densidad de la sustancia y conociendo que la densidad del agua es de 1gm/cc, se procede a reemplazar en la **ecuación 6** de gravedad específica:

$$GE = \frac{0,8724 \ g/cc}{1 \ g/cc} = 0,8724$$

Utilizando la ecuación 7 de la gravedad API:

$$^{\circ}API = \frac{141,5}{0,8724} - 131,5 = 30,7 \ ^{\circ}API$$

El crudo que se presenta en esta formación se clasifica como ligero de acuerdo a la escala de grados API, lo cual indica que es fácil de transportar, extraer y es ideal para refinar en combustibles y algunos derivados.

Al ser expuesto a grandes temperaturas el crudo logra tener una expansión de su volumen, para esta muestra la expansión térmica a 5000 psig es de 1,04858 V a 205° F / V a 60° F.

Al igual que la temperatura, la presión juega un papel importante sobre las propiedades de las muestras de crudo. Las altas presiones someten a los cuerpos

para que disminuyan su volumen, esta propiedad lleva el nombre de compresibilidad y para esta muestra el valor cambia de acuerdo a los siguientes rangos de presiones:

- De 5000 a 3500 psig, la compresibilidad es 5,82 E-6 (v/v/psi)
- De 3500 a 2000 psig, la compresibilidad es 6,17 E-6 (v/v/psi)
- De 2000 a 400 psig, la compresibilidad es 7,23 E-6 (v/v/psi)
- De 400 a 149 psig, la compresibilidad es 13,08 E-6 (v/v/psi)

Al realizar una prueba de producción como lo es también la prueba de presión DST, la relación del gas producido con respecto a los líquidos producidos es de gran importancia para determinar las cantidades de cada uno a tratar. Por esto se necesita saber el valor del Rs, la cual para esta muestra que desde grandes presiones hasta 149 psig es de 12, y para presiones menores Rs disminuye.

El factor volumétrico facilita las mediciones del petróleo y gas que se hacen en la superficie, ya que los volúmenes a condiciones de yacimiento al ser extraídos cambian. Para esta muestra el factor volumétrico del petróleo a las distintas presiones siempre es Bo < 1,5; por lo tanto, se clasifica como un yacimiento de petróleo negro de bajo encogimiento. Por otro lado, el factor volumétrico del gas Bg se calcula cuando se genera gas de la muestra una vez que se ha pasado la presión de burbuja (Pb=149), por lo tanto, se calcula que el factor volumétrico del gas a 100 psig es 0.15625 y a 50 psig es 0,28115.

La viscosidad de los fluidos del yacimiento es fundamental para determinar la facilidad con la que se movilizan hasta la superficie. La viscosidad del aceite en el punto de burbujeo es de 2,05 cp. A partir de este punto se genera gas y se puede deducir la viscosidad del gas, donde a 100 psig es 0,0120 y a 50 psig es 0,0111. La relación viscosidad aceite/gas se puede calcular una vez se ha generado la primera burbuja de gas, para este caso la relación a 100 psig es 184 y a 50 psig es 220.

Presión de saturación (Psat).	149 psig.
Presión de burbuja (Pb).	149 psig.
Densidad muestra (ρ sustancia).	0,8150 g/cc.
Gravedad específica (GE).	0,8724.
Gravedad API (°API).	30,7°.
Expansión térmica a 5000 psig.	1,04858 V a 205°F / V a 60°F.
Compresibilidad (C).	De 5000 a 3500 psig, 5,82 E-6 (v/v/psi).
	De 3500 a 2000 psig, 6,17 E-6 (v/v/psi).
	De 2000 a 400 psig, 7,23 E-6 (v/v/psi).
	De 400 a 149 psig, 13,08 E-6 (v/v/psi).
Relación gas/aceite en solución (Rs).	Rs>= 149psig, 12.
	Rs = 100 psig, 7.
Factor volumétrico aceite (Bo).	Bo= 149 psig, 1,076 BY/BN.
Factor volumétrico gas (Bg).	Bg= 100 psig, 0,15625 PCY/PCN.
	Bg= 50 psig, 0,28115 PCY/PCN.
Viscosidad del aceite (µo).	μο= 149 psig , 2,05 cp.
Viscosidad del gas (µg).	μg= 100 psig, 0,0120 cp.
	μg= 50 psig, 0,0111 cp.
Relación viscosidad aceite/gas.	(μο/μg) a 100 psig, 184.
	(μο/μg) a 50 psig, 220.

Tabla 23. Características obtenidas de las pruebas de presión PVT, Formación Arena U.

Fuente: elaboración propia.

4.3 CARACTERIZACIÓN DE ROCA Y FLUIDOS DE LA FORMACIÓN LIMESTONE (CALIZAS A1, A2 Y A3)

La tercera y última formación que se valoró fue a una profundidad más somera que las anteriores (9313ft – 9511ft), también presentó una producción de hidrocarburos al igual que la anterior formación evaluada. Por consiguiente, las muestras conseguidas se exportaron a los laboratorios especializados para obtener los datos PVT y generar la caracterización tanto de la roca como de los fluidos.

4.3.1 Características obtenidas de la prueba de presión DST. Las pruebas de presión DST se implementan para generar una identificación de la formación en estudio, una vez terminada la prueba se implementa el método de Horner para establecer características importantes con el fin de evaluar su potencial.

Como ya se han determinado y explicado cada una de las características calculadas a partir de las pruebas DST y método de Horner, a continuación, se presenta una tabla con los datos correspondientes a la Formación Limestone:
Tabla 24. Características obtenidas a partir del método de Horner, Formación Limestone.

Presión inicial, P*	1246,7 psi.
Permeabilidad, k	185 md.
Daño de formación, s	-5,024.
Coeficiente de almacenamiento, C	1768,55.

Fuente: elaboración propia.

4.3.2 Características obtenidas de la prueba PVT. La presión de saturación (Psat) se encuentra a 215 psig, a esta presión la fase líquida y la gaseosa se encuentran en equilibrio, y por lo tanto se define en este mismo sitio el punto de burbujeo (Pb), ya que al descender más la presión se comienza a generar la primera burbuja de gas a partir del petróleo.

La densidad suministrada es de 0,8127 g/cc en el punto de saturación a 205°F. Como se va calcular la gravedad específica y gravedad API del crudo, se necesita llevar la densidad a 60°F ya que es un establecimiento internacional y así estar bajo los mismos parámetros para realizar una comparación. Por lo tanto, hay que hacer una corrección a partir de las tablas 53A (Corrección generalizada de densidad de aceites crudos a 60°F) de las normas ASTM, esta tabla se podrá ver en el **Anexo K**.

De acuerdo a las tablas de correcciones 53A, la densidad del crudo llevada hasta una temperatura de 60°F es de 0,8686 g/cc. Una vez obtenida la densidad de la sustancia y conociendo que la densidad del agua es de 1gm/cc, se procede a reemplazar en la **ecuación 6** de gravedad específica:

$$GE = \frac{0,8686 \ g/cc}{1 \ g/cc} = 0,8686$$

Utilizando la ecuación 7 de la gravedad API.

$$^{\circ}API = \frac{141,5}{0.8686} - 131,5 = 31,4 \ ^{\circ}API$$

El crudo que se presenta en esta formación se clasifica como ligero de acuerdo a la escala de grados API, lo cual indica que es fácil de transportar, extraer y es ideal para refinar en combustibles y algunos derivados.

Al ser expuesto a grandes temperaturas el crudo logra tener una expansión de su volumen, para esta muestra la expansión térmica a 5000 psig es de 1,05556 V a 210° F / V a 60° F.

Al igual que la temperatura, la presión juega un papel importante sobre las propiedades de las muestras de crudo. Las altas presiones someten a los cuerpos

para que disminuyan su volumen, esta propiedad lleva el nombre de compresibilidad y para esta muestra el valor cambia de acuerdo a los siguientes rangos de presiones:

- De 5000 a 3485 psig, la compresibilidad es 5,78 E-6 (v/v/psi)
- De 3485 a 2000 psig, la compresibilidad es 6,37 E-6 (v/v/psi)
- De 2000 a 500 psig, la compresibilidad es 7,43 E-6 (v/v/psi)
- De 500 a 215 psig, la compresibilidad es 7,87 E-6 (v/v/psi)

Al realizar una prueba de producción como lo es también la prueba de presión DST, la relación del gas producido con respecto a los líquidos producidos es de gran importancia para determinar las cantidades de cada uno a tratar. Por esto se necesita saber el valor del Rs, la cual, para esta muestra, de grandes presiones hasta 215 psig es de 25, y para presiones menores el valor de Rs disminuye.

El factor volumétrico facilita las mediciones del petróleo y gas que se hacen en la superficie, ya que los volúmenes a condiciones de yacimiento al ser extraídos cambian. Para esta muestra el factor volumétrico del petróleo a las distintas presiones siempre es Bo < 1,5; por lo tanto, se clasifica como un yacimiento de petróleo negro de bajo encogimiento. Por otro lado, el factor volumétrico del gas Bg se calcula cuando se genera gas de la muestra una vez que se ha pasado la presión de burbuja (Pb=215), por lo tanto, se calcula que el factor volumétrico del gas a presiones menore como a 200 psig es 0,08462 y a 100 psig es 0,15916.

La viscosidad de los fluidos del yacimiento es fundamental para determinar la facilidad con la que se movilizan hasta la superficie. La viscosidad del aceite en el punto de burbujeo es de 1,79 cp. A partir de este punto se genera gas y se puede deducir la viscosidad del gas, donde a 200 psig es 0,0109 y a 100 psig es 0,0105. La relación viscosidad aceite/gas se puede calcular una vez se ha generado la primera burbuja de gas, para este caso la relación a 200 psig es 168 y a 100 psig es 200.

Presión de saturación (Psat).	215 psig.
Presión de burbuja (Pb).	215 psig.
Densidad muestra (psustancia).	0,8686 g/cc.
Gravedad específica (GE).	0,8686.
Gravedad API (°API).	31,4°.
Expansión térmica a 5000 psig.	1,05556 V a 210°F / V a 60°F.
Compresibilidad (C).	De 5000 a 3485 psig, 5,78 E-6 (v/v/psi).
	De 3485 a 2000 psig, 6,37 E-6 (v/v/psi).
	De 2000 a 500 psig, 7,43 E-6 (v/v/psi).
	De 500 a 215 psig, 7,87 E-6 (v/v/psi).
Relación gas/aceite en solución (Rs).	Rs>= 215 psig, 25.
	Rs = 200 psig, 23.
	Rs = 150 psig, 16.
Factor volumétrico aceite (Bo).	Bo= 215 psig, 1,085 BY/BN.
Factor volumétrico gas (Bg).	Bg= 200 psig, 0,08462PCY/PCN.
	Bg= 150 psig, 0,11022 PCY/PCN.
	Bg= 100 psig, 0,15916PCY/PCN.
Viscosidad del aceite (µo).	μο= 215 psig , 1,79 cp.
Viscosidad del gas (µg).	μg= 200 psig, 0,0109 cp.
	μg= 100 psig, 0,0105 cp.
Relación viscosidad aceite/gas.	(μο/μg) a 200 psig, 168.
	(µo/µg) a 100 psig, 20}0.

Tabla 25. Características obtenidas de las pruebas de presión PVT, Formación Limestone.

Fuente: elaboración propia.

5. ESTIMAR POES Y RESERVAS DE LAS FORMACIONES ARENA T, ARENA U Y LIMESTONE A PARTIR DE LOS DATOS OBTENIDOS Y CALCULADOS DE LAS PRUEBAS DE PRESIÓN DST Y PVT

La estimación del POES (petróleo original in situ) es el cálculo que se realiza para determinar el volumen de hidrocarburo que se encuentra atrapado en la formación en estudio y, por ende, es un valor determinante para entender si es económicamente viable la explotación de este.

El POES es un valor obtenido a partir de varios métodos de estimación de reservas y se debe entender que siempre tiene un grado de incertidumbre el cual depende de la información confiable de ingeniería y geología. Este volumen de hidrocarburo no significa que pueda llegar a ser extraído en su totalidad, pero a partir de este, se puede calcular la cantidad de reservas recuperables con el factor de recobro.

Para la estimación del POES y las reservas en este capítulo, se van a tomar los datos DST y PVT obtenidos previamente los cuales son confiables para generar una buena estimación. Para las tres formaciones en estudio se va a utilizar el método volumétrico y balance de materiales con el fin de realizar una mejor estimación y comparación.

5.1 MÉTODO VOLUMÉTRICO

Este método determinístico es el más común y utilizado para calcular el petróleo original in situ puesto que se considera como un método sencillo y eficiente. Para desarrollarlo se necesitan los volúmenes del fluido, las saturaciones, la porosidad de la roca y el volumen bruto. Se debe de tener en cuenta que los valores de las saturaciones y la porosidad son adimensionales y por lo tanto las unidades de este método son las del volumen bruto (Acre*pies), por esto, se utiliza el factor de conversión 7758 con el fin de convertir los (acres*pies) en barriles de yacimiento (BY). Se considera barriles de yacimiento puesto que el volumen que se está calculado se ubica en el yacimiento.

Con estos datos ya se puede calcular el POES, sin embargo, como el petróleo puede llegar a cambiar de fase en su recorrido hasta la superficie, se requiere calcular el POES en barriles normales y no de yacimiento. Para esto es necesario aplicar el factor volumétrico del petróleo inicial (Boi) puesto que sus unidades son (BY/BN) y se logra obtener las unidades únicamente en barriles a condiciones normales (BN). A continuación, se muestra la ecuación del método volumétrico:

Ecuación 8. POES método volumétrico.

 $POES = \frac{7758Ah\Phi\text{Soi}}{Boi}$

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1ª edición. 2003, p 103.

Dónde:

- 7758: factor de conversión bbl/ft*acre.
- POES: Petróleo original en Sitio (BN).
- Ah: Volumen bruto de la arena (acre*ft).
- Φ: porosidad expresada en fracción.
- Soi: saturación inicial de petróleo expresada en fracción.
- Boi: factor volumétrico de formación de petróleo (BY/BN).

Ecuación 9. FR factor de recobro del petróleo.

$$FR = \frac{Np}{N} * 100\%$$

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1^a edición. 2003, p 104.

Dónde:

- FR: factor de recobro (%).
- Np: Petróleo producido (BN).
- N: Petróleo original en Sitio (BN).

Ecuación 10. Npr reservas recuperables de petróleo.

$$Npr = POES * FR$$

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1ª edición. 2003, p 104.

Dónde:

- Npr: reservas recuperables (BN).
- POES: Petróleo original en Sitio (BN).
- FR: factor de recobro (%).

Ecuación 11. GOES método volumétrico.

COEC	43560 <i>Ah</i> ФSgi	
GOES =	Bgi	

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1^ª edición. 2003, p 103.

Dónde:

- GOES: Gas original en Sitio (PCN).
- Vb: Volumen bruto de la arena (acre*ft).
- Φ: porosidad expresada en fracción.

- Sgi: saturación inicial de GAS expresada en fracción.
- Bgi: factor volumétrico de formación de gas (PCY/PCN).
- Al igual que en la fórmula del POES, se utiliza un factor de conversión el cual es 43560.

Ecuación 12. FR factor de recobro del gas.

$$FR = \frac{Gp}{G} * 100\%$$

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1ª edición. 2003, p 104.

Dónde:

- FR: Factor de recobro (%).
- G: Gas original en Sitio (PCN).
- Gp: gas producido (PCN).

Ecuación 13. Gpr reservas recuperables del gas.

$$Gpr = GOES * FR$$

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1ª edición. 2003, p 104.

Dónde:

- Gpr: reservas recuperables (PCN).
- GOES: Gas original en Sitio (PCN).
- Fr: Factor de recobro (%).

5.1.1 Estimación del POES, GOES y reservas, Formación Arena T. Como se vio en capítulos anteriores, para esta formación se realizó la prueba de presión DST de manera exitosa, sin embargo, no hubo una producción de hidrocarburos y por consiguiente no se realizan los cálculos pertinentes.

5.1.2 Estimación del POES, GOES y reservas, Formación Arena U. La formación Arena U produjo hidrocarburos y por lo tanto se deben hacer los cálculos necesarios para determinar su POES, GOES y reservas. Para esto se va a utilizar el método volumétrico teniendo en cuanta que los valores para esta formación son los siguientes:

Área (acres).	16,4
Espesor (ft).	21
Porosidad (%).	0,14
Saturación de agua inicial (Swi).	Swi = 27%
Saturación de petróleo (So)	So = 56%
Factor volumétrico petróleo inicial (Boi)	1,057
Factor volumétrico gas inicial (Bgi).	0,15625

Tabla 26. Valores para estimar POES, GOES y reservas, Formación Arena U.

Fuente: elaboración propia.

Esta tabla presenta los valores necesarios para calcular las reservas del petróleo y gas en el yacimiento. El valor del área fue brindado por la empresa al aplicar el mapa estructural y utilizar el método gráfico (área bajo la curva), el espesor es la suma de los tres espesores que se van a evaluar, la porosidad fue dada por la empresa después de realizar las pruebas de laboratorio a las muestras de núcleos que se obtuvieron a partir de las pruebas de presión DST la cual se considera como una porosidad media. La saturación inicial de agua al igual que la porosidad se obtuvo al realizar las pruebas de laboratorio sobre las muestras de núcleo y el factor volumétrico inicial se genera a partir de una extrapolación a los datos de factores volumétricos de las pruebas PVT. Hay que mencionar que la producción de petróleo en esta formación da un total de 505bls donde 419bls son de petróleo y 86bls son de gas.

Se conoce que para la Formación Arena U se produce hidrocarburo, la presión es mayor a la presión de burbujeo (P>Pb), por lo tanto, se clasifica como un yacimiento de petróleo sub-saturado y volumétrico, ya que está totalmente encerrado. Este produce hidrocarburos por gas en solución por debajo del punto de burbujeo.

Se reemplazan los datos obtenidos con la ecuación 8 para calcular el POES:

$$POES = \frac{7758 * 16,4 * 21 * 0,14 * 0,56}{1,057} = 198177 Bls = 198,2 MBls.$$

Se reemplaza los datos con la ecuación 9 para calcular el factor de recobro:

$$FR = \frac{419}{198177} * 100\% = 0,21\%$$

Se reemplaza los datos con la ecuación 10 para calcular las reservas recuperables:

Se reemplazan los datos con la ecuación 11 para calcular GOES:

$$GOES = \frac{43560 * 16,4 * 21 * 0,14 * 0,17}{0,15625} = 2285114,39 PCN = 2,28 MMPCN$$

Se reemplaza con **la ecuación 12** para calcular el factor de recobro. Se debe aclarar que la producción de gas fue de 86Bls que son 351,1666 PCN, entonces:

$$FR = \frac{351,1666}{2285114,39} * 100\% = 0,02\%$$

Se reemplaza con la ecuación 13 para calcular las reservas recuperables:

5.1.3 Estimación del POES, GOES y reservas, Formación Limestone (Calizas A1, A2 y A3). Como la Formación Arena U, la Formación Limestone produjo hidrocarburos así que se prosigue a desarrollar los cálculos necesarios para determinar su POES, GOES y reservas. Se utilizará de igual forma el método volumétrico teniendo en cuanta los valores para esta formación:

Tabla 27. Valores para estimar POES, GOES y reservas, Formación Limestone.

Área (acres).	318,7
Espesor (ft).	90
Porosidad (%).	0,14
Saturación de agua inicial (Swi)	Sw = 31%
Saturación de petróleo inicial (Soi).	Soi = 52%
Factor volumétrico petróleo ini. (Boi)	1,077
Factor volumétrico gas ini. (Bgi).	0,0109

Fuente: elaboración propia.

Esta tabla presenta los valores necesarios para calcular las reservas del petróleo y gas en el yacimiento. El valor del área fue brindado por la empresa al usar el mapa estructural y utilizar el método gráfico (área bajo la curva), el espesor es la suma de los dos espesores que se van a evaluar, la porosidad fue dada por la empresa después de realizar las pruebas de laboratorio a las muestras de núcleos que se obtuvieron a partir de las pruebas de presión DST la cual se considera como una porosidad media. La saturación inicial de agua al igual que la porosidad se obtuvo al realizar las pruebas de laboratorio sobre las muestras de núcleo y el factor volumétrico inicial se genera a partir de una extrapolación a los datos de factores volumétricos de las pruebas PVT. Hay que mencionar que la producción de petróleo en esta formación da un total de 13189bls donde 10947bls son de petróleo y 2242bls son de gas.

Al igual que la Formación Arena U, la Formación Limestone produce hidrocarburo, la presión es mayor a la presión de burbujeo (P>Pb), por lo tanto, se clasifica como

un yacimiento de petróleo sub-saturado y volumétrico, ya que está totalmente encerrado. Este produce hidrocarburos por gas en solución por debajo del punto de burbujeo.

Se reemplazan los datos con la ecuación 8 para calcular el POES:

$$POES = \frac{7758 * 318,7 * 90 * 0,14 * 0,52}{1,077} = 15041461,08Bls = 15,04MMBls$$

Se reemplaza los datos con la ecuación 9 para calcular el factor de recobro:

$$FR = \frac{13189}{15041461,08} * 100\% = 0,088\%$$

Se reemplaza los datos con la ecuación 10 para calcular las reservas recuperables:

Se reemplazan los datos con la **ecuación 11** para calcular GOES:

$$GOES = \frac{43560 * 318,7 * 90 * 0,14 * 0,17}{0,0109} = 2728116443 PCN$$

Se reemplaza los datos con la **ecuación 12** para calcular el factor de recobro. Se debe aclarar que la producción de gas fue 2242Bls que son 9155PCN, entonces:

$$FR = \frac{9155}{2728116443} * 100\% = 3,3x10^{-4}\%$$

Se reemplaza los datos con la ecuación 13 para calcular las reservas recuperables:

$$Gpr = 2728116443 * 3,3x10^{-4} = 900278,42 PCN = 900,3MPCN.$$

5.2 MÉTODO DE BALANCE DE MATERIALES

Este es otro de los métodos determinísticos para estimar reservas de hidrocarburos y como su nombre lo indica, se basa en el balance de la conservación de la energía.

El método presenta una mayor complejidad que el anteriormente visto. En términos generales se estiman las reservas al tener en cuenta: la masa inicial en el yacimiento, la masa producida, la masa que entra y la masa remanente. Para su elaboración, se debe contar con el historial de presión, datos de producción y datos PVT. Además, la ecuación general se genera a partir de ecuaciones por labor de

los mecanismos de producción existentes. Cuando este método se lleva a cabo, se deben de hacer las siguientes consideraciones³⁸:

- Volumen poroso homogéneo.
- Yacimiento isotérmico.
- No hay dirección el flujo de fluidos.
- Composición del gas constante.
- La expansión del agua connata y de la roca se consideran despreciable.
- Dimensión cero.

La fórmula general de este método para los yacimientos de petróleo, se genera a partir de varias ecuaciones que se darán a continuación³⁹:

Ecuación 14. Volumen original de aceite.

Volumen original de aceite = $N * \beta oi$, (*Bls*)

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1ª edición. 2003, p 117.

Ecuación 15. Volumen original del gas.

Volumen original de gas = $m * N * \beta oi$, (*Bls*)

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1^a edición. 2003, p 117.

Ecuación 16. Volumen de hidrocarburos iniciales.

Volumen de hidrocarburos iniciales = $N * \beta oi * (1 + m)$, (*Bls*)

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1ª edición. 2003, p 117.

Ecuación 17. Volumen de hidrocarburos remanentes.

Volumen de hidrocarburos remanentes

= capa de gas original expandida + petróleo remanente + gas neto liberado , (Bls)

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1ª edición. 2003, p 117. **Ecuación 18.** Capa de gas original expandida.

Capa de gas original expandida = $m * N * \beta oi \frac{\beta g}{\beta g i}$, (*Bls*)

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1^ª edición. 2003, p 117.

³⁸ Escobar, F.H, Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1^a edición. 2003. Pág. 110.

³⁹ Escobar, F.H, Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1^a edición. 2003. Pág. 117-118.

Ecuación 19. Petróleo remanente.

Petróleo remanente = $(N - Np) * \beta o$, (*Bls*)

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1^a edición. 2003, p 117.

Ecuación 20. Gas liberado neto.

Gas neto liberado = gas liberado - gas libre producido

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1ª edición. 2003, p 117.

Ecuación 21. Gas liberado.

Gas liberado = $N * (Rsi - Rs) * \beta g$, (*Bls*)

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1^a edición. 2003, p 117.

Ecuación 22. Gas libre producido.

Gas libre producido = $Np * (Rp - Rs) * \beta g$, (*Bls*)

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1^a edición. 2003, p 117.

Ecuación 23. Gas en solución producido.

Gas en solución producido = Np * Rs, (*Bls*)

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1^a edición. 2003, p 117.

Ecuación 24. Gas neto liberado.

Gas neto liberado = N * (Rsi - Rs) * Bg - Np * (Rp - Rs) * Bg, (Bls)

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1ª edición. 2003, p 117.

Ecuación 25. Volumen hidrocarburos remanentes.

Volumen hidrocarburos remanentes

$$= (N - Np) * Bo + m * N * Boi * \frac{\beta g}{\beta gi} + N * (Rsi - Rs) * Bg - Np$$
$$* (Rp - Rs) * Bg, (Bls)$$

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1ª edición. 2003, p 117.

Ecuación 26. Intrusión neta de agua.

Intrusión neta de agua = (We - Wp) * Bw

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1^a edición. 2003, p 117.

Dake define el decremento del volumen poroso disponible a hidrocarburos debido a la expansión de roca y fluido que ocurre por el decremento de presión a partir del concepto de compresibilidad como⁴⁰:

Ecuación 27. Concepto compresibilidad.

$$c_{e} = -\frac{1}{V} \frac{dV}{dP} \qquad -d(HCVP) = (1+m)N\beta_{oi} \left(\frac{c_{w}S_{w} + c_{f}}{1 - S_{w}}\right) \Delta P$$

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1ª edición. 2003, p 117.

Involucrando todos los términos en mención y despejando N, la ecuación final es:

Ecuación 28. Balance de materia.

$$N = \frac{N_p \left[\beta_o + \beta_g (R_p - R_s)\right] - (W_e - W_p)\beta_w}{\beta_o - \beta_{oi} + m\beta_{oi} \left(\frac{\beta_g}{\beta_{gi}} - 1\right) + \beta_g (R_{si} - R_s) + \beta_{oi} (1 + m) \left(\frac{c_w S_w + c_f}{1 - S_w}\right) \Delta P}$$

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1^a edición. 2003, p 118.

Dónde:

- N = Petróleo original in-situ, BN.
- G = Gas inicial en el yacimiento.
- m = Tamaño inicial de la capa de gas o volumen inicial de la capa de gas/volumen de la zona de petróleo (N).
- Np= Petróleo producido acumulado, BN
- Gp = Gas producido acumulado, PCN.
- Wp = Gas producido acumulado, BN.
- Rp = Relación gas-petróleo acumulada, Gp/Np, PCN/BN.
- Rs = Relación gas-petróleo, PCN/BN.
- ßo, ßw = Factor volumétrico de formación del petróleo y del agua, BY/BN.
- ßg = Factor volumétrico de formación del gas, BY/PCN.
- We = Intrusión acumulada de agua, BN.

⁴⁰ Escobar, F.H, Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1^a edición. 2003. Pág. 117

- Sw = Saturación de agua, fracción.
- cw, co, cg = Compresibilidad del agua, del petróleo y de gas, 1/psi.
- cf = Compresibilidad del volumen poroso, 1/psi.
- P = Presión estática del yacimiento, psia.
- $\Delta P = Pi P$.

5.2.1 Balance de materiales Formación Arena T. Al igual que en el método volumétrico no se realizan los cálculos pertinentes ya que no hubo una producción de hidrocarburos en esta formación.

5.2.2 Balance de materiales Formación Arena U. Se determinó anteriormente que el yacimiento es sub-saturado y volumétrico porque la presión está por encima del punto burbuja (P>Pb). El yacimiento es nuevo y se le aplicó la prueba de presión DST y el método de Horner. Se obtuvieron muestras de los fluidos y roca para realizar análisis PVT y de núcleos. A continuación, se presentan una tabla con los datos obtenidos correspondientes:

Presión inicial (Pi)	2364,8 psi
Factor volumétrico inicial (Boi)	1,057 BY/BN
Presión de burbujeo (Pb)	149 psi
Producción acumulada petróleo (Np)	419 Bls
Producción acumulada gas (Gp)	86 Bls
Presión a la prod. Acumulada (P)	2000 psi
Factor volumétrico (Bo)	1,06 BY/BN
Intrusión de agua (We)	0
Porosidad (%)	14%
Saturación de agua (Sw)	27%
Relación gas/petróleo inicial (Rsi)	12 PCN/BN
Compresibilidad del petróleo (Co)	6,17x10^-6 psi^-1
Compresibilidad efectiva (Ce)	4,83x10^-6 psi^-1

Tabla 28. Datos balance de materiales, Formación Arena U.

Fuente: elaboración propia.

Cuando la (P>Pb), no hay una capa de gas por lo que m=0, la relación gas-petróleo acumulado y relación gas petróleo son iguales Rp=Rs, el gas producido es la multiplicación entre el petróleo producido y la relación gas petróleo Gp=Rs*Np, la relación de gas petróleo es igual a la inicial Rs=Rsi. La compresibilidad del agua Cw y la compresibilidad del volumen poroso Cf se desprecian.

Ya que se tienen las consideraciones para este yacimiento, se puede reemplazar en la **ecuación 28** generales del balance de materiales. Así que la ecuación queda de la siguiente manera:

$$N = \frac{N_p \beta_o}{\beta_o - \beta_{oi} + \beta_{oi} \left(\frac{c_w S_w + c_f}{1 - S_w}\right) \Delta P}$$

Reemplazando todos los datos respectivamente:

$$N = \frac{419 * 1,060}{1,060 - 1,057 + 1,057 * \left(\frac{0 * 0,27 + 0}{1 - 0,27}\right) * 2364,8 - 2000} = 148,05 \, MBls.$$

El petróleo original in-situ de acuerdo al balance de materiales es de 148,05 MBIs el cual es un valor cercano al petróleo calculado para esta formación con el método volumétrico el cual fue 198,2 MBIs, lo cual da una diferencia del 25,3% aproximadamente.

También se puede calcular el petróleo original in-situ teniendo en cuenta la compresibilidad del petróleo Co, realizando la siguiente relación con los factores volumétricos del petróleo:

Ecuación 29. Relación de la compresibilidad del petróleo con los factores volumétricos.

$$\beta_{o} = \beta_{oi} \left[1 + c_{o} \left(P_{i} - P \right) \right] \qquad \beta_{o} - \beta_{oi} = \beta_{oi} c_{o} \Delta P$$

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1^a edición. 2003, p 117.

Por lo tanto, la ecuación de balance de materiales queda de la siguiente manera:

$$N = \frac{N_p \beta_o}{\beta_{oi} c_o \Delta P + \beta_{oi} c_e \Delta P}$$

Se tiene en cuenta la ecuación de la compresibilidad efectiva:

1

Ecuación 30. Compresibilidad efectiva Ce´.

 $c_e' = c_o + c_e$

Fuente: ESCOBAR, Freddy Humberto. Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1^a edición. 2003, p 120.

Por lo tanto, la ecuación queda de la siguiente manera:

$$N = \frac{N_p \beta_o}{\beta_{oi} c_e' \Delta P}$$

Y se reemplazan los datos correspondientes:

N —	419 * 1,060	-10471222 - 1047 MBlc
<i>I</i> v —	$1,057 * 1,1 * 10^{-5} * (2364,8 - 2000)$	= 104712,22 = 104,7 MDts.

El petróleo original in-situ teniendo en cuenta la relación de la compresibilidad del petróleo con los factores volumétricos es de 104,7 MBIs. Esto quiere decir que la diferencia del petróleo in-situ con y sin la relación es de 29,28% aproximadamente.

5.2.3 Balance de materiales Formación Limestone (Calizas A1, A2 y A3). Se determinó anteriormente que el yacimiento es sub-saturado y volumétrico porque la presión está por encima del punto burbuja (P>Pb). El yacimiento es nuevo y se le aplicó la prueba de presión DST y el método de Horner. Se obtuvieron muestras de los fluidos y roca para realizar análisis PVT y de núcleos. A continuación, se presentan una tabla con los datos obtenidos correspondientes:

1246,7 psi					
1,077 BY/BN					
215 psi					
10947 Bls					
2242 Bls					
1224 psi					
1,078 BY/BN					
0					
14%					
31%					
25 PCN/BN					
7,43x10^-6 psi^-1					
6,87x10^-6 psi^-1					

Tabla 29. Datos balance de materiales, Formación Limestone.

Fuente: elaboración propia.

Cuando la (P>Pb), no hay una capa de gas por lo que m=0, la relación gas-petróleo acumulado y relación gas petróleo son iguales Rp=Rs, el gas producido es la multiplicación entre el petróleo producido y la relación gas petróleo Gp=Rs*Np, la relación de gas petróleo es igual a la inicial Rs=Rsi y como se dijo anteriormente no hay intrusión acumuada de agua We=0. La compresibilidad del agua Cw y la compresibilidad del volumen poroso Cf también se desprecian.

Ya que se tienen las consideraciones para este yacimiento, se pueden reemplazar en la **ecuación 28** generales del balance de materiales. Así que la ecuación queda de la siguiente manera:

$$N = \frac{N_p \beta_o}{\beta_o - \beta_{oi} + \beta_{oi} \left(\frac{c_w S_w + c_f}{1 - S_w}\right) \Delta P}$$

Reemplazando todos los datos respectivamente:

$$N = \frac{10947 * 1,078}{1,078 - 1,077 + 1,077 * \left(\frac{0 * 0,31 + 0}{1 - 0,31}\right) * 1246,7 - 1224} = 11,8 MMBls.$$

El petróleo original in-situ de acuerdo al balance de materiales es de 11,8 MMBIs el cual es un valor cercano al petróleo calculado para esta formación con el método volumétrico el cual fue 15,04 MMBIs, lo cual da una diferencia del 21,54% aproximadamente.

También se puede calcular el petróleo original in-situ teniendo en cuenta la compresibilidad del petróleo Co, realizando la siguiente relación con los factores volumétricos del petróleo con la **ecuación 29**:

$$\beta_{o} = \beta_{oi} \left[1 + c_{o} \left(P_{i} - P \right) \right] \qquad \qquad \beta_{o} - \beta_{oi} = \beta_{oi} c_{o} \Delta P$$

Por lo tanto, la ecuación de balance de materiales queda de la siguiente manera:

$$N = \frac{N_p \beta_o}{\beta_{oi} c_o \Delta P + \beta_{oi} c_e \Delta P}$$

Se tiene en cuenta que la compresibilidad efectiva con la **ecuación 30**. Finalmente se reemplaza y la ecuación queda de la siguiente manera:

$$N = \frac{N_p \beta_o}{\beta_{oi} c_e' \Delta P}$$

Se substituyen los datos correspondientes:

$$N = \frac{10947 * 1,078}{1,077 * 1,43 * 10^{-5} * (1246,7 - 1224)} = 33754857,66 Bls = 33,75 MMBls.$$

El petróleo original in-situ teniendo en cuenta la relación de la compresibilidad del petróleo con los factores volumétricos es de 33,75 MMBIs. Esto quiere decir que la diferencia del petróleo in-situ con y sin esta relación es de un 124,4% aproximadamente. Se evidencia que los valores obtenidos no son confiables porque se generó una diferencia muy amplia en este cálculo.

6. DETERMINAR EL POTENCIAL DEL POZO VINO 1 MEDIANTE LOS DATOS OBTENIDOS

En este capítulo se va a determinar el potencial del pozo exploratorio Vino1 al juntar, analizar y evaluar todos los datos obtenidos previamente de las pruebas de presión DST, pruebas de laboratorio PVT y las reservas calculadas.

El potencial de un pozo exploratorio es factor indispensable para definir su explotación y realizar inversiones necesarias para ponerlo en producción. Por esta razón todo el procedimiento paso a paso que se llevó a cabo en este trabajo se reduce a la determinación del potencial del pozo.

Inicialmente es preciso recordar que el Campo Cupiraco actualmente está produciendo hidrocarburos de manera comercial de la Formación Caballos y algunas calizas a rededor de los 8000ft de profundidad. Esta es la primera vez que se van a evaluar las formaciones Arena T, Arena U y Limestone (Calizas A1, A2 y A3). Este Campo ha realizado grandes inversiones por lo que ya se encuentra desarrollado en un gran porcentaje.

Este pozo exploratorio tiene como objetivo principal encontrar petróleo y evaluar el potencial de las formaciones, de no cumplir estos objetivos se tiene la gran ventaja de ser un pozo con poco riesgo económicamente hablando porque puede ser utilizado como pozo productor o inyector para las formaciones de las cuales se están produciendo en la actualidad. Por otro lado, al ser un Campo que tiene un desarrollo considerable, la posible explotación de las formaciones que se evalúan puede ponerse en producción adecuando las facilidades de producción en superficie, generando un ahorro de costos.

6.1 POTENCIAL DE LA FORMACIÓN ARENA T

La Formación Arena T fue la primera en ser evaluada ya que se encuentra a una mayor profundidad que las otras formaciones a valorar. A partir de la prueba de presión DST, la cual se ejecutó perfectamente, se demostró que no hubo una producción de hidrocarburos y por lo tanto no se prosiguió con el desarrollo de los cálculos pertinentes para evaluar su posible potencial.

6.2 POTENCIAL DE LA FORMACIÓN ARENA U

La segunda formación valorada es la Formación Arena U. Se realizó la respectiva prueba de presión DST, la cual se realizó de manera exitosa y del cual se pueden considerar todos los datos de ingeniería confiables. Se comprobó que hubo producción de hidrocarburo. Por consiguiente, con la información suministrada de la prueba de presión DST se desarrolla el método de Horner para obtener los siguientes datos:

Tabla 30	. Datos	generados	de l	la prueba	de	presión	DST	у	método	de	Horner,
Formació	n Arena	U.									

Tiempo de producción (Tp)	37,01 hrs.
Producción acumulada (Np)	505 bls.
Caudal petróleo (Qo)	327,48 BPD.
Presión inicial (Pi)	2364,8 psi.
Permeabilidad (k)	5,89 md.
Daño de formación (s)	-2,37.
Coeficiente de almacenamiento (C)	1,98.

Fuente: elaboración propia.

El tiempo de producción como su nombre lo indica, es el tiempo en el cual se puso a producir el pozo durante la prueba de presión DST. La producción acumulada es la cantidad de fluido producido presentado en barriles. El caudal de petróleo es la cantidad de barriles producidos por día.

La presión inicial de la Formación Arena U es de 2364,8 psi aproximadamente. De acuerdo al periodo de restauración de presión (build-up) la presión baja hasta 172psi y luego se recupera al llegar a 2085psi, un valor un poco cercano a la presión inicial que es 2364psi, esto indica que la formación no corre riesgo de sufrir una depletación temprana por causa de perdida de presión y por lo tanto no se necesitará la implementación de un mecanismo de producción secundario prematuro.

Este yacimiento tiene una permeabilidad de 5,89md, se puede clasificar como una permeabilidad promedio de acuerdo con los rangos establecidos. Asimismo, concuerda con la estimación hecha previamente con la carta esquemática de presiones y las cartas bases de permeabilidades donde se determinó una permeabilidad moderada.

El daño de formación es igual a -2,37, lo cual indica que el pozo fue ligeramente estimulado de acuerdo a la clasificación del daño de formación. También se demuestra que sufrió algún cambio en sus propiedades petrofísicas al estimularse por causa de una acidificación, la cual pudo haber ocurrido por una solución química al realizar las inyecciones a la formación. Además, se infiere que gracias a esta estimulación hubo una mejora en la permeabilidad original del yacimiento y por ende una mejora en la producción.

El coeficiente de almacenamiento del pozo es de 1,975. De acuerdo a los rangos establecidos de este coeficiente de almacenamiento una pequeña parte de la tasa de flujo proviene del volumen almacenado en el pozo. Además, por ser un valor pequeño el pozo tarda poco en estabilizarse, lo cual mejora la producción del pozo.

La prueba de presión DST permitió obtener muestras de los fluidos tanto de fondo como de superficie, por lo que se enviaron estas muestras a laboratorios para determinar su comportamiento PVT (presión, volumen y temperatura). A continuación, se presenta la tabla con el resumen de los valores más destacados:

abia of Dates generados de la proced de laboratorio r vi, romación Arena o.					
Presión de saturación (Psat) y presión	149 psig.				
de burbuja (Pb).					
Densidad muestra (ρ sustancia).	0,8724 gm/cc.				
Gravedad específica (GE).	0,8724.				
Gravedad API (°API).	30,7°.				
Factor volumétrico aceite (Bo).	Bo= 149 psig, 1,076 BY/BN.				

Tabla 31. Datos generados de la prueba de laboratorio PVT, Formación Arena U.

Fuente: elaboración propia.

La presión de saturación es de 149 psig. Esto indica que a esta presión la fase líquida y gaseosa se encuentra en equilibrio y por lo tanto desde este punto al bajar la presión se empieza a generar la primera burbuja de gas a partir del petróleo, por lo cual se define en este mismo punto el Pb (punto burbujeo).

Al realizar la corrección se demostró que a 60°F la densidad del crudo es de 0,8724 g/cc. Como la densidad es la relación entre la masa que puede estar en un volumen determinado, se puede sacar a partir de este dato la gravedad específica y la gravedad °API que son 0,8724 y 30,7° respectivamente. Por lo tanto, el crudo que se presenta en esta formación se clasifica como ligero de acuerdo a la escala de grados API y por consiguiente es fácil de transportar, extraer y es ideal para refinar en combustibles y algunos derivados.

El factor volumétrico facilita las mediciones del petróleo y gas que se hacen en la superficie, ya que los volúmenes a condiciones de yacimiento al ser extraídos cambian. Para esta muestra el factor volumétrico del petróleo a las distintas presiones siempre es Bo < 1,5; por lo tanto, se clasifica como un yacimiento de petróleo negro de bajo encogimiento.

Se puede concluir que las pruebas PVT para esta formación son confiables porque generan una tendencia muy similar a las establecidas al comparar el comportamiento de los parámetros en función de la presión. Además, se aprecia claramente el punto de inflexión en el punto de burbujeo (215 psi), marcando las regiones monofásicas y bifásicas.

Una vez determinados los valores obtenidos de las pruebas de presión DST y PVT, se aplicó el método volumétrico y balance de materiales con el fin de realizar una mejor estimación del POES, GOES y las reservas. A continuación, se presentan los datos obtenidos:

abia 52. Datos generados del metodo volumetrico, i ormación Arena O.				
Petróleo original in-situ (POES)	198,2 MBIs.			
Factor de recobro (FR)	0,21%			
Reservas recuperables (Npr)	41,6 MBIs.			
Gas original in-situ (GOES)	2,28 MMPCN.			
Factor de recobro (FR)	0,02%			
Reservas recuperables (Gpr)	45,7 MPCN.			

 Tabla 32. Datos generados del método volumétrico, Formación Arena U.

Fuente: elaboración propia.

Tabla 33. Datos generados del balance de materiales, Formación Arena U.

V	
Petróleo original in-situ (POES)	148,05 MBIs.
Petróleo original in-situ (POES) con	104,7 MBIs.
relación entre el Co y Bo-Bg	
Eucante: alaboración propio	

Fuente: elaboración propia.

El petróleo que se encuentra en esta formación es 198,2 MBIs aproximadamente de acuerdo al método volumétrico, pero se conoce que este volumen no puede llegar a ser extraído en su totalidad, por esta razón se tiene el factor de recobro que es del 0,21% para calcular la cantidad de petróleo que se puede extraer. La multiplicación de estos términos genera unas reservas recuperables de 41,6 MBIs. Por otro lado, el gas que se encuentra en la formación es de 2,28 MMPCN, su factor de recobro es del 0,02% y por ende sus reservas recuperables son de 45,7MPCN.

Asimismo, el petróleo que se encuentra en esta formación de acuerdo al balance de materiales es de 148,05 MBIs, que comparado con el método volumétrico genera una diferencia del 25,3%. También se calculó teniendo en cuenta la relación del Co con los factores volumétricos arrojando un petróleo original in-situ de 104,07 MBIs, que comparado con el otro valor de balance de materiales genera una diferencia del 29,28% aproximadamente.

En conclusión, teniendo todos los análisis y datos mencionados en este capítulo para la Formación Arena U, se puede concluir que este yacimiento tiene potencial para ser explotado porque cuenta con características positivas tanto de la roca como de los fluidos. Por otro lado, se puede aumentar su producción promedio diaria de 13709 Bls a 14037 Bls aproximadamente y también aumentaría sus reservas de 16,4 MMBIs a 16,45 MMBIs aproximadamente.

6.3 POTENCIAL DE LA FORMACIÓN LIMESTONE (CALIZAS A1, A2 Y A3)

La tercera formación valorada es la Formación Limestone. Se llevó a cabo la última prueba de presión DST en la cual se presentaron varios inconvenientes a la hora de su ejecución donde el principal fue que la unidad de bombeo hidráulico (UBH) empleada en la inyección del fluido motriz de la bomba Jet no era adecuada para la operación de las herramientas DST, puesto que presenta fallas eléctricas que perjudicaron la operación de las válvulas de fondo, las cuales causaban caídas en la presión anular y por consiguiente detenciones en el periodo de flujo. También

hubo un periodo de cierre en fondo adicional por fugas en la sección de las BOP. Por lo tanto, se infiere que la prueba de presión DST no se realizó de manera exitosa y no se pueden considerar que los datos de ingeniería sean confiables.

Por otro lado, se comprobó que hubo una producción de hidrocarburo y de todas maneras se toma la información suministrada de la prueba de presión DST para desarrolla el método de Horner obteniendo los siguientes datos:

Tabla 34. Datos generados de la prueba de presión DST y método de Horner, Formación Limestone.

Tiempo de producción (Tp)	161 hrs.
Producción acumulada (Np)	13189 bls.
Caudal petróleo (Qo)	1966 BPD.
Presión inicial (Pi)	1246,7 psi.
Permeabilidad (k)	185 md.
Daño de formación (s)	-5,024.
Coeficiente de almacenamiento (C)	1769.

Fuente: elaboración propia.

El tiempo de producción como su nombre lo indica, es el tiempo en el cual se puso a producir el pozo durante la prueba de presión DST el cual fue demasiado a causa de las fallas en la UBH. La producción acumulada es la cantidad de fluido producido presentado en barriles. El caudal de petróleo es la cantidad de barriles producidos por día.

La presión inicial de la Formación Limestone es de 1246,7 psi aproximadamente el cual es un valor bajo que fue directamente afectado por la pérdida de suministro de energía causando las caídas de presión. De acuerdo al periodo de restauración de presión (build-up) la presión baja hasta 1176psi y luego se recupera al llegar a 1224 psi, un valor un poco cercano a la presión inicial que es 1246,7psi, esto indica que la formación no corre riesgo de sufrir una depletación temprana por causa de perdida de presión y por lo tanto no se necesitará la implementación de un mecanismo de producción secundario prematuro.

Este yacimiento tiene una permeabilidad de 185,01 md, se puede clasificar como una permeabilidad alta de acuerdo con los rangos establecidos. Podemos concluir que no concuerda con la estimación hecha previamente con la carta esquemática de presiones y las cartas bases de permeabilidades donde se determinó una permeabilidad baja.

El yacimiento tiene un daño de formación igual a -5,02, lo cual nos indica que el pozo fue estimulado de acuerdo a la clasificación del daño de formación, también se demuestra que sufrió algún cambio en sus propiedades petrofísicas al estimularse por causa de una fracturación, la cual pudo haber ocurrido al realizar tantas inyecciones a la formación porque hubo un gasto de gas de 1604 MMscfd aproximadamente. Además, se infiere que gracias a esta estimulación hubo una

mejora notable en la permeabilidad original del yacimiento y por ende una mejora en la producción.

El coeficiente de almacenamiento del pozo es de 1768,55. De acuerdo a los rangos establecidos de este coeficiente de almacenamiento la mayor parte de la tasa de flujo proviene del volumen almacenado en el pozo. Además, por ser un valor tan grande el pozo tarda en estabilizarse, lo cual afecta la producción del pozo.

La prueba de presión DST permitió obtener muestras de los fluidos tanto de fondo como de superficie, por lo que se enviaron estas muestras a laboratorios para determinar el comportamiento PVT (presión, volumen y temperatura). A continuación, se presenta la tabla con el resumen de los valores más destacados:

abia de Balde generados de la pracea de laboratorio i VI, i enhación Elíneotorio.			
Presión de saturación (Psat) y presión	215 psig.		
de burbuja (Pb).			
Densidad muestra (<i>psustancia</i>).	0,8686 gm/cc.		
Gravedad específica (GE).	0,8686.		

31.4°.

Bo= 215 psig, 1,085 BY/BN.

Tabla 35. Datos generados de la prueba de laboratorio PVT, Formación Limestone.

Fuente: elaboración propia.

Factor volumétrico aceite (Bo).

Gravedad API (°API).

La presión de saturación es de 215 psig. Esto indica que a esta presión la fase líquida y gaseosa se encuentra en equilibrio y por lo tanto desde este punto al bajar la presión se empieza a generar la primera burbuja de gas a partir del petróleo, por lo cual se define en este mismo punto el Pb (punto burbujeo).

Al realizar la corrección se demostró que a 60°F la densidad del crudo es de 0,8686 g/cc. Como la densidad es la relación entre la masa que puede estar en un volumen determinado, se puede sacar a partir de este dato la gravedad específica y la gravedad °API que son 0,8686 y 31,4° respectivamente. Por lo tanto, el crudo que se presenta en esta formación se clasifica como ligero de acuerdo a la escala de grados API y por consiguiente es fácil de transportar, extraer y es ideal para refinar en combustibles y algunos derivados.

El factor volumétrico facilita las mediciones del petróleo y gas que se hacen en la superficie, ya que los volúmenes a condiciones de yacimiento al ser extraídos cambian. Para esta muestra el factor volumétrico del petróleo a las distintas presiones siempre es Bo < 1,5; por lo tanto, se clasifica como un yacimiento de petróleo negro de bajo encogimiento.

Se puede concluir que las pruebas PVT para esta formación generan una tendencia muy similar a las establecidas al comparar el comportamiento de los parámetros en función de la presión. Además, se aprecia claramente el punto de inflexión en el punto de burbujeo (215 psi), marcando las regiones monofásicas y bifásicas.

Una vez determinados los valores obtenidos de las pruebas de presión DST y PVT, se aplicó el método volumétrico y balance de materiales con el fin de realizar una mejor estimación del POES, GOES y las reservas. A continuación, se presentan los datos obtenidos:

Tabla 30. Dates generados del metodo volumetrico, i ormación Elmestorie.				
	Petróleo original in-situ (POES)	15,04 MMBIs.		
Factor de recobro (FR)		0,088%		
Reservas recuperables (Npr)		1,3 MMBIs.		
Gas original in-situ (GOES)		2728 MMPCN.		
Factor de recobro (FR) Reservas recuperables (Gpr)		$3,3x10^{-4}\%$		
		900,3 MPCN.		

 Tabla 36. Datos generados del método volumétrico, Formación Limestone.

Fuente: elaboración propia.

Tabla 37. Datos generados del balance de materiales, Formación Limestone.

Petróleo original in-situ (POES)	11,8 MMBIs.
Petróleo original in-situ (POES) con	33,75 MMBIs
relación entre el Co y Bo-Bg	
Franta, alabaraatén nyanja	

Fuente: elaboración propia.

El petróleo que se encuentra en esta formación es 15,04 MBIs aproximadamente de acuerdo al método volumétrico, pero se conoce que este volumen no puede llegar a ser extraído en su totalidad, por esta razón se tiene el factor de recobro que es del 0,088% para calcular la cantidad de petróleo que se puede extraer. La multiplicación de estos términos genera unas reservas recuperables de 1,3 MMBIs. Asimismo, el gas que se encuentra en la formación es de 2728 MMPCN, su factor de recobro es del $3,3x10^{-4}$ y por ende sus reservas recuperables son de 900,3 MPCN.

Por otro lado, el petróleo que se encuentra en esta formación de acuerdo al balance de materiales es de 11,8 MMBIs, que comparado con el método volumétrico genera una diferencia del 21,54% aproximadamente. También se calculó teniendo en cuenta la relación del Co con los factores volumétricos arrojando un petróleo original in-situ de 33,75 MMBIs, que comparado con el otro valor de balance de materiales genera una diferencia del 124,4% aproximadamente, demostrando que no son datos confiables.

En conclusión, se determinó que esta formación ha tenido una producción de hidrocarburos incluso mayor a la Formación Arena U la cual generaría un aumento en su producción promedio diaria y reservas. Pero teniendo todos los análisis y datos mencionados en este capítulo para la Formación Limestone, se puede concluir que se debe realizar nuevamente una prueba de presión DST para generar datos confiables y así determinar el posible potencial de este yacimiento.

7. EVALUAR FINANCIERAMENTE EL PROYECTO A PARTIR DEL INDICADOR VALOR PRESENTE NETO (VPN)

Una vez finalizado los cálculos que determinaron el potencial del pozo se debe hacer una evaluación financiera de este para determinar su viabilidad. El Campo Cupiraco está ubicado en Villagarzón, Putumayo donde actualmente hay producción de hidrocarburos de las formaciones caballos y algunas calizas. Se encuentran involucradas dos empresas, la operadora y la prestadora de servicios (Halliburton), esta última es la que brindó toda la información y el análisis financiero se hará de acuerdo a sus necesidades. El pozo exploratorio evaluó las tres formaciones conocidas como: Formación Arena T, Formación Arena U y Formación Limestone (Calizas A1, A2 y A3), de las cuales hubo producción de hidrocarburo en las dos últimas. Las características tanto de roca como de fluidos determinaron que el pozo tiene el potencial para producir al ser evaluado con las herramientas DST. Esto generaría un aumento tanto en la producción como en las reservas del Campo y, por ende, en los ingresos.

Desde la posición de la compañía prestadora de servicios, se realizaron análisis de costos de inversión, costos de operación e ingresos. El proyecto tiene una duración de dos meses, se utilizó el dólar americano como unidad monetaria de valor constante. La tasa mínima que la compañía está dispuesta a ganar después de realizar la inversión y asumir costos es denominada Tasa de Interés de Oportunidad que corresponde al 15% Efectiva Anual (EA). La evaluación financiera se efectuó por medio del indicador financiero Valor Presente Neto (VPN).

7.1 ANÁLISIS DE COSTOS DE INVERSIÓN

El primer paso que se realizó para evaluar el pozo exploratorio a partir de las pruebas de presión DST fue transportar las herramientas DST, equipos de fondo y de superficie y caseta DST hasta el Campo Cupiraco. Luego arribo el personal encargado para realizar la operación e inducción. La empresa cuenta ya con estas herramientas por lo cual no se hace una inversión para comprarlas, el costo e inversión va directamente al talento humano, equipos de superficie, equipos de fondo, mantenimiento previo de las herramientas y la prestación del servicio. La operación se realizó en aproximadamente 2 meses, donde se realizaron las dos primeras pruebas de presión DST en el primer mes y la última en el segundo.

Los mantenimientos se realizan a las herramientas DST si han estado más de seis meses sin utilizarse y también después de cada corrida, por lo tanto, estos entrar tanto en costos de inversión. A continuación, se presenta la tabla con los costos de inversión:

Tabla 38.Costos de inversión.

ITEMS Costo (USD)		Descripción			
Transporte	7500	Transporte de personal y equipos ida y vuelta. 1 tractomula, 1 camión sencillo y una C100. Personal movilizado vía aérea Bogotá Villa Garzón.			
Equipos de superficie	14000	Mantenimiento – inspecciones certificadas de los equipos. En particular los equipos de superficie provistos por Halliburton en este trabajo eran pocos. La facilidad donde se recibía el crudo era de una compañía de producción local.			
Otros	6000	Equipos de superficie que están pagándose. 3000 USD mensuales por 2 meses.			
Total	27500				

Fuente: elaboración propia, con base en. HALLIBURTON Latin America S.A. Testing and Subsea. Consultado en marzo del 2019.

7.2 ANÁLISIS DE COSTOS DE OPERACIÓN

En la ejecución de las pruebas de presión DST los costos asumidos a esta operación incluyen el coste de transporte, talento humano, suministros, instalaciones, reparaciones, entre otros. La vida útil de las herramientas de presión DST dependen directamente de su uso, pero estas están en un rango de 5 a 10 años. A continuación, se presenta la tabla con los costos de operación:

Tabla 39. Costos de operación.

ITEMS	Costo (USD)	Descripción	
Talento humano	40000.	Salarios fijos del personal (2 meses – Incluyendo todas las prestaciones de ley que cubre la empresa). 4 de herramientas de fondo y 2 para equipos de superficie.	
Equipos de fondo	26000.	Mantenimiento – inspecciones certificadas de los equipos y herramientas para 3 corridas.	
Otros	18000	Bonos de campo del persona (Se pagan por cada día que permanecen en pozo). 4 de herramientas de fondo y 2 para equipos de superficie. Horas nocturnas y dominicales de personal.	
Total	84000		

Fuente: elaboración propia, con base en. HALLIBURTON Latin America S.A. Testing and Subsea. Consultado en marzo del 2019.

7.3 ANÁLISIS DE INGRESOS

Como se mencionó anteriormente, el análisis financiero se ejecuta enfocado en la empresa prestadora de servicios y por lo tanto los ingresos están asociados únicamente a los servicios prestados a la empresa operadora durante los dos meses en los cuales se realizaron las pruebas de presión DST. Al ser una empresa prestadora de servicios los ingresos no se ven afectados por factores como las regalías o precios actuales por barril de petróleo. A continuación, se presenta la tabla con los ingresos:

Tabla 40. Items vs costo.

ITEM	COSTO (USD)		
Servicios prestados x mes	65000		
Total (x 2 meses)	130000		

Fuente: elaboración propia, con base en. HALLIBURTON Latin America S.A. Testing and Subsea. Consultado en marzo del 2019.

7.4 EVALUACIÓN FINANCIERA

Para evaluar la viabilidad financiera de este proyecto se utiliza el indicador financiero Valor Presente Neto (VPN).

7.4.1 Valor presente neto (VPN). El valor presente neto mide la rentabilidad deseada después de recuperar toda la inversión. Para ello, calcula el valor actual de todos los flujos futuros de caja, proyectados a partir del primer periodo de operación, y le resta la inversión total expresada en el momento cero. Si el resultado es mayor que cero, mostrará cuanto se gana con el proyecto, después de recuperar la inversión, por sobre la tasa "i" que se exigía de retorno al proyecto; si el resultado es igual a cero, indica que el proyecto reporta exactamente la tasa "i" que se quería obtener después de recuperar el capital invertido; y si el resultado es negativo, muestra el monto que falta para ganar la tasa que se deseaba obtener después de recuperada la inversión⁴¹.

Ecuación 31. Valor presente neto.

$$VPN(i) = \Sigma Fn (1+i)-n$$

Fuente: BACCA C, Guillermo. Ingeniería Económica. Octava edición. Bogotá. Fondo Educativo Panamericano, 2005, p 97.

Dónde:

- n: periodo de tiempo (mensual)
- i: tasa de interés de oportunidad (TIO)
- Fn: Flujo neto de caja.

Se debe hacer una tasa equivalente, esto quiere decir que se hace una conversión de la tasa de interés de oportunidad (TIO) para poder utilizar la ecuación del valor presente neto. La tasa de interés de oportunidad de la compañía prestadora de servicios es del 15% efectivo anual, la cual se debe pasar a una tasa mensual. A continuación, se presenta esta conversión:

Ecuación 32. Conversión tasa de interés de oportunidad anual a mensual.

TIO mensual =
$$(1+i)^{\frac{1}{n}} - 1$$

Fuente: BACCA C, Guillermo. Ingeniería Económica. Octava edición. Bogotá. Fondo Educativo Panamericano, 2005. p. 103.

Donde:

- TIO mensual: tasa de interés de oportunidad mensual.
- i: tasa de interés de oportunidad anual (%).
- n: periodo de tiempo (12 meses)

⁴¹ Chaín, N.S. Proyecto de inversión: Formulación y evaluación, México.1era edición. 2007. Página 253.

Se reemplaza en la ecuación 32:

TIO mensual = $(1 + 0.15)^{\frac{1}{12}} - 1$ TIO mensual = $(1.15)^{\frac{1}{12}} - 1$ TIO mensual = 0.0117*100%

TIO mensual = 1,17%

Fuente: elaboración propia, con base en. BACCA C, Guillermo. Ingeniería Económica. Octava edición. Bogotá. Fondo Educativo Panamericano, 2005. p. 103.

Para determinar el estado financiero del proyecto, se debe hacer un flujo de caja para establecer las entradas y salidas de efectivo de cada periodo, para luego implementar el valor presente neto. A continuación, se presenta la figura con el flujo de caja:

Figura 16. Flujo de caja.

Fuente: elaboración propia.

A continuación, se presenta el flujo de caja neto, el cual representa el valor resultante del balance monetario, significando la parte inferior de la línea del tiempo un periodo de perdida y la parte superior de la línea del tiempo un periodo de ganancia.

Fuente: elaboración propia.

Y ejecutado los flujos de caja, se prosigue a calcular el valor presente neto al reemplazar los valores en la **ecuación 31**:

$$VPN(0,0117) = -27500 + \frac{18700}{(1+0,0117)^1} + \frac{27300}{(1+0,0117)^2} = 17655,96$$

Al evaluar el proyecto con el indicador financiero valor presente neto (VPN), se concluye que la ejecución de las pruebas de presión DST es atractiva para la empresa, porque a dólares de hoy ofrece una ganancia de USD 17655,96 adicional a la Tasa de Interés de Oportunidad.

8. CONCLUSIONES

- La unidad de bombeo hidráulica (UBH) empleada en la inyección del fluido motriz de la bomba Jet no es adecuada para la operación de las herramientas DST. Esto afectó la operación de las válvulas de fondo únicamente a la última prueba realizada a la Formación Limestone (Calizas A1, A2 Y A3), provocando caídas en la presión y detenciones en el periodo de flujo, además de periodos de cierre en fondo adicional por fugas en la sección de las BOP.
- Los datos e información de ingeniería son confiables únicamente para las formaciones Arena T y Arena U, ya que en las pruebas de presión DST se recuperaron muestras representativas en fondo y superficie de los fluidos, se registraron datos de producción del pozo bajo diferentes escenarios y se reportaron datos verídicos.
- Se determinó a partir de las pruebas de presión DST que no hubo una evidencia de producción de hidrocarburo en la Formación Arena T y, por consiguiente, se descarta para una realización de los posteriores análisis y evaluaciones pertinentes.
- Se demostró una producción de hidrocarburos de las formaciones Arena U y Limestone (Calizas A1, A2 y A3) desde las pruebas de presión DST, lo cual da pasó a los análisis y evaluaciones de estas dos formaciones únicamente.
- No se estableció la existencia de heterogeneidades, discontinuidades y conectividad para la Formación Arena U, ya que la prueba de producción requería más de las 37 horas que tardo y por lo tanto no alcanzó la región del tiempo tardío como se demostró en el método de Horner.
- Se establecieron las propiedades para la Formación Arena U como lo son la presión inicial de 2365 psi mostrando que no corre riesgo de una depletación temprana por su fácil recuperación de presión; la permeabilidad de 5,89 md clasificándose como una permeabilidad que deja pasar los fluidos moderadamente; el daño de formación de -2,37 indicando una ligera estimulación del pozo sufrida por un cambio en sus propiedades petrofísicas probablemente causadas por el cañoneo, esto mejoró la permeabilidad y por consiguiente la producción; y finalmente la capacidad de almacenamiento de 1,98 probando que solo una pequeña parte de la tasa de flujo proviene del volumen almacenado del pozo y por ende, el pozo tarda poco en estabilizarse. Además, se comprueba la importancia de las memorias y sensores de presión en tiempo real en el fondo del pozo que permitieron obtener la información para realizar los análisis respectivos.

- Se demostró que el muestreo y los análisis PVT realizados a las muestras obtenidas para las formaciones Arena U y Limestone (Calizas A1, A2 y A3) son confiables y que tienen 30,7° y 31,4° API respectivamente, por lo que se clasifican como livianos de acuerdo a la escala de grados API y consecuentemente son fáciles de transportar, extraer y son ideales para refinar en combustibles y algunos derivados.
- Se determinó que el pozo Vino 1 tiene el potencial para producir hidrocarburos, ya que cuenta con la Formación Arena U de la cual se demostraron sus características de roca y fluidos favorables y reservas recuperables de 41,6 MBIs de petróleo y 45,7 MPCN de gas. Con esto se aumenta la producción promedio diaria de 13.709 BIs a 14.037 BIs y también aumentan las reservas de 16,4 MMBIs a 16,45 MMBIs aproximadamente. Además, está la Formación Limestone que, a pesar de no contar con información confiable, evidenció una producción diaria de hidrocarburo de 1966 BIs, lo cual aumenta su producción diaria de 14.037 BIs a 16.003 BIs y tiene el potencial para producir como se manifestó en los cálculos realizados.
- Al evaluar el proyecto con el indicador financiero valor presente neto (VPN), se demuestra que la ejecución de las pruebas de presión DST son atractivas para la empresa, porque a dólares de hoy ofrece una ganancia de17.655,96 dólares adicional a la Tasa de Interés de Oportunidad.

9. RECOMENDACIONES

- Realizar nuevamente una prueba de presión DST a la Formación Limestone (Calizas A1, A2 y A3) con una UBH apta, esto con el fin de analizar, evaluar y determinar su verdadero potencial; dejando que la prueba corra por mucho más tiempo para determinar la existencia de heterogeneidades, discontinuidades y conectividad.
- Realizar una prueba de presión a la Formación Arena U que dure aproximadamente el doble de tiempo de producción (74 horas) para llegar a la región del tiempo tardío y determinar heterogeneidades, discontinuidades y conectividad.
- Informarse adecuadamente de las limitaciones y desventajas que tienen las pruebas de presión DST, con el fin de realizar pruebas exitosas.
- Completar y poner en producción el pozo Vino1 ya que cuenta con el potencial para producir hidrocarburos de la Formación Arena U y muy posiblemente de la Formación Limestone (Calizas A1, A2 y A3).
- Realizar una optimización en las facilidades de producción para ajustar las nuevas producciones que van a ser provenientes del pozo Vino 1.
- Realizar un nuevo plan de desarrollo del Campo Cupiraco ya que actualmente se producen hidrocarburos de las formaciones caballos y algunas calizas; y se van a sumar a la producción la Formación Arena U y muy probablemente la Formación Limestone (Calizas A1, A2 y A3).

BIBLIOGRAFÍA

AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Informe de Cartografía geológica cuenca Caguán-Putumayo. Tunja, 2009. Universidad Pedagógica y Tecnológica de Colombia.

AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Colombian sedimentary basins. Bogotá, 2007.

AGENCIA NACIONAL DE HIDROCARBUROS. ANH. Informe ejecutivo evaluación del potencial hidrocarburífero de las cuencas colombianas. Santander, 2009. Universidad Industrial de Santander.

API DIVISION OF PRODUCTION. History of Petroleum Engineering. New York City, 1961.

CHAÍN, N.S, Proyecto de inversión: Formulación y evaluación, México.1era edición. 2007.

CHAUDHRY, A.U, Oil Well Testing Handbook. Elsevier, 2003.

ESCOBAR, F.H, Fundamentos de ingeniería de yacimientos, Neiva. Universidad Surcolombiana, 1ª edición. 2003.

ESCOBAR, F.H, Análisis moderno de pruebas de presión, Neiva. Universidad Surcolombiana, 3ª edición. 2014.

ESPINOZA, S.F, Los proyectos de inversión: evaluación financiera, Costa Rica. 1ª edición. 2007.

HALLIBURTON. Drill stem testing overview. Test tool applications. Chapter I.

HALLIBURTON. Latin America S.A. Testing and Subsea. Informe de los equipos y sensores para pruebas de producción en Campo Cupiraco, año 2018.

_____. Informe general prueba de presión DST en la Formación ArenaT, año 2018.

_____. Informe general prueba de presión DST en la Formación ArenaU, año 2018.

_____. Informe general prueba de presión DST en la Formación Limestone, año 2018.

_____. Informe pruebas de laboratorio PVT Formación ArenaU, año 2018.

_____. Informe pruebas de laboratorio PVT Formación Limestone, año 2018.

HORNER, D.R, Modern Well Test Analysis (en línea). Petroway. Octubre de 2013 (18 Abril de 2018) disponible en: <u>http://www.portaldelpetroleo.com/2013/08/dst-drill-stem-test.html</u>

HORNER, D.R.: "Pressure Build-up in Wells". Pro.Tercer Congreso Mundial de Petróleo, E.J. Brill, Leiden (1951).

https://www.google.com.co/maps/place/Villagarz%C3%B3n,+Putumayo/@2.40230 06,-

<u>76.7353493,7.25z/data=!4m5!3m4!1s0x8e28af8a7b0310f9:0xb08aeace5a3138de!</u> 8m2!3d1.028507!4d-76.617431?hl=es-419.

HUERTA, Jonathan. Métodos y herramientas para estimar la presión de formación antes y después de la terminación de un pozo. Ciudad de México, 2009. Universidad Autónoma de México. Facultad de ingeniería.

INSTITUTO COLOMBIANO DE NORMAS TÉCNICAS Y CERTIFICACIÓN. Compendio de normas para trabajos escritos. NTC-1486-6166 Bogotá D.C.: El instituto, 2018. ISBN 9789588585673 153 p.

LEE, W.J, Well Testing. Society of Petroleum Engineers of AIME, 1982.

NARANJO, A.A, Evaluación De Yacimientos De Hidrocarburos. 2nd ed. Medellín, Universidad Nacional de Colombia: 2009.

ROBERT L.M, Mecánica de fluidos, Florida. Universidad de Dayton, 6ª edición, 2006.

ANEXOS

ANEXO A

CARACTERÍSTICAS DE LAS FACILIDADES DEL CAMPO CUPIRACO

Cuadro 1. Características de las facilidades de producción en la superficie del Campo Cupiraco.

SISTEMA SDAS VINO 1					
DESCRIPCION	VARIABLE A MEDIR	TIPO TRANSDUCTOR	Fecha Calibració n	Rango (psi/F/ mm H2O)	Numero Serial
Pressure Transducer 0 -4000 psi	Presión Estática	Rosemount 3051TG5A2B21AK 5Q4 A0300	03/04/201 7	0-2000	2202012
Pressure Transducer 0 -4000 psi	Presión Aguas Abajo del Choke	Rosemount 3051TG5A2F21AK5 Q4 A0300	03/04/201 7	0-2000	2202011
Pressure Presión en Cabeza Transducer 3051	Rosemount 3051TG5A2F21AK5	29/03/201 7	0-10000	2067183	
0 -10000 psi	Presión Anular	Q4 A0301	29/03/201 7	0-10000	2222279
Pressure Transducer Diff 0 - 400 H2O	Presión Diferencial	Rosemount 3051CD3A03A1AS 5K5Q4 A0300	27/03/201 7	0-400	2222295
Temperature	Temperatura Aguas Arriba del Choke	Decompunt	22/03/201 7	-50-400	0691959
Transducer -50 - 400 ºF	Temperatura del Gas	Rosemount 3144PD1A1K5XA K1127	22/03/201 7	-50-400	0691964
	Temperatura Aguas Abajo del Choke		22/03/201 7	-50-400	0685452
Pre Amp for Flow Meter	Medidor Aceite 1	Nuflo Cameron 818FU-7/12-AL-IS-	NA	NA	T23659-08
	Medidor Agua 1	3/4" NPT	NA	NA	T23564-7

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe de los equipos y sensores para pruebas de producción en Campo Cupiraco, año 2018. Consultado en abril del 2018.
ANEXO B SECUENCIA OPERACIONAL DE LA FORMACIÓN ARENA T

Fecha	Hora	Secuencia de Eventos					
03/06/2017	12:00	Herramientas DST, flow head y caseta DST en locación.					
05/06/2017	12:00	Personal de DST downhole tools en locación: Maximiliano					
		Jurado, Juan Jose Castillo,					
		Gustavo Ortiz y Javier Castro. ESTADO DE OPERACIÓN:					
		Corriendo sarta de limpieza					
		Para realizar drill out de cemento y cambio de fluido del pozo.					
	15:00	Realizó inducción HSE de CLIENTE – Pioneer, ficha médica y					
		presentación con el					
		Company man.					
	17:00	Se realizó revisión de crossovers y conexiones.					
06/06/2017	12:00	ESTADO DE OPERACION: Realizó cambio de breaker del top					
		drive y continuó con la					
		Corrida de sarta de limpieza.					
	17:00	Probó integridad (5000 psi -10min) y funcionamiento de LPR					
	40.00	valve. Pruebas OK.					
	18:30	Probo integridad (5000 psi -10min) de Champ Packer – Safety					
	10.00	Joint - IST. Pruebas OK.					
	19.00	POOR de BRA de impleza, se presentaron restricciones para					
		De cemento.					
07/06/2017	11.00	Configuró I PR en modo open kit v probó integridad de la válvula					
		con 5000 psi por 10					
		Minutos. Prueba OK. Instaló 4 pines de bronce ¹ / ₄ " en LPR Valve.					
	12:00	ESTADO DE OPERACIÓN: Chequeando BHA de limpieza para					
		acondicionarlo y bajar					
		nuevamente a cambiar fluido y acondicionar el pozo.					
	13:00	Operador de SWT Oscar Cabrera en locación.					
	14:00	Probó integridad de ARMADA sample carrier con 5000 psi por 10					
		minutos. Prueba OK.					
	16:00	Verificó funcionamiento de Memory gauges Spartek con prueba					
		atmosférica. Memorias					
		OK.					
07/06/2017	17:00	SSV y tubería 3" 1502 de Halliburton SWT en locación.					
08/06/2017	12:00	ESTADO DE OPERACIÓN: Continua corriendo sarta de limpieza					

Cuadro 2. Secuencia operacional, Formación Arena T.

	16:00	Probó funcionamiento de flow head y SSV en conjunto con panel de control doble y
		Sistema ESD. Funcionamiento del sistema hidráulico y válvulas OK.
09/06/2017	00:00	ESTADO DE OPERACIÓN: Presentó nuevamente restricciones para circular y pasar
		desde 9737 ft MD.
	04:30	ESTADO DE OPERACIÓN: Comenzó POOH de sarta de limpieza nuevamente.
10/06/2017	12:00	ESTADO DE OPERACIÓN: Corriendo sarta de limpieza con Drill Pipe 3 ¹ / ₂ " IF 13.3 lb/ft
		Para realizar drill out y cambio de fluido por salmuera 8.4 ppg.
11/06/2017	10:00	Personal (2 ingenieros) y equipos de Surface Data Acquisition en
		locación.
	12:00	ESTADO DE OPERACIÓN: Realizó drill out hasta 9829 ft MD.
	15:00	Probó disco de ruptura de TST (4.5K – SN 12194) con 4000 psi por 10 minutos. Prueba
		OK.
	16:00	Realizo cambio de fluido al pozo por salmuera de 8.43 ppg.
	17:00	Probó integridad (5000 psi -10min) de Champ Packer – Safety Joint –TST PARA
		SEGUNDA CORRIDA. Pruebas OK.
	17:30	Armó línea de 3" 1502 desde mesa del rig hasta SSV en superficie.
12/06/2017	06:00	ESTADO DE OPERACIÓN: Recuperando sarta de limpieza, quebrando drill pipe 3 1/2"
		IF a los racks de tubería.
	09:00	Probó integridad (5000 psi -10min) y funcionamiento de LPR valve PARA SEGUNDA.
		PRUEBA DE POZO. Pruebas OK.
	10:00	Configuró LPR (PARA SEGUNDA PRUEBA DE POZO) en modo open kit y probó
		Integridad de la válvula con 5000 psi por 10 minutos. Prueba OK. Instaló 4 pines de
		Bronce ¼" en LPR Valve.
	18:00	Probó flow head en dirección del flujo contra lower master valve con 5000 psi por 10
		Minutos. Prueba OK.
13/06/2017	06:00	Realizando registros cased hole del pozo.

	10:00	Realizó pruebas adicionales al flow head con 5000 psi por 10 Minutos. Prueba OK.
	11:30	Calibró presión de nitrógeno de LPR Valve en 2230 psi.
	11:40	Registró presión de carga de nitrógeno del ARMADA sample carrier, 11850 psi.
	13:30	Instaló y probó discos de ruptura en ARMADA Sample carrier: Disco A 6.5K (SN10148),
		Disco B 7.0K (SN10320) y disco C blank. Pruebas de presión OK.
13/06/2017	23:45	Reunión pre-operacional para arme de BHA TCP-DST.
14/06/2017	00:00	Rig up de llave hidráulica de TR & RS.
	00:11:45	Programó y conectó memory gauge Spartek SN 21201 con batería SN 16223023
		Para registro de presión en tubing. Tasa de registro 1 dato (P,T) cada 1 segundo.
	00:15:04	Programó y conectó memory gauge Spartek SN 20990 con batería SN 17003091
		Para registro de presión en anular. Tasa de registro 1 dato (P,T) cada 5 segundos.
	00:21:09	Programó y conectó memory gauge Spartek SN 21202 con batería SN 16223024
		Para registro de presión en tubing. Tasa de registro 1 dato (P,T) cada 1 segundo.
	00:23:59	Programó y conectó memory gauge Spartek SN 21972 con batería SN 17003094
		Para registro de presión en anular. Tasa de registro 1 dato (P,T) cada 5 segundos.
	00:45	Conectó memory gauges en gauge carrier.
	01:00	Comenzó conexión de BHA TCP.
	02:59	Finalizó conexión de BHA TCP hasta pup joint de 2 7/8" EUE de 6.2 ft.
	03:00	Comienza armado de BHA DST.
	04:30	BHA DST + sub radiactivo conectado. Bajando 10 DC 4 ³ / ₄ " NC- 38.
	05:30	Termina conexión de Drill Collar 4 ¾" NC-38.
	05:35	Conectando 1 Tubing 3 $\frac{1}{2}$ " W563 + camisa + 1 parada de tubing 3 $\frac{1}{2}$ " W563.
	06:40	Dentro del pozo BHA TCP-DST + 10 DC 4 $\frac{3}{4}$ " NC38 + 1 Tubing 3 $\frac{1}{2}$ " W563 + camisa 3
		1/2" EUE + 1 parada Tubing 3 1/2 W563.
	06:45	Acondicionando líneas para circular en reversa y realizar prueba de presión.
	06:51	Cierran pipe rams y comienza circulación en reversa.
	06:56	Paran circulación en reversa y abren pipe rams.
	07:00	Se presuriza contra la TST con 865 psi.
	07:05	Se aumenta presión hasta 2000 psi, la presión comienza a caer.

	07:10	Se drena presión para revisar líneas.					
	07:58	Se presuriza contra la TST con 1000 psi.					
	08:06	Se sube la presión hasta 4000 psi.					
	08:08	Presión cae hasta 3960 psi.					
	08:19	Se drena presión, ultima registrada 3941 psi. Prueba OK.					
	08:25	Bajando tubería 3 1/2" W563.					
	13:25	Dentro del pozo BHA TCP-DST + 10 DC 4 ³ / ₄ " NC38 + 1 Tubing 3 ¹ / ₂ " W563 + camisa 3					
	13:28	1/2" EUE + 52 paradas Tubing 3 1/2 W563.					
		Armando líneas para circular en reversa y realizar prueba de presión.					
	13:32	Cierran pipe rams y circulando en reversa @ 29 stk por minuto con 124 psi.					
	13:36	Circulando en reversa @ 30 stk/min con 173 psi.					
	13:39	Circulando en reversa @ 40 stk.min con 220 psi.					
	13:54	Termina circulación en reversa, total bombeados 800 stk, para un total de 67 Bbls,					
14/06/2017		constante de la bomba 0.0838.					
	13:59	Abren pipe rams y presuriza contra la TST con 1000 psi.					
	14:05	Se aumenta la presión a 4160 psi, la presión cae.					
	14:06	Se identifica fuga en coupling que va al crossover de prueba, descargando presión					
		para corregir fuga.					
	14:10	Se presuriza con 1000 psi.					
	14:14	Se aumenta la presión hasta 4179 psi.					
	14:19	Presión comienza a estabilizar en 4115 psi.					
	14:28	Se drena presión, ultima registrada 4105 psi, prueba OK.					
	14:30	Bajando tubería 3 1/2" W563.					
	19:45	Con parada de tubing #97 tomó parámetros de sarta: Peso subiendo 135 klbs, bajando					
		90 klbs, arrastre 3 ft.					
	20:05	Tocó fondo de pozo (9820 ft MD) con 293 juntas + 11 ft de junta #294 de tubing 3 1/2"					
		TSH 563.					
	20:10	Levantó sarta 1.25 ft más arrastre 3 ft.					
	21:00	Realizó espaciamiento de sarta retirando junta #294 y conectando 2 pup joints (8.22 ft					
		Y 8.2 ft) entre junta #292 y #293 de tubing 3 1/2" TSH 563.					
	21:15	Cerró pipe rams e inicio circulación en reversa.					
	21:50	Circulación en reversa @ 4.2 BPM (50 SPM) finalizada. Total bombeado 1550 strokes					
		(130 bbl), presión de circulación 400 psi. Abrió pipe rams nuevamente.					
	22:00	Alineó bomba #1 del rig y presurizó en directa con 500 psi.					

	22:05	Aumentó presión de prueba a 2000 psi.
	22:08	Aumentó presión de prueba a 4000 psi.
	22:15	Prueba de integridad OK. Descargó presión en tubing.
	22:25	Posicionó sarta en tensión con 5.6 ft de tronco.
	22:30	Realizó reunión pre-operacional para correlación de Weatherford wireline.
	23:30	Comenzó RIH de GR-CCL de WFT.
15/06/2017	00:40	Encontró marca radiactiva @ 9566.54 ft MD
	00:50	Levantó sarta 1.62 ft.
	01:15	Encontró marca radiactiva @ 9564.915 ft MD. SARTA EN POSICION.
	01:20	Comenzó POOH de GR-CCL de WFT.
	02:15	GR-CCL de WFT en superficie.
	02:50	Pre-asentó packer @ 9659.28 ft MD con 10 klbs de peso.
	03:00	Comenzó RIH de GR-CCL de WFT nuevamente.
	04:00	Encontró marca radiactiva @ 9564.78 ft MD. SARTA EN POSICION CON PACKER
		PREASENTADO CON 10 KLBS. Comenzó RIH de GR-CCL de Weatherford.
	05:00	GR-CCL en superficie. Comenzó rig down de equipos de wireline WFT.
15/06/2017	05:30	Rig down de wireline finalizado.
	05:35	Bajó sarta y descargó un total de 26 klbs sobre el packer a la misma profundidad.
	05:45	Crossover TSH563 pin X 5 ¹ / ₂ "-4 ACME pin torqueado con 3500 lb-ft.
	06:00	Subiendo tubería 3" 1502 a la mesa del rig.
	06:20	Armando cabezal de prueba.
	08:40	Termina armado de cabezal y comienza armado de líneas de superficie.
	08:45	Se levanta la sarta y se baja hasta el coupling del ultimo tubo, peso sobre el empaque
		30 Klbs.
	08:50	Asegurando cabezal de prueba.
	09:02	Probando cabezal de prueba con 1000 psi.
	09:12	Se aumenta la presión hasta 3968 psi.
	09:25	Drena presión, prueba de cabezal OK.
	09:32	Probando con 1000 psi contra la TST, se prueba la conexión W563 del último tubo.
	09:40	Se drena presión, prueba OK.
	10:11	Probando con 1000 psi cabezal, líneas y SSV.
	10:15	Se aumenta la presión hasta 3700 psi.
	10:25	Se drena presión, prueba OK.

	10:31	Probando con 1000 psi cabezal, líneas, SSV y choke manifold de					
		Oxicentro.					
	10:36	Se aumenta la presión hasta 3600 psi.					
	10:44	Se drena presión, prueba OK.					
	11:26	Se presuriza anular con 1600 psi. Activa válvula TST.					
	11:34	Se aumenta presión anular hasta 2284 psi.					
	11:44	Se aumenta hasta 2500 psi el anular.					
	12:06	Drena presión anular, prueba OK.					
	12:10	Reunión por parte de personal Maxim Fishing para corrida de					
		guaya para abrir camisa.					
	12:30	Maxim Fishing armando equipo.					
	15:10	Se prueba equipo Maxim Fishing con 2400 psi OK.					
	15:30	Armando líneas de Coiled Tubing.					
	15:45	Bajando Slick line.					
	15:55	Slick line no pasa del crossover 5 ½ Acme Pin * 3 ½ THS 533 Pin.					
	16:00 Buscando solución para el inconveniente con el cros						
	17:00	Retirando equipo de Slick Line.					
	17:30	Desconectando y bajando cabezal de prueba Halliburton.					
	18:10	Termina desconexión de cabezal.					
	18:15	Retirando crossover por donde no paso Slick Line.					
	18:20	Acondicionando árbol de producción de CLIENTE.					
	20:10	Árbol de producción de CLIENTE conectado a la sarta.					
	20:25	Presurizó en directa contra LPR para probar integridad de					
		conexiones del cabezal, con					
15/06/2017		500 psi por 10 minutos, prueba OK.					
	20:30	Cerró master valve de árbol de producción y presurizó con 500 psi.					
	20:45	Aumentó presión de prueba de árbol a 2200 psi.					
	20:55	Prueba de cabezal OK, descargó presión.					
	21:00	Reunión pre operacional para corrida de slick line de Maxim Fishing.					
	22:00	Rig Up de slick line finalizado. Armado con shifting tool para abrir camisa de circulación.					
	22:45	Localizó camisa de circulación 2.81" perfil X @ 9169 ft (medida de slick line). Hay un					
		desfase de 60.89 ft en la medida, la profundidad real de la camisa es 9229.89 ft.					
	22:50	Maniobra de apertura de camisa de circulación realizada.					
	23:00	Verificó apertura de camisa con circulación en directa.					
	23:55	Shifting tool de slick line en superficie.					
16/06/2017	00:00	Realizando cool down de unidad de bombeo de nitrógeno y Armando línea de presión					

		de Guacamaya.
	00:30	Línea de bombeo de nitrógeno conectada.
	01:45	Cool down de unidad de nitrógeno finalizado.
	01:50	Línea de bombeo de nitrógeno probada con 1000 psi. Comenzó desplazamiento de
		Salmuera en directa con nitrógeno.
	02:30	Bombeó nitrógeno hasta recuperar 20 bbl de salmuera (nivel teórico 2300 ft). Presión
		En cabeza 1000 psi.
	02:35	Comenzó a bajar slick line con shifting tool para cerrar camisa de circulación.
	03:20	Localizó camisa @ 9165 ft MD nuevamente (medida de slick line).
	03:35	Realizó maniobra para cerrar camisa de circulación y levantó shifting tool 150 ft.
	04:03	Se presuriza en directa con nitrógeno hasta 1200 psi, al no observar retornos por el
		anular se decide sacar la shifting tool. Descargó presión anular.
	04:05	Descargó presión de nitrógeno en tubing.
	04:15	Presurizando anular, se bombean 8 bbl de salmuera y la presión no sube.
	04:45	Shifting tool en superficie, se observa que los pines no están cizallados.
	05:20	Bajando con gauge cutter a detectar nivel del pozo (con slick line).
	05:45	Llenó anular con 10 bbl de salmuera. Evidencio retorno por tubería – camisa de circula-
		cion abierta.
	05:50	Sacando gauge cutter de slick line a superficie nuevamente. Realizando cool down de
		unidad de bombeo de nitrógeno de Guacamaya.
	06:00	Comienza bombeo de nitrógeno.
	07:25	Termina bombeo de nitrógeno, total volumen de fluido desplazado 20 Bbls.
	07:30	Slick Line bajando a cerrar camisa.
	09:10	Slick line cierra camisa y comienza a sacar.
	10:00	Slick Line en superficie.
16/06/2017	10:10	Retirando líneas de Coiled Tubing y armando líneas de 3" Halliburton.
	10:40	Abriendo valvula master y lateral del árbol de producción, presión en tubería 1190 psi.
	10:44	Se presuriza anular con 1500 psi, presión en tubería 1195 psi.
	10:48	Drenando presión de nitrógeno en tubería.
	11:22	Finaliza despresurización de nitrógeno, presión en anular 1480 psi, en tubería 0 psi.

	11:45	Slick Line bajando a verificar valvula LPR y TST abiertas.					
	13:25	Slick Line llega a profundidad 9630 ft con medida SL /					
		profundidad real 9690 ft.					
	12:30	Slick Line sacando herramienta a superficie.					
	13:00	Slick Line en superficie.					
	13:15	Desarmando equipo de Slick Line.					
	13:20	Reunión pre operacional cañoneo.					
	14:15	Se presuriza con 1200 psi para probar conexiones 1502 2" que van a la entrada del					
		árbol de producción.					
	14:28	Presion no se mantiene, se descarga para corregir fuga en crossover ala – ala 2".					
	14:45	Se cambia crossover ala – ala de 2".					
	15:17	Se presuriza con 2000 psi para probar conexiones 1502 2" que van a la entrada del					
		árbol de producción.					
	15:20	Arreglando problema en la bomba del equipo que se está utilizando para la prueba.					
	15:49	Se presuriza hasta 4000 psi con test pump Halliburton.					
	16:04	Drena presión, prueba OK.					
	16:13	Lanzan barra para detonar cañones.					
	16:16	Se ve un cambio en el anular, se detonan cañones.					
	16:20	Observando pozo.					
	16:35	Presión anular sube desde 1460 psi hasta 1537 psi.					
	17:45	Bajando con herramienta para pescar barra de impacto de TCP					
	18:30	Realizó maniobra para pescar barra					
	19:15	Barra de impacto en superficie, confirmó detonación por estado de bloque de impresión					
		De la barra.					
	19:25	Descargó presión anular, LPR cerrada. Abrió pipe rams.					
	19:45	Corriendo shifting tool para abrir camisa de circulación.					
	20:30	Realizó maniobra para abrir camisa de circulación.					
	21:00	Shifting tool en superficie.					
	21:30	Conectó línea de segunda wing valve del árbol de producción					
		para recibir salmuera de					
	04.45	Circulacion en reversa en trip tank del rig.					
	21:45	Cerro pipe rams y bombeo 10 bbl por anular para llenar pozo.					
	21:50	Presurizó anular con 400 psi, confirmó apertura de camisa de circulación por presión					
		Reflejada aguas arriba del choke (en tubing).					
	22:00	Montando línea de bombeo desde UBH hasta sección B del anular.					
16/06/2017	23:45	Línea de bombeo montada y fugas corregidas.					
	23:53	Presurizó línea de bombeo con 4000 psi.					

17/06/2017	00:00	Prueba de línea de bombeo de UBH OK. Descargó presión.						
	00:50	Comenzó cambio de fluido circulando en reversa con UBH,						
		desplazando por crudo de						
		7.3 ppg. Rata de bombeo 1.7 BPM.						
	01:55	Rata de bombeo 2.1 BPM, presión de bombeo 400 psi.						
	03:05	Máxima presión de bombeo 745 psi @ 2.1 BPM, comenzó a disminuir presión de circu-						
		lacion.						
	04:00	Comenzó RIH de jet pump con slick line de Maxim Fishing.						
	04:45	Realizó maniobra para sentamiento de jet pump.						
	05:30	Slick line en superficie, confirmó jet pump sentada en camisa de circulación. Comenzó						
		Rig down de equipos de slick line de Maxim Fishing.						
	06:33	Inició inyección de 5 bbl de agua para prueba funcionamiento UBH y Jet Pump						
	06:36	Presurizó anular con 786 psi utilizando UBH						
	06:40	Drenó presión anular a 58 psi.						
	06:42	Presurizó anular con 365 psi						
	06:44	Drenó presión anular a 58 psi e inició presurización anular utilizando UBH.						
	07:08	Presurizó anular con 2512 psi						
	07:10	Drenó presión anular a 368 psi.						
	07:14	Drenó presión anular a 224 psi.						
	09:00	Realizó reunión pre operacional recomendaciones						
		funcionamiento y operación válvula						
		LPR-N con los representantes de CLIENTE y empresas contratistas.						
	09:06	Inició presurización de anular y bombeo con crudo a través de UBH para prueba de						
		producción.						
	09:12	Presurizó anular con 3031 psi.						
	10:00	Oxicentro alineó pozo por separador de prueba. Fluido recuperado 89.86 bls.						
	11:20	Apagó UBH e inició drenaje presión anular para cambio de UBH.						
	11:26	Drenó presión anular a 32 psi.						
	12:35	Inició presurización anular con UBH						
	12:52	Presurizó anular con 2910 psi. Inició prueba de producción.						
	14:00	Entregó reporte de producción a Agustin Aldana representante cliente.						
	14:30	Total fluido recuperado 320 bbl.						
	15:30	Evidenció cambio de fluido en pozo de crudo a agua.						
	16:32	Inició drenaje de presión anular desde 2930 psi						
	16:45	Finalizó drenaje de presión anular en 2658 psi						

	06:00	Presión anular estable en 2641 psi					
18/06/2017	08:41	Presurizó anular con 2725 psi					
	18:00	Continúa prueba producción. USCP: 79.1 psi, CHP: 2728.2 psi.					
	23:00	Presurizó anular desde 2733 psi a 3315 psi para activar primer					
		set de muestreadores					
		de ARMADA sampler carrier					
	23:57	Personal de Well Testing toma muestras en superficie					
19/06/2017	00:00	Presurizó anular desde 3285 psi hasta 3900 psi para activar					
		segundo set de					
		Muestreadores de ARMADA sample carrier					
	00:30	Drenó presión anular a cero para cerrar válvula LPR-N. Pozo cerrado en fondo					
	00:40	Cerró válvulas aguas arriba de Choke Manifold de Well Testing					
	06:30	Continuó cierre de pozo en fondo					
	12:30	Finalizó cierre de pozo en fondo. Inició recuperación de jet pump					
		con break line pulling tool					
	15:30	Finalizó recuperación de jet pump, sin novedad.					
	15:45	Inició rig down equipos break line y lubricador					
	16:00	Inició circulación de pozo en directa. Cambio de fluido por					
		salmuera de 8.4 ppg.					
	17:00	Circuló en directa 378 bbls de salmuera de 8.4 ppg, (cambió					
		nuido de pozo) @ 7 bpm					
	17.10	Well checking					
	17.10	Vien checking. Desligé Dig Deurs de línes de superfisie en mass del Dig pagede.					
	17.30	al cabezal de					
		producción					
	18·10	Árbol de producción desconectado					
	18:35	Champ packer desasentado con 5 klbs de overpull. Pesos de la					
	10.00	sarta: Subiendo 135					
		Klbs y bajando 90 klbs.					
	19:00	Well checking finalizado, comenzó a recuperar tubing en paradas					
		a la torre.					
	05:15	Camisa de circulación y una junta de tubing desconectada.					
	06:00	BHA DST en superficie.					
	07:30	Finalizó desconexión de BHA DST. Continúa desconexión de					
		BHA TCP Weatherford.					
	10:00	Descargó DATA de memory gauges y entregó al representante					
		del cliente.					
		FIN DE LA OPERACION HALLIBURTON TSS					

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación ArenaT, año 2018. Consultado en abril del 2018.

ANEXO C

CARTAS BASES DE PERMEABILIDADES

Fuente: HORNER, D.R, Modern Well Test Analysis (en línea). Petroway. Octubre de 2013 disponible en: <u>http://www.portaldelpetroleo.com/2013/08/dst-drill-stem-test.html</u>. Consultado en marzo del 2018.

ANEXO D TABLAS DE PRODUCCIÓN DE LA FORMACIÓN ARENA T

Fecha y Hora	Choke	Presión Cabeza	Temperatura Cabeza	Presión Estrangulada	Temperatura Estrangulada	Gasto de Líquido	Gasto de Aceite	Presion de separacion
dd/mm/yyyy hh:mm	/64 th in	PSIG	° F	PSIG	°F	BPD	BPD	PSIG
6/17/2017 9:00	128	5.300	103.30	2.300	102.20	13.049	0.00	8.90
6/17/2017 9:15	128	83.300	115.00	80.300	115.20	13.049	0.00	15.00
6/17/2017 9:30	128	75.400	120.30	72.900	120.10	13.049	0.00	14.70
6/17/2017 9:45	128	76.400	124.60	74.100	124.40	13.049	0.00	14.00
6/17/2017 10:00	128	78.500	128.40	75.300	128.00	13.049	0.00	13.30
6/17/2017 10:15	128	75.400	131.50	72.500	131.80	13.049	0.00	9.80
6/17/2017 10:30	128	76.000	129.10	74.400	128.40	13.049	0.00	11.90
6/17/2017 10:45	128	78.100	130.20	75.300	130.10	24.211	0.00	14.00
6/17/2017 11:00	128	75.600	126.20	74.000	125.90	63.052	0.00	13.30
6/17/2017 11:15	128	79.500	125.70	76.400	123.40	99.650	0.00	13.90
6/17/2017 11:30	128	54.800	130.70	50.200	132.20	138.935	0.00	7.50
6/17/2017 11:45	128	45.000	129.50	42.300	131.30	148.229	0.00	15.00
6/17/2017 12:00	128	41.000	128.40	38.900	130.70	148.229	0.00	28.50
6/17/2017 12:15	128	37.100	127.00	36.100	126.30	148.229	0.00	27.40
6/17/2017 12:30	128	32.400	123.90	31.400	120.40	148.229	0.00	26.50
6/17/2017 12:45	128	72.100	124.60	70.700	124.60	148.229	0.00	25.40
6/17/2017 13:00	128	81.900	126.80	79.300	127.30	189.876	0.00	28.10
6/17/2017 13:15	128	78.700	122.30	78.300	119.40	206.480	0.00	29.00
6/17/2017 13:30	128	79.900	128.40	77.900	128.00	222.522	0.00	26.00
6/17/2017 13:45	128	81.100	129.00	79.100	128.50	241.468	0.00	29.90
6/17/2017 14:00	128	80.100	127.80	78.100	125.60	260.408	0.00	29.80
6/17/2017 14:30	128	78.300	126.60	76.100	127.70	2472.782	0.00	17.90
6/17/2017 15:00	128	80.500	130.20	77.300	128.70	1685.988	0.00	25.20
6/17/2017 15:30	128	78.900	129.10	77.000	128.80	1723.454	0.00	23.30
6/17/2017 16:00	128	75.600	129.40	74.100	129.20	1928.495	0.00	16.70
6/17/2017 16:30	128	78.100	131.40	75.600	129.60	1667.888	0.00	14.60
6/17/2017 17:00	128	74.000	132.10	71.300	129.40	1581.018	0.00	14.10

Tabla 1. Tablas de producción, Formación Arena T.

156

6/17/2017 17:30	128	74.600	131.60	72.700	128.50	1511.523	0.00	14.00
6/17/2017 18:00	128	75.400	131.70	72.700	128.00	1494.149	0.00	14.20
6/17/2017 18:30	128	75.400	132.00	72.300	128.90	1494.149	0.00	13.90
6/17/2017 19:00	128	77.400	132.40	73.400	129.00	1528.897	0.00	13.80
6/17/2017 19:30	128	77.400	133.40	73.600	130.40	1494.149	0.00	13.60
6/17/2017 20:00	128	77.400	133.70	73.400	130.70	1511.523	0.00	13.40
6/17/2017 20:30	128	77.600	134.40	73.900	131.60	1511.523	0.00	13.40
6/17/2017 21:00	128	79.100	134.40	75.800	131.20	1667.888	0.00	26.00
6/17/2017 21:30	128	77.600	134.90	74.100	130.70	1250.916	0.00	26.30
6/17/2017 22:00	128	82.900	135.80	78.500	131.60	0.000	0.00	35.20
6/17/2017 22:30	128	77.600	135.70	73.700	131.70	1655.486	0.00	24.10
6/17/2017 23:00	128	78.300	136.00	75.100	131.50	1889.595	0.00	25.30
6/17/2017 23:30	128	81.300	136.40	77.900	132.10	1402.979	0.00	32.60
6/18/2017 0:00	128	81.700	136.60	78.300	132.30	1499.736	0.00	35.90
6/18/2017 0:30	128	80.500	137.20	77.700	133.10	1467.483	0.00	34.00
6/18/2017 1:00	128	80.900	137.50	77.200	133.10	1451.357	0.00	33.00
6/18/2017 1:30	128	80.900	138.00	77.100	133.40	1402.979	0.00	32.90
6/18/2017 2:00	128	78.300	138.20	74.800	133.40	1709.376	0.00	27.80
6/18/2017 2:30	128	78.300	138.50	74.800	134.10	1660.998	0.00	27.40
6/18/2017 3:00	128	81.000	138.70	77.600	134.10	0.000	0.00	34.00
6/18/2017 3:30	128	80.100	139.80	77.000	134.80	1467.483	0.00	42.60
6/18/2017 4:00	128	77.000	139.70	74.000	134.10	1515.862	0.00	23.60
6/18/2017 4:30	128	81.900	139.70	78.300	133.80	2660.822	0.00	34.00
6/18/2017 5:00	128	76.000	140.20	72.600	134.80	1790.007	0.00	11.40
6/18/2017 5:30	128	81.300	139.90	78.100	134.00	1515.862	0.00	29.90
6/18/2017 6:00	128	82.000	140.10	78.700	134.40	1580.367	0.00	33.20
6/18/2017 6:30	128	81.900	140.70	78.100	135.10	1515.862	0.00	31.30
6/18/2017 7:00	128	83.100	141.70	79.600	136.30	0.000	0.00	37.80
6/18/2017 7:30	128	82.300	141.20	79.000	136.00	1806.133	0.00	41.00
6/18/2017 8:00	128	79.700	141.60	76.200	136.30	1644.872	0.00	34.00
6/18/2017 8:30	128	79.700	142.00	76.300	136.50	1144.960	0.00	24.10
6/18/2017 9:00	128	79.100	142.40	75.300	137.20	3821.907	0.00	15.40

6/18/2017 9:30	128	79.100	143.70	74.800	138.90	1983.522	0.00	13.40
6/18/2017 10:00	128	79.700	149.70	74.100	148.80	1725.502	0.00	8.30
6/18/2017 10:30	128	76.400	151.60	74.100	150.60	1451.357	0.00	8.40
6/18/2017 11:00	128	74.200	150.10	73.300	146.80	1677.124	0.00	5.90
6/18/2017 11:30	128	82.300	152.90	80.000	150.00	1402.979	0.00	33.80
6/18/2017 12:00	128	75.000	153.80	73.200	151.50	1612.619	0.00	10.70
6/18/2017 12:30	128	75.400	156.20	72.900	156.30	1435.231	0.00	1.80
6/18/2017 13:00	128	75.800	147.40	75.400	141.20	1693.250	0.00	12.10
6/18/2017 13:30	128	79.100	144.70	74.100	138.30	2209.288	0.00	8.40
6/18/2017 14:00	128	80.500	144.90	75.500	139.90	2418.929	0.00	9.40
6/18/2017 14:30	128	80.900	145.70	75.500	140.40	1483.610	0.00	8.90
6/18/2017 15:00	128	84.600	147.80	78.900	143.70	1612.619	0.00	26.80
6/18/2017 15:30	128	81.500	147.20	78.300	142.00	1773.881	0.00	26.00
6/18/2017 16:00	128	83.800	146.60	77.600	143.50	2273.793	0.00	23.90
6/18/2017 16:30	128	79.900	147.20	77.100	142.10	2451.181	0.00	23.60
6/18/2017 17:00	128	78.700	147.10	76.200	141.10	1451.357	0.00	22.20
6/18/2017 17:30	128	79.100	147.10	76.200	141.30	1435.231	0.00	21.50
6/18/2017 18:00	128	78.500	145.80	75.900	140.20	1402.979	0.00	20.50
6/18/2017 18:30	128	78.500	145.80	75.500	140.30	2644.695	0.00	19.10
6/18/2017 19:00	128	80.500	145.90	76.600	141.20	3354.248	0.00	18.40
6/18/2017 19:30	128	79.900	145.70	76.300	140.00	2854.336	0.00	18.10
6/18/2017 20:00	128	79.900	145.60	76.200	139.50	2144.783	0.00	17.50
6/18/2017 20:30	128	81.300	145.80	77.700	140.50	2257.667	0.00	21.30
6/18/2017 21:00	128	82.300	145.90	78.500	140.10	2386.676	0.00	28.00
6/18/2017 21:30	128	81.921	147.19	77.744	141.88	2144.783	0.00	26.47
6/18/2017 22:00	128	80.903	147.33	77.261	142.07	1677.124	0.00	25.38
6/18/2017 22:30	128	80.292	147.58	76.455	142.14	1499.736	0.00	23.81
6/18/2017 23:00	128	79.477	146.14	75.569	140.17	2273.793	0.00	23.77
6/18/2017 23:30	128	82.533	146.95	78.268	141.15	1596.493	0.00	22.44
6/19/2017 0:00	128	82.736	148.12	78.671	142.80	1580.367	0.00	19.87

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación ArenaT, año 2018. Consultado en mayo del 2018.

ANEXO E SECUENCIA OPERACIONAL DE LA FORMACIÓN ARENA U

Fecha	Hora	Secuencia de Eventos
20/06/2017	12:00	Inició operación de corrida de tapón perforable por parte de
		Weatherford wireline para
		aislar intervalos de formación T.
	17:43	Instaló discos de ruptura de 6.5 y 7.0 K (SN 9221) y 7.0K
		(11587).en armada sampler y
		probó con el 90%, prueba ok.
	19:30	Instaló 6 muestreadores (SAP: 11897679, 11897692, 11897690, 11897694, 11399565
		11897678) en armada sampler y probó integridad con 5000 psi
		prueba ok.
	21:00	Sentó tapón permanente (Bridge Plug) de 7" @ 9746 ft MD.
	21:30	Llegada de OMNLDT 5" (válvula de circulación), equipos
		relacionados en MT # 314283.
21/06/2017	00:00	Wireline de Weatherford en superficie. Confirmó bridge plug en fondo.
	01:00	Rig down de wireline finalizado. Inició rig up de Maxim Fishing
		braided line.
	02:00	Herramientas DST probadas con 5000 psi, pruebas OK. LPR en
		open kit y con 4 pines
		De bronce instalados. Se verifico funcionamiento de OMNI Valve
	07.45	con ciclado completo.
	07:15	Midio y calibro BHA # 2 en presencia del Company Man Ing.
	08.00	Carlos Higuita.
	08:00	Carlos Higuita.
	16:30	Rig down de braided line, finalizó operación de cementado por
	17.00	Realizó reunión pre operacional con todo el personal
	17.00	involucrado en la conexión v
		corrida de sarta DST-TCP # 2, se asumen roles v
		responsabilidades entre compañías
		involucradas en la operación, se plasmó en acta de reunión.
		Inició izaie, conexión v corrida de BHA TCP de Weatherford.
		descrito en DOS.
	17:18:00	Conectó memorias cristal de cuarzo spartek de 16K con baterías
		para registrar
		presiones en el espacio anular. (20990_batt17003091& 21972_batt17003094)
21/06/2017		programadas @ 5 segundos
	1	

Cuadro 3. Secuencia operacional, Formación Arena U.

	17:22:00	Conectó memorias cristal de cuarzo spartek de 16K con baterías
		para registrar
		presiones en tubería. (21201_batt16223023 &
		@ 1 sequedo
	47.00	Prené presience de N2 e véhades LPP Na OMNI @ 00 grades
	17:30	E en superficie. Presión
		de carga 2150 psi.
	18.00	Conectó Sarta TCP hasta cabeza mecánica de disparo 2 7/8"
	10.00	EUE.
	18:15	Conectó primer tubo de 2 7/8" EUE de 31.09 ft + Ventana de producción abierta.
	18:30	Conectó segundo tubo de 2 7/8" EUE e inició conexión de sarta de prueba DST.
	20:30	Conectó herramientas de prueba DST hasta OMNI DT circulating valve 5".
	20:45	Conectó xver @ 3 ¹ / ₂ " IF + sub radiactivo 3 ¹ / ₂ " IF.
	21:30	Conectó 10 Drill collars 4 3/4" 47 lb/ft.
	22:20	Conectó Xover @ 3 1/2 Hyd 563 + 1 junta de 3 1/2" Hyd 563 de
		31.48 ft + camisa de
		circulación 2.81" tipo VL de Weatherford con conexiones 3 $\frac{1}{2}$ " EUE + xover @ 3 $\frac{1}{2}$ " hyd
		563.
	22:30	Primera parada de tubing TSH563 conectada sobre BHA.
	22:33	Reversó 8 bbl de fluido para limpiar flapper de TST.
	22:41	Presurizó en directa con 500 psi contra TST para prueba de presión BHA. Se observo
		Caída de presión.
	22:43	Aumento presión a 2000 psi contra TST. Prueba Falló. Descargo presión.
	22:54	Reverso nuevamente 8 bbl a mayor caudal.
	23:01	Presurizo contra TST para prueba BHA a 500 psi por 3 min. Prueba OK.
	23:06	Presurizo contra TST para prueba BHA a 2000 psi por 3 min. Prueba OK.
	23:12	Presurizo contra TST para prueba BHA a 3970 psi por 6 min. Prueba OK.
	23:20	Continuó corrida de tubing TSH 563.
22/06/2017	03:20	Parada #46 en el pozo.
	03:28	Reverso 5 bbl de salmuera 8.4 ppg para limpieza de flapper de TST.
	03:32	Presurizó en directa con 500 psi.
	03:35	Presurizó en directa con 4000 psi.
	03:42	Prueba de integridad OK. Descargó presión.
	03:45	Continuó corrida de tubing TSH563.

	09:10	Sarta en profundidad, con 95 triples de tubing TSH 563 + 1 pup
		Junta de 31.62 ft
	00.20	Tomá pesos de sarta subjendo 135K bajando 90K arrastre 3 ft
	09.20	Deió sarta tensionada con un tronce de 4.50 ft
	09.20	Alippó salta tensionada con un tronco de 4.50 ft.
	09.30	espacio anular @ 2 bpm
		con 150 psi.
	09:40	Abrió pipe ram superior y alineó bomba del rig para prueba en directa contra TST.
22/06/2017	10:12	Realizó prueba de integridad de tuberia contra TST con 500, 2000 y 4000 psi. Prueba
		ok.
	10:20	Desconectó líneas de prueba.
	10:30	Charla pre operacional para realizar operación de correlación de
		marca radiactiva por
		parte de weatherford.
	10:35	Inició operación de wireline con GR & CCL.
	12:40	Encontró marca radiactiva @ 9337.03 ft. (7.81 ft abajo).
	13:15	Sacó sarta de wireline GR & CCL hasta superficie.
	13:50	Realizó espaciamiento de sarta, sacó pup joint de 6.27 ft, y subió la sarta 1.54 ft con un
		tronco total de 6.04 ft para dejar marca radiactiva en profundidad.
	14:15	Probó pegue que se despegó luego del espaciamiento, 500 y 4000 psi contra TST, x
		15000 lbs de peso.
	15:00	Realizó pre asentamiento de packer champ IV 7" @ 9444 ft (Mitad de gomas) con
		15000 lbs de peso.
	16:30	Bajó de nuevo con wireline y verificó marca radiactiva @9329.16 ft, marca en posición.
	17:20	Rig down de equipo de wireline.
	17:30	Instaló pup joint de 4.28 ft arriba de Junta # 286 (última junta) y terminó de aplicar peso
		Al packer, peso total aplicado 25000 lbs. Tronco en superficie 3 ft.
	19:00	En espera de confirmación del cliente para posicionamiento final de sarta.
	19:30	Confirmo decisión del cliente de bajar la sarta 1ft más.
	20:05	Desasento Packer champ IV 7" sin overpull.
	20:38	Posiciono sarta 1 ft más abajo y asentó packer @ 9451.47 ft MD (top of packer) con
		30000 lbs de peso.
	21:40	Instaló árbol de producción.

	21:52	Probó conexión de árbol de producción contra válvula TST con
		1000 psi por 5 min.
		Prueba OK.
	21:59	Presurizó anular con 500 psi para probar sello de packer.
	22:05	Aumentó presión de prueba de packer a 2500 psi. OMNI 3.0 (Well Test).
	22:15	Finalizó prueba de packer. Prueba OK. Descargó presión. OMNI 3.5 (Well Test).
	22:30	Instalo línea de producción.
	22:45	Probo línea de producción contra válvulas aguas arriba de Choke manifold a 4000 psi.
		Prueba OK.
	23:30	Línea de Bombeo de Nitrógeno de Guacamaya conectada.
	23:47	Inició ciclado de válvula OMNI desde well test 3.5.
23/06/2017	00:14	Ciclo válvula OMNI a posición de circulación con 6 ciclos de presión de 1500 psi.
	00:43	Línea de bombeo de Nitrógeno probada con 1000 psi. Prueba OK.
	00:45	Inicio bombeo de Nitrógeno en directa
23/06/2017	01:30	Finalizo bombeo de nitrógeno en directa con 22 bbl de salmuera 8.4ppg recuperados
		por flow line. WHP 1030 psi
	02:17	Ciclo válvula OMNI a posición Blank con 5 ciclos de presión anular de 1500 psi.
		OMNI 1.5 (Blank).
	02:31	Presurizó anular con 1500 psi para abrir válvula LPR-N. Volumen bombeado 21 stk.
		OMNI 2.0 (Well Test).
	02:45	Finalizó descarga de presión de Nitrógeno en tubería por equipo de Well Testing
	03:15	Realizo registro Sonolog. Nivel @ 1920 ft MD.
	03:30	Realizo reunión pre-operacional de equipo de Slick-line
	04:00	Inicia RIH de Slickline con Gauge Cutter de 2" para verificar apertura de válvulas.
	05:05	Gauge Cutter @ 9464 ft MD. Verificó válvulas LPR-N y TST abiertas.
	06:00	Rig down de braided line.
	06:10	Personal de Parko realizó registro sonolog encontró nivel de fluido a 1925 ft.
	06:15	Reunión pre operacional con todo el personal involucrado para la operación de cañoneo
	06:25	Alineó cabezal y equipo de superficie hasta choke manifold. Choke manifold cerrado.
	06:28	Lanzó barra TCP para detonación mecánica de cañones.

	06:31	Evidenció cañoneo, duración viaje de barra 3 minutos 50
		segundos.
	06:35	Inició periodo de monitoreo de pozo.
	06:37	Evidenció soplo en superficie de 2 inw.
	06:45	Evidenció soplo en superficie de 28 inw.
	07:30	Personal de Parko realizó registro sonolog encontró nivel de fluido a 1688 ft.
	08:11	Despresurizó anular a 0 psi. Cerró LPR en fondo. OMNI 2.5 (Well Test).
	08:30	Inició rig up equipo braided line para abrir camisa de circulación de 2.81 in
	09:40	Llenó tubería con 5 bbl de salmuera de 8.4 ppg
	10:00	Abrió camisa de circulación de 2.81 in
	10:24	Evidenció presurización anular hasta 333 psi intentando establecer circulación
		para verificar apertura camisa
	10:30	Inició preparación de UBH por parte de producción para bombeo
	13:30	Finalizó preparación de UBH para iniciar bombeo
	13:37	Inició bombeo para cambiar fluido del pozo con crudo de 30°API
	16:16	Suspendió bombeo para cambio de fluido del pozo. CHP: 300 psi, THP: 15 psi.
		Volumen bombeado hasta el momento 252 bls.
	16:48	Reinició bombeo para cambio de fluido del pozo.
	18:06	Bombeo de crudo 29.8 API finalizado con 340 bbl bombeados.
	19:00	Inicia RIH con SlickLine de Jet Pump
	20:00	Sentó Jet Pump en profundidad en Sliding Sleeve 2.81 @ 8995.23 ft
	21:30	Slick line en Superficie. Verificó jet pump en fondo.
	21:50	Finalizo rig down de slick line.
23/06/2017	22:00	Reunión preoperacional para inicio de bombeo con UBH para prueba de pozo.
	22:13	Comenzó bombeo de crudo por anular.
	22:47	Máxima presión de bombeo 3040 psi. OMNI 3.0 (Well Test).
	23:23	Descargó presión anular para cambiar de UBH. OMNI 3.5 (Well Test).
	23:52	Inició bombeo de crudo por anular para reanudar prueba de pozo.
24/06/2017	00:20	Alineó separador de prueba ANSI 150. Presión estática 30 psi.
	00:21	Máxima presión de bombeo 3040 psi. OMNI 4.0 (Well Test).
	00:53	Presión de bombeo por anular estabilizada a 2640 psi. Evidencio aporte de pozo.
	02:15	Bajó platina de orificio para medición de gas de 1.0".

	02:30	Presión de bombeo por anular estabilizada a 2640 psi. Continua aporte del pozo. BSW
		Estabilizado en 8%.
	02:37	Descargó presión anular por fugas en UBH. OMNI 4.5 (Well Test).
	04:16	Inició bombeo de crudo por anular para reanudar prueba de pozo.
	04:33	Presión de bombeo 2915 psi. OMNI 5.0 (Well Test).
	04:50	Presión de bombeo por anular estabilizada a 2900 psi. Evidencia aporte de pozo.
	06:40	Personal Oxicentro cambio platina de orificio en medidor Daniel a 0.750"
	11:00	Continúa prueba de producción volumen recuperado 293 bls.
	15:00	Continúa prueba de producción volumen recuperado 352.36 bls.
	19:00	Continúa prueba de producción volumen recuperado 378 bls.
	22:00	Continúa prueba de producción volumen recuperado 405 bls de crudo.
	23:00	Continúa prueba de producción volumen recuperado 447 bls totales, 415 bls de Crudo.
25/06/2017	05.00	BSVV 5%.
25/06/2017	05:00	totales, 470 bls de Crudo.
	00.50	BSW 7%.
	09:50	DST 3
	47.05	
	17:25	Se reunio con company man y empresas encargadas para toma de muestras en fondo.
	17:17	Inició incremento de presión anular con UBH para activar muestreadores
	17:34	Apagó UBH para revisión de equipo. OMNI 5.5 (Well Test).
	18:10	Presurizo anular con 3600 psi. Activo primer set de Muestreadores en fondo
		OMNI 6.0 (Well Test).
	19:00	Presurizo anular con 4200 psi. Activo segundo set de Muestreadores en fondo
	19:37	Dreno presión anular para cerrar válvula LPR-N. Cierre de pozo en fondo.
		OMNI 6.5 (Well Test).
	21:30	Bajo herramientas SlickLine para sacar bomba Jet
26/06/2017	00:00	Bomba Jet en superficie.
27/06/2017	00:55	Inicia Circulación en reversa de salmuera 8.5 ppg a 7 bbl/min.

	Aumenta presión anular a 1000 psi durante circulación. OMNI 7.0 (Well Test).
01:3	B6 Disminuye tasa de bombeo a 3.5 bbl/min
01:5	54 Finaliza circulación en reversa. Total bombeados 320 bbl de salmuera 8.5 pps
	OMNI 7.5 (Well Test).
02:2	25 Ciclo válvula OMNI a posición de circulación.
02:3	80 Fluyo salmuera por línea de producción. Descargo en vasija de UBH.
03:3	BO Finalizó rig down de línea de producción y cabezal de prueba.
03:4	14 Tensiono sarta hasta peso subiendo 135000 lb
04:0	01 Verificó empaque Champ IV 7" desasentado con 5000 lb de over pull
04:1	5 Inició recuperación de BHA TCP-DST2
05:0	00 Probó Empaque Champ IV 7" – Safety Joint – TST- RD de Sertac1d TCP- DST3
	con 4000 -5000 psi por 10 min. Prueba OK
17:0	00 BHA DST en superficie.
19:0	00 Finalizó desconexión de herramientas DST de Halliburton.
20:0	00 Finalizó conexión de cañones TCP de Weatherford.
22:0	D0 Descargó DATA de memory gauges y entregó información al cliente.
	FIN DE LA OPERACION
	FIRMA REPRESENTANTE HALLIBURTON:
	FIRMA REPRESENTANTE CLIENTE ENERGY:

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación ArenaU, año 2018. Consultado en agosto del 2018.

ANEXO F TABLA DE PRODUCCIÓN DE LA FORMACIÓN ARENA U

Fecha y Hora	Chok	WHP	WHT	DSCP	DSCT	T de Gas	P. Estatic	P Diff.	Gast o de Gas
dd/mm/yy yy hh:mm	64th Pulg	PSIG	°F	PSIG	°F	°F	PSIG	inH20	MMs cfd
6/23/2017 22:00	128	13.678	74.69	18.208	78.81	0.20	ND	ND	ND
6/23/2017 22:15	128	77.236	75.31	71.702	79.91	0.24	ND	ND	ND
6/23/2017 22:30	128	75.403	88.84	68.762	100.74	0.12	ND	ND	ND
6/23/2017 22:45	128	106.978	97.67	97.804	103.60	0.24	ND	ND	ND
6/23/2017 23:00	128	107.386	98.93	97.764	107.29	0.12	ND	ND	ND
6/23/2017 23:15	128	106.770	101.20	96.920	109.21	0.20	ND	ND	ND
6/23/2017 23:30	128	93.737	100.57	89.587	106.94	0.16	ND	ND	ND
6/23/2017 23:45	128	90.070	95.31	86.163	100.96	0.15	ND	ND	ND
6/24/2017 0:00	128	102.089	94.51	93.051	105.07	0.15	ND	ND	ND
6/24/2017 0:15	128	96.996	100.04	90.070	110.96	0.14	ND	ND	ND
6/24/2017 0:30	128	111.460	104.57	101.671	115.96	76.95	29.04	0.000	76.94 9
6/24/2017 0:45	128	111.664	107.85	100.584	117.98	83.00	29.61	0.000	83.00 3
6/24/2017 1:00	128	111.867	109.13	101.349	121.07	87.64	29.00	0.000	87.63 6

 Tabla 2. Tablas de producción, Formación Arena U.

6/24/2017 1:15	128	110.034	109.46	99.416	120.33	90.97	29.49	0.000	90.96 8
6/24/2017 1:30	128	109.626	108.33	99.738	118.67	94.34	29.20	0.000	94.33 7
6/24/2017 1:45	128	109.015	107.76	99.738	118.60	94.63	29.00	0.000	94.63 0
6/24/2017 2:00	128	109.015	109.92	99.134	117.56	93.57	29.65	0.000	93.56 8
6/24/2017 2:15	128	111.052	111.07	100.463	120.49	93.05	29.77	23.154	93.04 7
6/24/2017 2:30	128	110.034	112.02	99.698	120.98	92.52	30.05	27.550	92.52 5
6/24/2017 2:45									
6/24/2017 3:00									
6/24/2017 3:30									
6/24/2017 4:00									
6/24/2017 4:30	128	99.033	99.95	88.419	114.51	78.83	29.57	14.331	78.82 9
6/24/2017 5:00	128	102.496	104.35	89.829	115.70	89.66	28.96	24.183	89.65 9
6/24/2017 5:30	128	98.219	105.44	88.298	117.03	91.61	29.49	14.072	91.60 9
6/24/2017 6:00	128	98.015	111.20	88.419	120.30	93.16	29.57	20.058	93.15 6
6/24/2017 6:30	128	99.237	110.55	90.232	122.75	96.33	29.04	28.394	96.33 3
6/24/2017 7:00	128	96.589	109.21	87.613	121.14	95.19	29.20	57.454	95.18 9
6/24/2017 7:30	128	96.385	114.30	87.090	122.83	94.98	29.04	31.869	94.97 8

6/24/2017 8:00	128	96.996	116.14	88.217	125.37	96.28	29.20	84.296	96.27 8
6/24/2017 8:30	128	97.607	114.89	88.983	124.09	97.77	28.96	86.515	97.77 1
6/24/2017 9:00	128	95.570	115.56	86.083	125.18	97.65	28.76	57.729	97.65 2
6/24/2017 9:30	128	96.793	118.13	87.936	127.02	99.15	28.64	37.845	99.15 3
6/24/2017 10:00	128	95.367	120.77	87.130	129.30	101.16	28.68	49.796	101.1 58
6/24/2017 10:30	128	92.922	127.01	86.203	130.47	104.51	28.52	53.078	104.5 09
6/24/2017 11:00	128	95.367	135.02	86.848	135.68	103.33	27.55	32.594	103.3 28
6/24/2017 11:30	128	93.737	135.32	87.009	135.13	110.14	28.68	46.733	110.1 40
6/24/2017 12:00	128	92.515	121.91	85.559	129.24	106.25	29.65	67.078	106.2 49
6/24/2017 12:30	128	89.255	106.36	84.834	120.01	95.60	30.97	44.600	95.60 1
6/24/2017 13:00	128	95.163	111.09	86.042	125.78	87.72	29.16	15.934	87.71 8
6/24/2017 13:30	128	94.144	119.28	86.284	130.25	96.09	28.40	38.927	96.08 6
6/24/2017 14:00	128	92.311	121.18	86.163	129.47	103.37	28.52	50.017	103.3 74
6/24/2017 14:30	128	91.700	116.12	85.156	124.80	100.86	29.93	38.516	100.8 56
6/24/2017 15:00	128	94.755	115.66	86.888	126.77	96.59	29.45	46.917	96.59 0
6/24/2017 15:30	128	93.737	121.00	86.042	129.59	101.41	28.40	23.977	101.4 05
6/24/2017 16:00	128	93.737	122.54	86.324	131.65	105.53	27.96	34.792	105.5 34

6/24/2017 16:30	128	93.941	121.34	87.090	128.93	107.15	28.20	33.027	107.1 46
6/24/2017 17:00	128	91.496	120.64	85.921	129.03	104.97	28.68	37.239	104.9 67
6/24/2017 17:30	128	93.737	116.38	87.331	128.11	100.54	29.73	30.981	100.5 45
6/24/2017 18:00	128	91.700	117.01	84.592	128.12	98.15	29.65	35.236	98.14 6
6/24/2017 18:30	128	92.718	114.74	86.083	127.37	96.34	29.65	33.081	96.34 2
6/24/2017 19:00	128	94.348	116.32	87.009	128.18	94.34	29.81	28.470	94.33 7
6/24/2017 19:30	128	93.737	114.12	86.244	127.48	93.54	29.65	34.359	93.54 1
6/24/2017 20:00	128	92.311	113.99	85.277	126.55	93.64	30.01	28.221	93.64 2
6/24/2017 20:30	128	93.533	114.09	86.002	127.36	92.62	29.65	29.661	92.61 6
6/24/2017 21:00	128	93.533	115.79	86.244	127.84	93.40	29.45	28.481	93.40 4
6/24/2017 21:30	128	92.922	114.69	85.559	127.65	93.22	29.65	26.001	93.22 0
6/24/2017 22:00	128	92.311	114.56	84.914	127.18	93.27	29.45	26.294	93.26 6
6/24/2017 22:30	128	92.922	114.40	85.438	127.71	91.87	29.65	28.914	91.86 5
6/24/2017 23:00	128	91.700	111.33	84.310	124.17	90.01	29.93	25.384	90.00 7
6/24/2017 23:30	128	92.311	108.68	84.914	123.59	85.47	29.65	21.390	85.46 6
6/25/2017 0:00	128	91.700	114.09	84.552	126.22	85.54	29.65	26.402	85.53 9
6/25/2017 0:30	128	92.922	113.31	85.357	127.02	86.56	29.73	24.518	86.55 5

6/25/2017 1:00	128	91.496	117.36	84.592	128.16	88.29	29.28	23.793	88.29 5
6/25/2017 1:30	128	89.663	115.50	83.021	126.26	88.27	29.57	24.194	88.26 7
6/25/2017 2:00	128	92.311	112.87	84.914	126.20	86.15	29.65	20.513	86.15 2
6/25/2017 2:30	128	91.700	110.54	84.592	125.79	84.68	29.65	19.744	84.67 8
6/25/2017 3:00	128	89.459	112.95	82.538	126.55	85.30	29.65	19.809	85.30 1
6/25/2017 3:30	128	91.700	113.63	85.237	126.57	86.08	29.93	22.992	86.07 9
6/25/2017 4:00	128	91.700	115.24	84.592	127.86	86.98	29.61	25.298	86.97 6
6/25/2017 4:30	128	89.459	114.82	82.175	126.90	86.68	29.57	25.146	86.68 4
6/25/2017 5:00	128	91.089	115.39	82.779	127.46	86.02	29.81	23.501	86.01 5
6/25/2017 5:30	128	91.700	112.89	84.592	126.75	86.61	29.65	23.230	86.61 0
6/25/2017 6:00	128	95.367	107.16	86.928	123.35	82.78	29.89	21.920	82.78 3
6/25/2017 6:30	128	92.922	103.34	85.801	121.68	79.41	29.53	25.568	79.41 0
6/25/2017 7:00	128	89.663	103.92	82.457	121.84	78.32	29.89	25.125	78.31 7
6/25/2017 7:30	128	91.089	103.11	83.827	121.41	76.31	30.01	20.535	76.30 9
6/25/2017 8:00	128	89.663	102.37	83.061	120.78	75.04	30.01	29.628	75.03 5
6/25/2017 8:30	128	91.292	105.14	84.149	123.43	75.45	29.57	12.513	75.45 4
6/25/2017 9:00	128	92.718	111.31	85.357	126.90	78.70	28.96	19.798	78.70 1

6/25/2017 9:30	128	92.311	111.90	85.357	127.14	82.50	28.96	26.716	82.49 9
6/25/2017 10:00	128	91.089	114.16	84.431	128.07	85.40	28.80	23.804	85.40 2
6/25/2017 10:30	128	90.885	116.74	84.270	128.93	87.28	28.68	19.614	87.27 9
6/25/2017 11:00	128	91.700	116.30	84.995	126.65	88.70	28.80	23.999	88.69 8
6/25/2017 11:30	128	91.496	118.67	85.237	129.26	89.21	28.52	24.562	89.21 0
6/25/2017 12:00	128	92.718	120.32	85.962	130.24	90.56	28.36	15.013	90.55 6
6/25/2017 12:30	128	91.089	122.33	84.350	130.42	91.67	28.92	25.287	91.67 3
6/25/2017 13:00	128	91.089	130.64	84.068	134.79	96.12	28.28	17.893	96.12 3
6/25/2017 13:30	128	89.255	125.38	83.988	132.15	98.79	28.28	20.264	98.78 7
6/25/2017 14:00	128	92.107	127.73	85.841	132.83	99.48	28.52	22.581	99.48 3
6/25/2017 14:30	128	88.644	127.46	83.585	132.67	101.14	27.96	17.471	101.1 40
6/25/2017 15:00	128	87.422	122.43	83.061	129.85	98.87	28.92	11.722	98.86 9
6/25/2017 15:30	128	89.663	123.31	83.867	130.36	97.19	29.08	22.180	97.19 4
6/25/2017 16:00	128	89.459	121.66	84.028	130.61	96.95	28.92	22.386	96.94 7
6/25/2017 16:30	128	87.218	120.37	82.779	128.92	97.77	28.76	17.785	97.77 1
6/25/2017 17:00	128	89.663	120.52	84.149	129.39	95.40	29.53	22.840	95.39 9

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación ArenaU, año 2018. Consultado en agosto del 2018.

ANEXO G

COMPORTAMIENTO DE LOS PARÁMETROS EN FUNCIÓN DE LA PRESIÓN OBTENIDOS DE LAS PRUEBAS PVT

Figura 2. Comportamiento típico de la densidad del petróleo con presión.

Fuente: BRUZUAL, G.J, Caracterización física de yacimientos, Anzoágueti. Universidad de Oriente, 1^a edición. 2007. Consultado en agosto del 2018.

Figura 3. Comportamiento del gas en solución con presión.

Fuente: BRUZUAL, G.J, Caracterización física de yacimientos, Anzoágueti. Universidad de Oriente, 1^a edición. 2007. Consultado en agosto del 2018.

Figura 4. Comportamiento del factor volumétrico del petróleo con presión.

Fuente: BRUZUAL, G.J, Caracterización física de yacimientos, Anzoágueti. Universidad de Oriente, 1^a edición. 2007. Consultado en agosto del 2018.

Figura 5. Comportamiento de la viscosidad del petróleo con presión.

Fuente: BRUZUAL, G.J, Caracterización física de yacimientos, Anzoágueti. Universidad de Oriente, 1^a edición. 2007. Consultado en agosto del 2018.

Figura 6. Compresibilidad isotérmica del petróleo en función de la presión.

Fuente: BRUZUAL, G.J, Caracterización física de yacimientos, Anzoágueti. Universidad de Oriente, 1^a edición. 2007. Consultado en agosto del 2018.

ANEXO H

MEMEORIAS DE REGISTRO DE PRESIÓN ANULAR Y TUBERÍA

Figura 7. Memoria de registro de presión anular SN 20990

Well Infor	mation			
Expected W	ell Tempe	rature 200.0	° F	
Battery Pa	cks Infor	mation		
Serial No.	1700309	1 Item No. 10	006881 Available	Power 9.142 Ah
Gauge Info	rmation			
Gauge No		Model No.	Description	
Revision N	10	Max Press	Max Temp	20 20
0		16000.000 psi	348.800°F	
Program				
No.		Sample Rate	Duration	Survey Samples
Self Test Survey 1		5.0 (sec) 5.0 (sec)	1.0 (mins) 30.0 (days)	518400
Summary				
	Surveys	Duration (ddd:hh:mm:s	Samples	Power Required
Total	2	030:00:01:0	0 518412	5.8757 Ah
		Self Discha 0.3981 Ah	rge	Total Power 6.2738 Ah
Overrun (f	or refere	nce)		
Rate		Duration	Samples	Power Required
30 (sec)		(ddd:hh:mm:ss) 548:04:10:00	1578740	20.4522 Ah
		Self Discharge 7.2748 Ah		Total Power 27.7270 Ah

Fuente: Halliburton Latin America S.A. Testing and Subsea. Informe de los equipos y sensores para pruebas de producción en Campo Cupiraco, año 2018. Consultado en agosto del 2018.

Figura 8. Memoria de registro de presión anular 21972

	Gauge Program Veri	fication Sheet						
Well Information	erature 200 0	• =						
Expected well lenp	Expected well temperature 200.0 'F							
Battery Packs Info	rmation							
Serial No. 170030	94 Item No. 1000	6881 Available P	ower 9.143 Ah					
Gauge Information	Gauge Information							
Gauge No 21972 Revision No 0	Model No. 1282 (F3) Max Press 16000.000 psi	Description 3V Quartz - Hybrid Max Temp 350.600 °F	d 2M					
Program								
No. Self Test Survey 1	Sample Rate 5.0 (sec) 5.0 (sec)	Duration 1.0 (mins) 30.0 (days)	Survey Samples 12 518400					
Summary								
Surveys	Duration	Samples	Power Required					
Total 2	030:00:01:00	518412	3.2735 Ah					
	Self Discharge 0.3981 Ah	e	Total Power 3.6716 Ah					
Overrun (for refer	ence)							
Rate	Duration (ddd.bb.mm.ss)	Samples	Power Required					
30 (sec)	548:04:10:00	1578740	12.5276 Ah					
	Self Discharge 7.2748 Ah		Total Power 19.8024 Ah					
Date: 06/21	/17 4:12:12 Pro	grammed By:						

Fuente: Halliburton Latin America S.A. Testing and Subsea. Informe de los equipos y sensores para pruebas de producción en Campo Cupiraco, año 2018. Consultado en agosto del 2018.

Figura 9. Memoria de registro de presión tubería SN 21201.

Serial No	. 1622302	3 Item No. 10015	592 Available	Power 9.599 Ah
Gauge Inf	ormation			
Gauge No 21201 Revision 2	No	Model No. 1282 (F1) Max Press 16000.000 psi	Description 3V Quartz - Hybr: Max Temp 347.000 °F	id 4M
Program				
No. Self Test Survey 1		Sample Rate 5.0 (sec) 1.0 (sec)	Duration 1.0 (mins) 4194293.0 (sec)	Survey Samples 12 4194293
Summary				
Total	Surveys 2	Duration (ddd:hh:mm:ss) 048:13:05:53	Samples 4194305	Power Required 7.8053 Ah
		Self Discharge 0.6443 Ah	2	Total Power 8.4496 Ah
Overrun (for refere	nce)		
No over	run - Gaug	e memory has been to	otally taken by all	l the surveys.

Fuente: Halliburton Latin America S.A. Testing and Subsea. Informe de los equipos y sensores para pruebas de producción en Campo Cupiraco, año 2018. Consultado en agosto del 2018.

Figura 10. Memoria de registro de presión tubería SN 21202.

	Gauge Program Veri	fication Sheet					
Well Information							
Expected Well Temp	Expected Well Temperature 200.0 °F						
Battery Packs Info	rmation						
Serial No. 162230	24 Item No. 1001	5592 Available Po	ower 9.600 Ah				
Gauge Information							
Gauge No 21202 Revision No 2	Model No. 1282 (F1) Max Press 16000.000 psi	Description 3V Quartz - Hybric Max Temp 347.000 °F	a 4M				
Program							
No. Self Test Survey 1	Sample Rate 5.0 (sec) 1.0 (sec)	Duration 1.0 (mins) 4194292.0 (sec)	Survey Samples 12 4194292				
Summary							
Surveys	Duration	Samples	Power Required				
Total 2	048:13:05:52	4194304	7.8053 Ah				
	Self Discharg 0.6443 Ah	e	Total Power 8.4496 Ah				
Overrun (for refer	ence)						
No overrun - Gau	ge memory has been t	otally taken by all	the surveys.				
Date: 06/21	/17 4:05:03 Pro	grammed By:					

Fuente: Halliburton Latin America S.A. Testing and Subsea. Informe de los equipos y sensores para pruebas de producción en Campo Cupiraco, año 2018. Consultado en agosto del 2018.

ANEXO I

SECUENCIA OPERACIONAL DE LA FORMACIÓN LIMESTONE

Cuadro 4. Secuencia operacional, Formación Limestone.

Fecha	Hora	Secuencia de Eventos
28/06 /2017	04:00	PBP 7" de Weatherford sentado @ 9535 ft MD.
	08:00	Reunión con Company man, Ing Carlos Higuita para revisar el DOS Run # 3.
	09:00	ARMADA Sample carrier armado y cargado con nitrógeno. Realizó prueba
		De integridad con 7000 psi por 10 minutos. Prueba OK. Discos de 6.5K (SN 10148) y
		De 7.0K (SN 10320) instalados y probados.
	13:00	Primer viaje de cemento con dump bailer - Maxim Fishing con 15 galones de cemento
		Dejados en fondo sobre PBP.
	15:30	Disco de 4.5K (SN 12194) instalado y probado en TST RD con 3800 psi, prueba ok.
29/06 /2017	01:00	Segundo viaje de cemento con dump bailer - Maxim Fishing con 15 galones de
		cemento dejados en fondo sobre PBP.
	02:30	Camisa de circulación para corrida DST3 probada con 7000 psi por 10 minutos, prueba
		OK. Serial de camisa SS6-17018.
	03:00	Rig down de Slick line Maxim Fishing finalizado. Inicia tiempo de fragüe de cemento.
	03:45	Calibró nitrógeno de OMNI Valve y LPR-N Valve en 2100 psi. Chequeo nitrógeno de
		ARMADA Sample Carrier, carga de 10860 psi.
	05:00	Rig Pioneer 303 realizó corte de cable y rig Service.
	05:15	Rig Up de equipos de wireline Weatherford para corrida de canasta de 6".
	10:00	Tope de cemento verificado con canasta wireline de Weatherford @ 9520 ft.
	11:00	BHA de wireline de weatherford en superficie, realizó rig down.
	11:30	Reunión pre operacional con todo el personal involucrado para conexión y corrida de
		sarta TCP-DST # 3, se asumen roles y responsabilidades.
	11:35	Inició izaje, conexión y corrida de ensamble TCP de weatherford.
	11:37	Conectó batería S/N 16223023_a Registrador Spartek S/N 21201 & batería S/N

-		
		16223024_a Registrador Spartek S/N 21202. Programados a 1
-	11.11	Capacitá bataría S/N 17002001 a Pagistrador Sportal: S/N 20000 8
	11.44	batería S/N
		7003094 a Registrador Spartek S/N 21972 Programados a 1
29/06	12.15	Conectó set de registradores al gauge carrier
/2017	12.10	
	13:00	Probó integridad de Gauge carrier con 7000 psi, ok
	13:30	Finalizó conexión de ensamble TCP hasta tubo de 2 7/8" EUE # 3.
	13:40	Inició izaje, conexión y corrida de sarta DST # 3.
	14:45	Finalizó conexión de herramientas DST hasta la OMNI valve.
	15:00	Conectó sub radiactivo 3 1/2" IF.
	17:30	Conectó 19 drill collars de 4 ³ / ₄ " 47 lb/ft. (long 574.95 ft).
	18:30	Conectó xover @ 3 ¹ / ₂ " hydrill 563 (long 31.48 ft) + xover @ 3 ¹ / ₂ " EUE + camisa de
		circulación de 2.81" VL + Xover @ 3 ½" hydrill 563 box + 1 triple de tubing hyd 563.
	18:45	Circuló en reversa 8 bbl de salmuera 8.5 ppg @ 3.5 BPM.
	19:30	Línea de prueba y unidad de HLB estimulación conectadas.
	20:26	Línea de estimulación probada con 8000 psi, prueba OK.
	20:31	Presurizó con 500 psi contra válvula TST – Prueba de BHA.
	20:35	Presurizó con 2000 psi contra válvula TST – Prueba de BHA.
	20:42	Presurizó con 7000 psi contra válvula TST – Prueba de BHA.
	20:54	Prueba de BHA OK. Descargó presión.
	21:30	Continuó corrida de tubing 3 ¹ / ₂ " TSH563. Peso BHA 65 klbs (Incluido Top Drive).
30/06 /2017	01:20	BHA TCP-DST + 42 stands triples de tubing TSH563 en fondo.
		Reversó 8 bbl de salmuera @ 4.2 BPM. Presión de circulación 265 psi.
	02:22	Probó tubería por etapas hasta 7000 psi con bomba HT400 de HLB estimulación, se
		Observó caída constante a 100 psi/min. Descargó presión.
	02:37	Reversó 20 bbl de salmuera @ 4.2 BPM. Presión de circulación 265 psi.
	03:09	Probó tubería por etapas hasta 7000 psi con bomba HT400 de HLB estimulación, se
		Observó caída constante a 100 psi/min. Descargó presión.
	03:24	Probó línea de bombeo de HLB estimulación con 4600 psi. Caída de 200 psi en 5 min.
	03:55	Probó tubería por etapas hasta 4500 psi con bomba 1 del rig, se
		observó caída de
		Presion constante nuevamente (aprox 25 psi/min). Descargó presión.

	04:09	Reversó 13 bbl de salmuera @ 5 BPM. Presión de circulación 450 psi.
	04:50	Probó tubería por etapas hasta 7000 psi con bomba HT400 de HLB
		estimulación, se
		Aisló bomba y se registró prueba en cabeza con manómetro digital de HLB TSS. Se
		Observó caída constante a 100 psi/min (1000 psi en 10 min). Descargó presión.
	05:20	Por decisión del cliente se comienza a recuperar 10 stands triples de tubing TSH563
		Para realizar nueva prueba de integridad a sarta.
	06:30	Recuperó 10 stands triples de tubing TSH563 para realizar nueva prueba de integridad
		de la sarta.
	06:50	BHA TCP-DST + 32 stands triples de tubing TSH563 en fondo.
	06:54	Circuló en reversa con 38 spm a 200 psi de presión de circulación. Total reversado
		10 bbl
	07:10	Conectó líneas de bombeo de estimulación Halliburton
	07:42	Probó tubería por etapas hasta 7000 psi con bomba HT400 de HLB estimulación, se
		Aisló bomba y se registró prueba en cabeza con transductor SDAS TSS. Se
		observó caída constante a 145 psi/min (1200 psi en 8 min). Descargó presión.
30/06 /2017	08:00	Por decisión del cliente se comienza a recuperar 10 stands triples de tubing TSH563
		Para realizar nueva prueba de integridad a sarta.
	09:12	BHA TCP-DST + 22 stands triples de tubing TSH563 en fondo.
	09:15	Circuló en reversa con 50 spm a 215 psi de presión de circulación. Total reversado
		10 bbl
	09:54	Probó tubería por etapas hasta 500 psi con bomba del taladro por tres minutos
		Observó caída de presión constante
	09:59	Aumentó presión de prueba a 4000 psi con bomba del taladro por 4 minutos
		Observó caída constante a 100 psi/min (400 psi en 4 min). Descargó presión.
	10:10	Conectó líneas de bombeo de estimulación Halliburton
	10:11	Probó tubería por etapas hasta 2000 psi con bomba HT400 de HLB estimulación, se
		Aisló bomba y se registró prueba en cabeza con transductor SDAS TSS.
		Observó caída constante a 62 psi/min (370 psi en 6 min). Descargó presión.

	10:24	Por decisión del cliente se comienza a recuperar 10 stands triples de tubing TSH563
		Para realizar nueva prueba de integridad a sarta.
	11:22	BHA TCP-DST + 12 stands triples de tubing TSH563 en fondo.
	11:27	Circuló en reversa con 50 spm, 4,5 bpm a 244 psi de presión de circulación. Total
		Reversado 14 bbl
	11:39	Probó tubería hasta 500 psi con bomba HT400 de HLB estimulación.
		Registró prueba en cabeza con transductor SDAS TSS.
	11:40	Drenó presión para purgar el sistema
	11:41	Probó tubería hasta 500 psi con bomba HT400 de HLB estimulación por 5 min
		Registró prueba en cabeza con transductor SDAS TSS.
	11:47	Aumentó presión hasta 3000 psi con bomba HT400 de HLB estimulación por 11 min
	11:59	Aumentó presión hasta 5000 psi con bomba HT400 de HLB estimulación por 3 min
		Aisló bomba y se registró prueba en cabeza con transductor SDAS TSS.
		Observó caída constante a 208 psi/min (626 psi en 3 min). Descargó presión.
	12:05	Por decisión del cliente se comienza a recuperar 11 stands triples de tubing TSH563
		Para realizar nueva prueba de integridad a sarta.
	12:45	BHA TCP-DST + 3 stands triples de tubing TSH563 en fondo.
	12:50	Circuló en reversa con 50 spm, 4.5 bpm a 230 psi de presión de circulación. Total
		Reversado 15 bbl
	13:03	Probó tubería hasta 613 psi con bomba HT400 de HLB estimulación por 11 min
		Registró prueba en cabeza con transductor SDAS TSS.
	13:14	Aumentó presión hasta 3000 psi con bomba HT400 de HLB estimulación por 8 min
	14:00	BHA TCP-DST + 1 stands triples de tubing TSH563 en fondo.
	14:03	Circuló en reversa con 50 spm, 4.5 bpm a 222 psi de presión de circulación. Total
		Reversado 10 bbl
	14:16	Probó tubería hasta 680 psi con bomba HT400 de HLB estimulación por 7 min
		Registró prueba en cabeza con transductor SDAS TSS.
	14:21	Aumentó presión hasta 3090 psi con bomba HT400 de HLB estimulación por 8 min
	14:27	Cerró válvula a la salida de la bomba HT400 de HLB estimulación
		para observar
		l Comportamiento de presión en BHA y en bomba.
30/06	14:32	Abrió válvula a la salida de la bomba e inició despresurización de
-------	-------	--
/2017	44.00	sistema.
	14:33	Dreno presión a 0 psi.
	15:00	Desconectó camisa de circulación y junta de tubing 3-1/2 TSH 563
	15:04	Probó hasta DC 4 ³ / ₄ " No.19 con 700 psi con bomba HT400 de HLB
		estimulación por 11 min
	15:15	Aumentó presión hasta 3128 psi con bomba HT400 de HLB
		estimulación por 6 min
		Registró prueba en cabeza con transductor SDAS TSS.
	15:21	Observó caída constante a 300 psi/min (1526 psi en 5 min). Descargó presión.
	15:30	Por decisión del cliente se comienza a recuperar 10 Drill Collar 4 ³ / ₄ " 47 lb/ft
		Para realizar nueva prueba de integridad a sarta.
	16:15	Drill Collar 4 ¾" 47 lb/ft No. 9 en Fondo
	16:21	Circuló en reversa con 5 spm a 100 psi de presión de circulación. Total Reversado 9bbl
	16:32	Alineó bomba del Rig para prueba de presión
	16:33	Presurizó en directa hasta 990 psi. Monitoreo por 4 min con caída de 72 psi
	16:36	Aumentó presión de prueba hasta 4000 psi. Monitoreo presión en equipo Pioneer por
		4 minutos. Observo caída de presión en 200 psi/min. Prueba no aceptada
	16:40	Por decisión del cliente se comienza a recuperar 9 Drill Collar 4 ³ / ₄ " 47 lb/ft
		Para realizar nueva prueba de integridad a sarta.
	17:20	BHA hasta sub radiactivo en Fondo
	17:25	Alineó bomba del Rig para prueba de presión
		Presurizó en directa hasta 950 psi. Monitoreó presión por 4 min con caída de 5 psi/min.
		Prueba OK
	17:29	Aumentó presión de prueba hasta 3850 psi. Monitoreó presión por 15 min. Prueba OK
	17:50	Descargó presión.
	18:08	Conectó líneas de bombeo de estimulación Halliburton
	18:09	Probó tubería por etapas hasta 7500 psi con bomba HT400 de HLB estimulación, se
	18:35	Registró prueba en cabeza con transductor SDAS TSS. Monitoreo por 13 min.
		Prueba OK
	18:40	Por decisión del cliente se comienza a recuperar BHA para llegar hasta herramienta
		TST-RD y verificar estado de Flapper
	20:30	Verificó estado de Flapper de Herramienta TST-RD, estado OK

		Verifico estado de disco de ruptura de Herramienta TST-RD, estado OK
	20:45	BHA hasta sub radiactivo en Fondo para nueva prueba de integridad
	21:00	Circuló en reversa con 4 bpm a 80 psi de presión de circulación. Total Reversado 12bbl
	21:09	Conectó líneas de bombeo de estimulación Halliburton
		Probó tubería por etapas de 600 – 2400 - 4300 hasta 7300 psi con bomba HT400 de
		HLB estimulación.
		Registró prueba en cabeza con transductor SDAS TSS.
	21:29	Monitoreo prueba a 7300 psi por 16 min con sistema SDAS TSS – Halliburton.
		Prueba OK
	21:46	Drenó presión de prueba a 0 psi. Desconecto líneas de estimulación Halliburton.
	23:36	BHA TCP-DST (10 DC 4 ³ / ₄ " 47 lb/ft) + 1 stand triple de tubing TSH563 en fondo
30/06 /2017	23:36	Circuló en reversa con 3.5 bpm a 103 psi de presión de circulación.
		Total Reversado 8 bbl
	23:45	Conectó líneas de bombeo de estimulación Halliburton
	23:50	Probó tubería por etapas de 590 – 2200 - 4200 hasta 7140 psi con bomba HT400 de
		HLB estimulación.
01/07 /2017	00:21	Monitoreó prueba a 7300 psi por 16 min con sistema SDAS TSS – Halliburton.
		Registró prueba en cabeza con transductor SDAS TSS. Prueba OK.
	01:00	Inició corrida de tubing 3 1/2"TSH563.
	03:30	30 stands triples de tubing 3 ½" TSH563 en fondo. 3541.43 ft MD.
	03:33	Circuló en reversa con 3.5 bpm a 178 psi de presión de circulación. Total Reversado
		8 bbl.
	04:10	Conectó líneas de bombeo de CPVEN.
	04:50	Probó tubería por etapas de 600 – 2400 - 4300 hasta 7300 psi con bomba de CPVEN.
	05:25	Prueba de BHA OK, descargó presión.
	05:30	Continuó corrida de tubing 3 1/2"TSH563.
	09:38	60 stands triples de tubing 3 ½" TSH563 en fondo. 6467 ft MD.
	09:44	Circuló en reversa con 3.5 bpm a 225 psi de presión de circulación. Total Reversado
		10 bbl.
	10:00	Probó tubería por etapas de 1000 – 3100 hasta 7200 psi con bomba de CPVEN.
	10:37	Prueba de BHA OK, descargó presión.

	15:00	93 stands triples de tubing 3 ¹ / ₂ " TSH563+Sencillo 31.61 ft + pup joint
		en fondo 9506 ft MD
	15.08	Circuló en reversa con 3.5 bpm a 210 psi de presión de circulación
	10.00	Total Reversado
		10 bbl.
	15:51	Probó tubería por etapas de 1000 hasta 7200 psi con bomba de CPVEN.
	15:55	Corrige fuga en línea.
	16:40	Probó tubería por etapas de 1200 – 4200 hasta 7150 psi con bomba de CPVEN.
		Prueba de BHA OK, descargó presión.
	16:56	Tomó pesos de BHA, 90000 lbs bajando, 140000 lbs subiendo, arrastre 4 ft. Dejó BHA
		En tensión con tronco de 7.25 ft.
	19:05	Inicio operación de wireline con GR & CCL parte de weatherford para correlación de
		marca radiactiva.
	21:05	Encontró marca radioactiva a 9140.73 ft MD.
	21:20	Posicionó sarta 3 ft más arriba.
	21:40	Encontró marca radioactiva a 9137.88 ft MD.
	21:45	Inicio RIH de wireline GR-CCL por parte de Weatherford.
	22:30	GR-CCL de Weatherford en superficie.
	23:03	Champ Packer IV 7" sentado @ 9262.19 ft MD (Top Of Packer) con 15000 lbs de peso.
02/07 /2017	00:25	Encontró marca radioactiva a 9137.88 ft MD, con Champ Packer pre- asentado.
	01:00	Wireline GR-CCL de Weatherford en superficie.
	01:30	Finalizó Rig Down de equipos Wireline de Weatherford
02/07 /2017	01:35	Sentó Champ Packer IV 7" @ 9262.19 ft MD (Top Of Packer) con 30000 lbs de peso.
	02:15	Inició Rig Up de Surface Test Tree (STT) de TSS – Halliburton.
	04:15	Finalizó Rig Up de Surface Test Tree (STT).
		Armó línea de producción desde STT hasta equipos de prueba en superficie.
	04:20	Inició Rig Up de Líneas de Estimulación de Halliburton conectadas a Kill line del STT
	05:10	Alineo válvulas de cabezal de prueba así: Master Superior Cerrada, Master Inferior
		Abierta, Flow valve cerrada, Kill Valve abierta
	05:15	Alineo bomba de equipo de estimulación Halliburton para prueba de líneas y conexión
		De cabezal
	05:17	Presurizó líneas de estimulación y conexión del cabezal contra TST- RD por etapas

	de 500 – 2000 – 4000 -7000 psi. Prueba OK.
 05:50	Prueba de presión del cabezal, contra válvula de prueba de tubería
	TST-RD ok,
	descargó presión de prueba @ 0 psi.
05:55	Cerró master inferior del flow head y abrió flow valve, alineó sistema
	para probar
	contra choke manifold de 5K.
06:03	Inició prueba hidráulica de equipo de superficie contra choke manifold.
06:39	Probó con 500 psi y 4000 psi. Prueba ok, descargó presión @ 1200
	psi e inició prueba
	En equipos aguas abajo del choke hasta el separador con 80 psi
08:03	Presurizó espacio anular con 1600 psi. Abrió flapper de TST-RD,
	activó sistema de
	cerrado de LPR-N, OMNI (3.0 Well Test).
08:39	Probó espacio anular con 1600 psi, 2100 psi y 2500 psi. Prueba ok,
	descargó presión
	@ 1745 psi En escala de 100 psi cada 3 minutos, para dejar LPR-N
 00.45	ablerra.
08:45	Realizo reunion pre operacional con personal de Maxi Fisning para rig
	Braided line con calibrador de 2"
 00.50	Inició PIH braided line con calibrador de 2" para verificar válvula de
09.50	fondo abiertas para
	el cañoneo
 10.45	Realizó reunión pre operacional para realizar cañoneo TCP, se
10.40	asumen roles v
	responsabilidades.
10:57	Bajó con calibrador de 2" y encontró restricción @ 9175 ft. perdiendo
	50 lbs.
 11:02	Subió sarta de braided line @ 8990 ft.
 11:03	Descargó presión del espacio anular @ 0 psi. Cerró LPR-N, OMNI en
	3.5 (WT).
11:17	Presurizó espacio anular con 2100 psi, abrió de nuevo válvula LPR-N,
	OMNI en 4.0
	(Well Test).
11:47	Bajó sarta de braided line por BHA de herramientas hasta 9318 ft sin
	restricción,
	verificó válvulas de fondo abiertas.
11:48	Inició POOH de sarta de brailed line con calibrador de 2".
	Realizó Rig down de sarta de braided line.
13:12	Lanzó barra TCP para detonación mecánica de cañones.
13:16:4	Evidenció cañoneo, duración viaje de barra 4 minutos 40 segundos.
0	
13:17	Inició periodo de monitoreo de pozo.

	18:00	Continua monitoreo de pozo. Choke manifold cerrado. A la espera de
		preparación
		equipos y fluidos para estimulación.
	18:15	Inicio ciclado de válvula OMNI a posición de circulación desde OMNI
00/07		4.5 (WT).
02/07	18:40	Ciclo valvula OMNI a 11.5 (Circulacion) con 7 ciclos de presión
12017	10.17	Anular de 1600 psi.
	10.47	anular
	19:00	Cerró válvula hidráulica de flow line del cabezal de prueba.
	19:30	Reunión pre-operacional de HI B estimulación para prueba de líneas v
	10100	pickling.
	20:15	Finalizó prueba hidráulica de líneas de estimulación de Halliburton con 8000 psi.
		Prueba OK.
	20:34	Inició bombeo en directa de Salmuera. Total bombeado 3 bbl.
		Confirmó retornos en tanque del Rig.
	20:36	Inició bombeo en directa de Varsol, 1bpm. Total bombeado 3 bbl.
	20:40	Inició bombeo en directa de 7.5%w/w HCI, 1bpm.
	21:00	Finalizó bombeo en directa de 7.5%w/w HCI, 1bpm. Total bombeado
		21 bbl.
	21:01	Inició bombeo en directa de salmuera de desplazamiento 3.4% KCI a
		1 bpm.
	21:45	Finalizó bombeo en directa de salmuera de desplazamiento 3.4% KCl a 1 bpm, total
		Bombeado 51 bbl.
	21:49	Inició circulación en reversa de salmuera 3.4% KCI con retornos alineados a catch tank
		del Rig. Tasa de circulación 3 bpm. Presión Anular 276 psi
	22:27	Finalizó circulación en reversa de salmuera 3.4% KCI. Total bombeados 115 bbl.
	22:47	Cicló válvula OMNI a posición 15.0 (Blank) con 4 ciclos de presión anular de 1700 psi.
		Confirmó presión remanente en tubería de 600 psi.
	22:51	Cicló válvula OMNI a posición 1.5 (Blank) con ciclo de presión
		anular de 1700 psi.
	22:56	Drenó presión en tubería hasta 150 psi alineando hacia catch tank del Rig.
	23:07	Presurizó espacio anular hasta 1700 psi para abrir válvula LPR-N
		Válvula OMNI en 2.0 (Well Test). Confirmo descenso de presión en
		tubería a 50 psi.
	23:20	Estimulación Halliburton inició prueba de inyectividad con salmuera 3.4% KCI
		Tasa de inyección 0.6 bpm
	23:30	Aumento tasa de inyección a 0.8 bpm
	23:37	Aumento tasa de inyección a 1.0 bpm

	23:39	Aumento tasa de inyección a 2.0 bpm
	23:42	Aumento tasa de inyección a 3.0 bpm
	23:47	Aumento tasa de inyección a 4.5 bpm
	23:49	Reajustó presión anular de 1280 psi a 1750 psi. OMNI en 3.0 (Well Test).
	23:51	Finalizo bombeo de Salmuera 3.4% KCI. Monitoreando declinación de presión.
	23:56	Declinación de presión finalizada.
03/07 /2017	00:55	Descargó presión anular. OMNI en 3.5 (Well Test).
	01:00	HLB estimulación preparando química.
	09:40	Presurizó espacio anular hasta 1750 psi para abrir válvula LPR-N. OMNI en 4.0 (WT).
	11:30	Reunión pre operacional de HLB Estimulación para dar inicio de tratamiento con HCI
		Al 15% en calizas A1, A 2, A3.
	11:50	Inició bombeo de tratamiento acido.
	13:00	Finalizó bombeo de 357 bbls de HCL al 15%, inició desplazamiento con KCL al 3.4 %
		(salmuera de 8.5 ppg).
	13:30	Finalizó desplazamiento de ácido, desplazó con 83 bbls de salmuera de 8.5 ppg,
03/07 /2017		máxima presión de inyección de 2760 psi.
	13:50	Monitoreó declinación de presión en cabeza hasta 0 psi.
	13:54	Drenó presión del espacio anular @ 0 psi, cerró LPR-N. OMNI en 4.5 (WT).
	14:00	Cerró kill valve, abrió flow valve del flow head, e inició desconexión y Rig down de
	45.55	Tineas de estimulación.
	15:55	Finalizo Rig down de equipo de Halilburton Estimulación.
	16:00	procedimiento
		Operacional de apertura de camisa, se asumen roles y responsabilidades.
	17:00	Rig up de equipo de Maxim Fishing con shifting tool de 2.81" para abrir camisa de
		circulación VL 2.81".
	17:20	Abrió swab valve del flow head.
	17:30	Inició RIH con shifting tool 2.81"
	18:18	Llenó tubing con 14 bbl antes de abrir camisa. Confirmó con aumento de presión
		Hasta 590 psi.
	19:05	Camisa de circulación abierta.

	19:10	Confirmó circulación bombeando 5 bbl de salmuera en directa.
	19:15	Comenzo POOH de braided line con shifting tool de 2.81".
	20:00	Braided line en superficie.
	21:20	Realizo reunión pre-operacional con el personal involucrado para dar inicio al cambio
		De fluido del pozo por crudo de 30°API
	21:56	Inició bombeo de crudo 30°API en reversa para cambiar fluido del pozo. CHP: 130 psi
	23:10	Continuo bombeo en reversa de crudo 30°API. CHP: 457 psi @ 1.6 bpm.
	23:50	Suspendió bombeo para ingreso de carrotanque con volumen adicional.
		Volumen Total bombeado acumulado de 230 bbl
04/07 /2017	00:41	Reinició unidad de bombeo hidráulico para continuar cambio de fluido del pozo.
	L	Tasa de inyección: 2.2 bpm. CHP: 538 psi.
	01:27	Finalizó bombeo para cambio de fluido de pozo. Total volumen bombeado 306.4 bbl.
	01:37	Alineo retornos hacia facilidades de superficie y UBH para confirmar fluido en tubería.
	01:53	Finalizo bombeo hacia facilidades de superficie.
	02:00	Inició RIH de JetPump con SlickLine.
	03:00	Sentó Jet Pump en profundidad en Sliding Sleeve @ 8802.51 ft (MD)
	04:00	Slick line en Superficie. Verificó jet pump en fondo.
	04:40	Finalizó rig down de slick line.
	04:50	Inició bombeo de fluido motor con UBH para operar la Jet Pump. CHP: 890 psi.
	05:01	Detuvo bombeo de fluido motor por falla en UBH. OMNI en 5.5 (WT).
	05:17	Reanudo bombeo de fluido motor @ 40 Hz. OMNI en 6.0 (WT).
	05:37	Estabilizó presión de inyección @ 2800 psi con frecuencia de UBH de 42.5 Hz.
	06:55	Personal Oxicentro cambió platina orificio medidor a 1.250"
	08:13	Personal Oxicentro cambió platina orificio medidor a 1.500"
	17:00	Continúa prueba de producción. Total fluido recuperado 766 bbl, BSW 8%, 1580 BFPD,
		60000 ppm Cloruros, THP: 109 psig, CHP: 2883 psig.
	19:00	Continúa prueba de producción. Total fluido recuperado 962 bbl, BSW 8%, 1559 BFPD,
04/07 /2017		64000 ppm Cloruros, THP: 110 psig, CHP: 2848 psig.
	22:58	Ajustó frecuencia de bombeo en UBH a 43.5 Hz
	23:46	Ajustó frecuencia de bombeo en UBH a 43.2 Hz
	<u> </u>	
05/07 /2017	00:00	Continúa prueba de producción. Total fluido recuperado 1198 bbl, BSW 5%,

		1620 BFPD, 64000 ppm Cloruros, THP: 114 psig, CHP: 2809 psig.
	00:58	Ajustó frecuencia de bombeo en UBH a 43.5 Hz
	11:50	Ajustó frecuencia de bombeo en UBH a 43.7 Hz
	12:10	Ajustó frecuencia de bombeo en UBH a 44 Hz
	16:08	Cayó presión del espacio anular desde 2770 psi @ 0 psi por falla
		eléctrica en UBH.
	40.00	OMNI en 6.5 (WI).
	16:29	Ontinuo bombeo por anular con UBH de backup, continuo flujo. OMNI en 7.0 (WT).
	18:00	Presión anular 2880 psi.
	19:05	Ajusto platina de orificio a 1.75"
	19:07	Presurizó anular @ 3600 psi para activar primer set de muestreadores en fondo
	19:32	Presurizó anular @ 4220 psi para activar segundo set de muestreadores en fondo
	19:40	Disminuyó presión de bombeo gradualmente @ 2600 psi para realizar cambio de
		bomba en UBH
	19:59	Descargó presión anular a cero por falla en UBH. OMNI en 7.5 (WT).
	20:19	Presurizó anular hasta 3800 psi para reiniciar flujo. OMNI en 8.0 (WT).
	22:00	Continúo prueba de producción. Qf 2051 bpd, BSW 0.7%, Cl 78085 ppm
		Qg 1027 MSCFD.
	22:27	Descargó presión anular a cero por falla en UBH. OMNI en 8.5 (WT).
	22:52	Presurizó anular hasta 3850 psi para reiniciar flujo. OMNI en 9.0 (WT).
	23:00	Evidencio apertura de pozo, continua prueba de producción. CHP: 3850 psi
06/07 /2017	06:00	Continúa prueba de producción. Qf: 2208 BFPD, Qo: 2140 bpd, BSW 0.8%, Cl: 78085
		THP: 122 psig, CHP: 3868 psig
	10:35	Descargó presión anular a cero por falla en UBH. OMNI en 9.5 (BLANK).
	11:00	Se recibió orden por parte de CLIENTE ciclar OMNI valve a posición de Well Test.
	11:15	Inició ciclado de OMNI valve desde 9.5 (Blank), hasta posición de Well Test con 1600
		psi por el espacio anular con bomba del Rig.
	11:42	OMNI en 1.5 (Blank), en espera de normalización de presión de N2 de LPR-N para
		apertura de pozo en fondo.
	11:55	Arrancó pozo, presurizó espacio anular con UBH eléctrica por encima de
		presiones de operación de válvulas de fondo (1600 psi), abrió LPR-N. OMNI 2.0 (WT).
	12:10	UBH en 49.2 Hz con 3994 psi en el espacio anular.

	12:20	Descargó presión anular a cero por falla en UBH. OMNI en 2.5 (WT).
	12:41	Arrancó pozo, presurizó espacio anular con UBH eléctrica por encima
		de
		presiones de operación de válvulas de fondo (1600 psi). OMNI en 3.0 (WT).
	13:02	UBH en 49.3 Hz con 3806 psi en el espacio anular.
	13:10	Descargó presión anular a cero por falla en UBH. OMNI en 3.5 (WT).
06/07 /2017	13:47	Arrancó pozo, presurizó espacio anular con UBH diésel por encima de
		presiones de operación de válvulas de fondo (1600 psi). OMNI en 4.0 (WT).
	15:00	Estabilizó presión de inyección por el espacio anular con UBH @ 3850 psi.
	23:00	Continúa prueba de producción. Qf: 2136 BFPD, BSW 0.9%, Cl: 78085
		THP: 123 psig, CHP: 3855 psig, Qg 1021 MSCFD
07/07 /2017	10:45	Descargó presión anular a cero por falla en UBH. OMNI en 4.5 (WT).
	11:08	Arrancó pozo, presurizó espacio anular con UBH eléctrica por encima de
		presiones de operación de válvulas de fondo (1600 psi). OMNI en 5.0 (WT).
	11:30	UBH en 49.3 Hz con 3745 psi en el espacio anular.
	16:19	Caída de presión por activación ESD por corte en el suministro de aire debido a ingreso
		de vehículo no autorizado. CHP cae @ 3025 psi.
	16:24	Apertura sistema ESD y reinicia operación a la normalidad.
	16:39	Observó caída de presión y caudales en superficie
	16:46	Observó retorno de presión y caudales a la normalidad
08/07 /2017	00:00	Continúa prueba de producción con normalidad. Caudal Fluido Total 2068 bpd,
		BSW 0.6%, Cloruros: 78085 ppm, Qg: 950 MSCFD, THP: 122 psig, CHP: 3868 psig.
	07:13	Bajó de 49.1 @ 48.9 Hz UBH. Presión anular 3892 psi.
	18:00	Continuo bombeo con normalidad. Presión de inyección por el espacio anular 3868 psi,
		Presión en cabeza 120 psi, rata de gas 960.000 cfpd.
09/07 /2017	00:00	Continúa prueba de producción con normalidad. Caudal Fluido Total 2075 bpd,
		BSW 0.6%, Cloruros: 41859 ppm, Qg: 1006 MSCFD, THP: 120psig, CHP: 3870 psig.
	11:52	Apagó bomba por falla eléctrica.
	11:55	Presión anular en 0 psi. OMNI en 5.5 (WT).

	12:15	Inició a presurizar sistema con UBH eléctrica.
	12:17	Presión anular en aumento, por encima de operación de válvulas de
		fondo (1600 psi).
		LPR-N abierta, OMNI 6.0 (WT).
	13:00	Estabilizó presión anular, 3764 psi con 48.5 Hz.
	15:45	Se observó fuga en parte inferior de BOP, a la atura los prisioneros del hanger.
	15:52	Descargó presión del espacio anular, cerró LPR-N en fondo, cerró choke manifold
		Entrampando 90 psi en cabeza. OMNI en 6.5 (WT).
	15:55	Se informa de fuga a personal de encargado de Grantierra.
	17:10	Personal de Grantierra corrigó fuga en BOP, apretó los empaques de prisioneros de y
		achicó contrapozo con camión de vacío.
	17:18	Inició a presurizar sistema con UBH eléctrica para verificar integridad y continuar prueba de producción.
	17:22	Presión anular en aumento, por encima de operación de válvulas de fondo (1600 psi).
		LPR-N abierta, OMNI 7.0 (WT).
	18:00	Estabilizó presión anular, 3820 psi con 48.5 Hz.
	22:30	Descargó presión anular a cero por falla en UBH. OMNI en 7.5 (WT).
	23:01	Inicio presurización de espacio anular con UBH a diésel
09/07 /2017	23:33	Estabilizo presión de inyección en anular @ 3880 psi. Continúo prueba de producción.
		con normalidad. OMNI en 8.0 (WT).
10/07 /2017	00:00	Continúa prueba de producción con normalidad. Caudal Fluido Total 2021 bpd,
		BSW 0.6%, Cloruros: 41859 ppm, Qg: 725 MSCFD, THP: 120psig, CHP: 3842 psig.
	06:00	Continúa bombeo con normalidad. Presión de inyección por el espacio anular 3800 psi,
		Presión en cabeza 122 psi.
	18:00	Continúa monitoreo de pozo con normalidad durante el día. Presión de inyección por el
		espacio anular 3890 psi con UBH diésel, Presión en cabeza 119.2 psi.
11/07 /2017	00:00	Continúa prueba de producción con normalidad. Caudal Fluido Total 1966 bpd,
		BSW 0.5%, Cloruros: 12288 ppm, Qg: 815 MSCFD, THP: 121 psig, CHP: 3860 psig.
	05:00	Finalizó prueba de producción con bombeo hidráulico en reversa, descargó presión del
		espacio anular @ 0 psi, cerró válvula LPR-N en fondo. OMNI en 8.5 (BLANK).

		130 psi entrampadas en tubería contra choke manifold.
12/07 /2017	00:00	Pozo cerrado en fondo. 40 psi entrampadas en tubería contra choke manifold.
	05:00	Cierre de pozo en fondo a nivel de válvula LPR-N completó 24 hrs.
13/07 /2017	00:00	Pozo cerrado en fondo. 15 psi entrampadas en tubería contra choke manifold.
	05:00	Cierre de pozo en fondo a nivel de válvula LPR-N completó 48 hrs.
	06:30	Se realizó reunión pre operacional e inició rig up unidad de braided line.
	07:30	Finalizó rig up de equipo de braided line con pulling tool de 2.81"
	07:40	Abrió swab valve de flow head, abrió choke manifold alineado hacia gauge tank
	07:45	Inició corrida de pulling tool para recuperar jet pump.
	09:30	Recuperó jet pump, verificación en superficie OK.
	10:00	Braided line inicio corrida con shifting 2.81" para cerrar camisa de circulación tipo VL
	11:15	Cerró camisa de circulación con shifting tool.
	11:20	Braided line posicionó sarta a 8000 ft.
	11:30	Alineó bomba del rig por el espacio anular. Llenó espacio anular con 16 bls de agua.
	11:34	Presurizó anular con 1600 psi, verificó cierre camisa de circulación.
		OMNI en 9.0 (WT).
	11:37	Descargó presión del espacio anular @ 0 psi. OMNI en 9.5 (Blank).
	12:40	POOH y rig down equipo de braided line con shifting tool 2.81".
	12:45	Cerró swab valve flow head y choke manifold.
	12:50	Inició ciclado de OMNI valve hasta posición de well test, presurizando hasta 1600 psi el
		anular y descargando presión del espacio anular @ 0 psi.
	13:22	Cicló OMNI valve 8 veces hasta posición de prueba. OMNI 2.5 (Well Test).
	13:35	Presurizó espacio anular con 1600 psi, abrió pozo en fondo a nivel de válvula LPR-N,
		Inició monitoreo de pozo en sistema de adquisición de datos en superficie de HLB.
		OMNI 3.0 (Well Test).
	14:40	Conectó herramienta para realizar registro sonoloc en línea de matar de cabezal, abrió
13/07 /2017		Kill valve y cerró flow valve del flow head.
	14:45	Realizó registro Sonoloc, encontró nivel de fluido @ 5600 ft.
	14:48	Descargó presión del espacio anular @ 0 psi, cerró LPR-N. OMNI 3.5 (Well Test).
	15:24	Llenó tubería con 35 bbls de agua fresca con bomba del Rig.

	15:40	Alineó flow head: flow valve abierta, masters abiertas, Kill cerrada,
		choke cerrado.
	15:43	Inició ciclado de OMNI valve hasta posición de circulación,
		presurizando hasta 1600 psi
		el anular y descargando presión del espacio anular @ 0 psi.
	16:08	Cicló OMNI valve 8 veces hasta posición de prueba. OMNI 11.5
		(Circulación).
	16:23	Llenó pozo de nuevo por anular con 38 bbls de agua fresca.
	17:20	En espera de adecuación de fluido. 500 bbls de KCL de 8.4 ppg.
	17:25	Inició circulación en reversa, cambio de fluido del pozo (crudo de 7.3 ppg por KCL de
		8.4 ppg). Con rata inicial de 3 BPM y 200 psi, recibiendo fluido en Tanque de SWT.
	18:04	Incrementó rata de bombeo @ 5 BPM, 280 psi de bomba.
	19:50	Finalizó circulación en reversa, en total se circularon 300 bls de KCL 8.44 ppg.
	20:00	Desconectando cabezal de superficie y líneas de superficie.
	21:30	Finalizó desconexión de líneas de superficie.
	21:50	Desasentó Champ Packer IV 7in con 20000 lbs de overpull observables.
	22:00	Inicia periodo de monitoreo y observación de la respuesta del pozo.
	22:30	Inicia POOH de sarta DST – TCP en paradas a la torre.
		·
14/07 /2017	00:00	Recuperando tubería en paradas a la torre con sarta DST-TCP # 3.
	10:30	Finalizó recuperación de tubing 3 ¹ / ₂ " THS 563 en paradas a la torre, camisa de
		circulación 2.81" VL en boca de pozo.
	13:00	Desconectó camisa de circulación + DC 4 3/4" 47 lb/ft, herramientas DST en superficie.
	13:20	Reunión pre operacional, se da a conocer riesgos, roles y responsabilidades durante la
		recuperación de herramientas DST.
	13:30	Inició recuperación de herramientas DST # 3.
	15:30	Finalizó recuperación de herramientas DST # 3. Los equipos salieron aparentemente
		en buenas condiciones del pozo.
	17:30	Entregó data cruda del pozo a Company Man.
		FIN DE LA OPERACIÓN.

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación Limestone, año 2018. Consultado en septiembre del 2018.

ANEXO J

TABLA DE PRODUCCIÓN DE LA FORMACIÓN LIMESTONE

٦

Tabla 3. Tablas de producción, Formación Limestone.

Г

ESPECIALIST A DE SERVICIO :	Natalia	Quinter Tascó	o / Maur òn	icio				PLATAFO	RMA:	Pionee r 303	Pozo VINO 1	CÁLCU GAST GAS PLAC	LO DE O DE CON A DE
FECHA:		co	ONDICIO	NES DE PC)ZO		со	NDICIONE	S DEL S	SEPARAD	OR	ORIF (medid plac	ICIO a de la ca)
Fecha y Hora	Estrang ulador	Presió n Anula r	Presi ón Cabez a	Temper atura Cabeza	Presión Estrang ulada	Tempe ratura Estrang ulada	Tempe ratura de Aceite	Tempe ratura de Gas	Gas to de Líqu ido	Gasto de Aceite	Presio n de separa cion	Presió n Difere ncial	Gast o de Gas
dd/mm/yyy y hh:mm	Pulg	PSIG	PSIG	°c	PSIG	°c	°c	°c	BPD	BPD	PSIG	inH20	Mscf d
07/4/2017 4:50	128	441.7	18.4	73.6	12.0	84.2	ND	ND	ND	ND	ND	ND	ND
07/4/2017 5:00	128	441.7	18.4	73.6	12.0	84.2	ND	ND	ND	ND	ND	ND	ND
07/4/2017 5:15	128		0.0	0.0	0.0	0.0	ND	ND	ND	ND	ND	ND	ND
07/4/2017 5:30	128	2230. 1	236.7	81.6	230.4	92.1	ND	ND	ND	ND	ND	ND	ND
07/4/2017 5:45	128	2828. 3	91.1	89.1	84.0	104.0	ND	ND	ND	ND	ND	ND	ND
07/4/2017 6:00	128	2844. 6	98.4	94.3	90.8	107.1	ND	68.09	ND	ND	0.7	14.14 7	ND
07/4/2017 6:15	128	2755. 3	110.8	96.3	101.7	108.5	ND	68.05	ND	ND	0.6	13.89 8	ND
07/4/2017 6:30	128	2787. 9	109.4	98.5	100.5	109.4	ND	68.14	ND	ND	9.3	18.78 1	ND
07/4/2017 6:45	128	2852. 9	107.4	99.9	98.0	111.3	ND	79.44	ND	ND	31.9	8.670	ND
07/4/2017 7:00	128	2832. 1	107.4	102.1	98.5	114.3	ND	87.28	ND	ND	31.9	65.00 0	354. 550

07/4/2017		2815.									27.0	59.95	321.
7:15	128	6	106.4	102.1	96.9	115.0	ND	92.30	ND	ND	27.0	6	115
07/4/2017 7:30	128	2759. 1	105.3	107.7	96.4	117.0	ND	95.01	ND	ND	26.4	61.44 3	326. 733
07/4/2017 7:45	128	2780. 5	109.4	108.1	99.0	117.0	ND	97.61	ND	ND	26.4	79.61 4	582. 507
07/4/2017 8:00	128	2765. 5	111.1	107.9	100.2	117.2	ND	100.03	ND	ND	26.3	94.99 0	642. 493
07/4/2017 8:30	128	2842. 8	112.1	108.6	99.7	118.9	ND	102.14	ND	ND	25.9	66.41 7	725. 136
07/4/2017 9:00	128	2834. 7	110.2	107.7	98.5	119.1	ND	102.97	ND	ND	23.0	60.20 0	687. 794
07/4/2017 9:30	128	2800. 6	110.2	111.0	98.7	121.3	ND	103.71	ND	ND	20.9	57.10 0	667. 975
07/4/2017 10:00	128	2801. 2	110.4	113.3	99.4	123.0	ND	105.11	ND	ND	20.4	68.88 0	708. 278
07/4/2017 10:30	128	2825. 2	109.2	112.0	99.8	122.8	ND	105.68	ND	ND	20.5	65.94 5	707. 501
07/4/2017 11:00	128	2834. 7	108.0	112.4	99.3	123.0	ND	106.56	ND	ND	20.6	61.43 6	691. 370
07/4/2017 11:30	128	2816. 8	108.8	112.8	99.3	123.3	ND	107.37	ND	ND	20.7	58.94 9	714. 579
07/4/2017 12:00	128	2896. 8	112.1	114.1	99.7	124.1	ND	108.14	ND	ND	20.6	64.13 5	706. 290
07/4/2017 12:30	128	2879. 9	112.5	115.2	99.9	124.9	ND	109.24	ND	ND	20.5	63.94 6	701. 229
07/4/2017 13:00	128	2807. 9	111.9	119.0	99.5	126.3	ND	110.73	ND	ND	20.4	63.78 1	697. 250
07/4/2017 13:30	128	2835. 1	111.1	119.3	100.0	126.2	ND	110.96	ND	ND	20.5	65.78 7	710. 852
07/4/2017 14:00	128	2846. 8	112.5	120.3	100.9	128.5	ND	111.60	ND	ND	20.6	65.90 0	712. 952
07/4/2017 14:30	128	2873. 0	110.0	119.9	99.9	126.9	ND	111.37	ND	ND	20.6	65.90 0	713. 101
07/4/2017 15:00	128	2801. 6	110.6	120.0	100.1	127.6	ND	111.83	ND	ND	20.8	64.18 2	704. 426

07/4/2017 15:30	128	2929. 1	114.3	118.3	100.3	126.6	ND	111.74	ND	ND	20.7	64.08 8	709. 551
07/4/2017 16:00	128	2852. 9	110.2	120.8	100.3	127.9	ND	112.82	ND	ND	20.4	68.02 2	721. 784
07/4/2017 16:30	128	2805. 9	115.9	117.0	100.1	127.4	ND	112.78	ND	ND	20.8	65.48 0	711. 534
07/4/2017 17:00	128	2882. 5	109.0	115.4	100.1	126.6	ND	112.13	ND	ND	21.2	65.38 6	715. 742
07/4/2017 17:30	128	2842. 6	111.9	114.5	100.6	126.7	ND	111.46	ND	ND	21.9	63.83 6	712. 705
07/4/2017 18:00	128	2824. 8	109.2	111.8	100.2	125.4	ND	110.13	ND	ND	21.9	63.12 0	709. 724
07/4/2017 18:30	128	2787. 7	112.9	111.4	99.9	125.3	ND	109.19	ND	ND	21.8	63.19 0	710. 161
07/4/2017 19:00	128	2848. 2	110.2	112.2	100.1	126.5	ND	109.62	ND	ND	21.5	64.31 6	713. 015
07/4/2017 19:30	128	2816. 4	110.8	112.0	100.1	125.9	ND	110.55	ND	ND	21.6	64.04 8	712. 208
07/4/2017 20:00	128	2769. 8	110.6	112.1	100.1	125.7	ND	109.57	ND	ND	21.8	63.32 4	709. 454
07/4/2017 20:30	128	2855. 5	112.1	111.3	100.0	126.2	ND	109.40	ND	ND	21.8	63.30 8	709. 809
07/4/2017 21:00	128	2808. 5	110.4	112.2	100.2	126.6	ND	109.86	ND	ND	21.8	63.54 5	711. 386
07/4/2017 21:30	128	2766. 1	109.6	112.8	100.1	127.0	ND	110.34	ND	ND	21.6	63.11 2	706. 719
07/4/2017 22:00	128	2803. 9	111.9	111.4	100.1	126.5	ND	109.74	ND	ND	21.8	63.41 1	710. 500
07/4/2017 22:30	128	2783. 5	109.4	111.8	100.2	127.0	ND	110.74	ND	ND	21.8	63.44 2	710. 425
07/4/2017 23:00	128	2774. 0	113.1	111.5	100.1	126.9	ND	109.78	ND	ND	21.9	63.58 4	712. 330
07/4/2017 23:30	128	2827. 9	123.9	111.9	101.1	127.8	ND	110.63	ND	ND	21.9	66.88 9	730. 449
07/5/2017 0:00	128	2808. 9	113.7	111.4	100.8	127.5	ND	110.70	ND	ND	22.0	65.98 4	726. 659

07/5/2017 0:30	128	2765. 9	110.6	111.2	100.5	127.6	ND	110.15	ND	ND	21.8	65.66 9	725. 294
07/5/2017 1:00	128	2790. 3	111.7	112.2	101.2	127.9	ND	111.17	ND	ND	22.1	67.78 6	737. 466
07/5/2017 1:30	128	2896. 0	110.8	115.6	101.2	129.5	ND	111.82	ND	ND	21.9	68.98 2	742. 133
07/5/2017 2:00	128	2817. 6	110.8	116.9	101.4	130.2	ND	112.79	ND	ND	21.8	69.84 8	744. 296
07/5/2017 2:30	128	2785. 9	111.1	114.7	101.1	129.5	ND	112.67	ND	ND	21.9	69.26 6	744. 134
07/5/2017 3:00	128	2798. 0	110.8	114.5	101.6	130.4	ND	113.22	ND	ND	22.0	69.68 3	745. 434
07/5/2017 3:30	128	2818. 6	112.1	115.6	101.8	131.1	ND	114.01	ND	ND	21.6	69.70 6	742. 725
07/5/2017 4:00	128	2790. 8	111.5	115.6	101.2	131.1	ND	114.53	ND	ND	21.6	70.00 5	744. 154
07/5/2017 4:30	128	2790. 3	111.1	115.8	101.2	130.8	ND	114.73	ND	ND	21.6	70.32 8	745. 928
07/5/2017 5:00	128	2841. 4	111.9	109.0	101.3	125.3	ND	110.84	ND	ND	21.9	69.46 2	744. 790
07/5/2017 5:30	128	2808. 7	111.7	104.5	101.3	125.6	ND	109.37	ND	ND	22.4	67.66 0	740. 344
07/5/2017 6:00	128	2797. 8	111.9	104.2	101.4	126.3	ND	109.23	ND	ND	22.2	68.14 0	742. 657
07/5/2017 6:30	128	2800. 4	112.5	102.5	101.1	123.5	ND	105.57	ND	ND	22.0	67.03 9	736. 441
07/5/2017 7:00	128	2817. 8	111.1	102.6	101.2	124.0	ND	106.86	ND	ND	22.1	67.66 0	740. 073
07/5/2017 7:30	128	2799. 8	111.9	107.0	101.3	130.0	ND	112.30	ND	ND	21.8	69.32 1	743. 942
07/5/2017 8:00	128	2790. 3	113.3	111.5	101.3	129.8	ND	113.51	ND	ND	21.8	70.43 0	746. 453
07/5/2017 8:30	128	2804. 7	113.1	116.0	101.3	131.0	ND	112.80	ND	ND	21.5	70.31 2	745. 424
07/5/2017 9:00	128	2796. 4	113.1	114.9	101.2	132.0	ND	114.04	ND	ND	21.5	70.66 6	746. 807

07/5/2017 9:30	128	2787. 7	112.3	117.8	101.1	132.8	ND	115.24	ND	ND	21.3	70.86 3	745. 297
07/5/2017 10:00	128	2782. 7	110.6	118.2	100.9	132.3	ND	115.27	ND	ND	21.3	70.97 3	744. 898
07/5/2017 10:30	128	2789. 5	111.1	121.5	100.9	133.2	ND	115.94	ND	ND	20.9	71.28 8	742. 891
07/5/2017 11:00	128	2763. 5	109.2	121.2	100.0	132.8	ND	114.96	ND	ND	20.6	74.84 5	759. 780
07/5/2017 11:30	128	2749. 0	108.0	120.6	99.1	132.5	ND	115.74	ND	ND	21.3	67.86 5	726. 170
07/5/2017 12:00	128	2798. 4	108.6	124.1	99.6	133.4	ND	116.07	ND	ND	20.6	74.78 2	734. 810
07/5/2017 12:30	128	2780. 5	108.0	123.6	99.5	133.5	ND	116.70	ND	ND	21.0	69.50 2	731. 379
07/5/2017 13:00	128	2813. 1	107.8	124.7	100.0	134.4	ND	117.43	ND	ND	20.6	70.65 1	736. 277
07/5/2017 13:30	128	2774. 4	107.6	125.0	99.4	134.1	ND	117.58	ND	ND	20.9	70.90 2	740. 334
07/5/2017 14:00	128	2773. 8	107.8	126.5	99.5	134.5	ND	117.45	ND	ND	20.8	72.71 2	745. 972
07/5/2017 14:30	128	2758. 1	107.6	127.9	99.4	135.1	ND	118.10	ND	ND	20.4	73.06 6	727. 636
07/5/2017 15:00	128	2750. 4	107.4	128.1	99.4	135.4	ND	118.43	ND	ND	20.0	76.83 6	721. 721
07/5/2017 15:30	128	2784. 9	106.2	126.4	98.8	134.7	ND	117.83	ND	ND	21.0	72.24 0	751. 178
07/5/2017 16:00	128	2753. 4	106.6	124.7	99.0	134.3	ND	118.14	ND	ND	21.5	73.35 8	720. 554
07/5/2017 16:30	128	1528. 9	92.7	117.0	87.0	126.1	ND	108.46	ND	ND	20.8	18.79 2	368. 951
07/5/2017 17:00	128	2893. 2	108.8	120.6	100.9	132.1	ND	112.94	ND	ND	21.5	75.90 7	724. 936
07/5/2017 17:30	128	2879. 1	110.4	121.0	101.7	132.4	ND	115.44	ND	ND	21.8	86.01 2	780. 144
07/5/2017 18:00	128	2876. 9	108.8	115.9	100.9	131.6	ND	115.21	ND	ND	21.8	63.13 5	770. 889

07/5/2017 19:00	128	2767. 6	108.2	116.0	99.4	132.0	ND	115.82	ND	ND	21.8	67.93 6	731. 896
07/5/2017 20:00	128	2540. 9	106.0	119.3	96.9	134.7	ND	120.37	ND	ND	21.5	47.35 0	860. 812
07/5/2017 21:00	128	3861. 6	122.7	116.8	112.7	133.8	ND	118.16	ND	ND	21.9	71.43 0	1060 .235
07/5/2017 22:00	128	3834. 9	122.3	120.2	112.5	136.7	ND	122.48	ND	ND	22.0	68.58 9	1027 .087
07/5/2017 23:00	128	2905. 5	107.4	112.0	98.6	129.3	ND	105.77	ND	ND	21.2	36.84 9	710. 934
07/6/2017 0:00	128	3884. 9	122.7	110.5	113.2	133.4	ND	119.33	ND	ND	22.4	71.07 6	1040 .152
07/6/2017 1:00	128	3813. 8	122.3	106.3	112.6	130.0	ND	111.82	ND	ND	22.2	58.50 0	1036 .592
07/6/2017 2:00	128	3838. 3	122.3	108.2	113.0	134.4	ND	119.93	ND	ND	22.1	72.87 8	1091 .371
07/6/2017 3:00	128	3893. 5	122.3	116.3	112.8	137.3	ND	121.71	ND	ND	22.7	72.16 1	1053 .417
07/6/2017 4:00	128	3788. 5	122.3	108.0	113.0	132.3	ND	119.79	ND	ND	26.7	63.21 4	1028 .589
07/6/2017 5:00	128	3776. 9	122.7	116.4	112.9	136.7	ND	121.68	ND	ND	26.2	67.16 4	1035 .556
07/6/2017 6:00	128	3765. 8	122.3	118.3	112.5	137.9	ND	122.62	ND	ND	26.1	61.93 1	1043 .888
07/6/2017 7:00	128	3934. 9	122.3	123.0	112.8	139.8	ND	124.08	ND	ND	26.0	74.12 1	1030 .834
07/6/2017 8:00	128	3817. 2	123.3	122.8	112.7	139.9	ND	124.25	ND	ND	25.6	66.69 2	1047 .738
07/6/2017 9:00	128	3856. 8	122.7	125.0	112.6	141.7	ND	125.35	ND	ND	25.3	67.76 3	1095 .765
07/6/2017 10:00	128	3869. 0	122.7	136.7	113.0	146.7	ND	127.72	ND	ND	24.9	63.84 4	1058 .441
07/6/2017 10:30	128	3777. 5	122.9	142.6	112.6	149.1	ND	127.94	ND	ND	24.9	75.97 8	1069 .304
07/6/2017 11:00	128	57.3	74.6	129.9	69.4	133.1	ND	111.49	ND	ND	23.6	8.507	367. 339

07/6/2017 12:00	128	3047. 7	96.2	123.7	90.4	125.6	ND	107.17	ND	ND	24.6	17.39 5	531. 446
07/6/2017 13:00	128	3791. 1	94.3	125.2	88.5	136.1	ND	102.60	ND	ND	24.5	11.05 1	428. 777
07/6/2017 14:00	128	3172. 9	113.9	118.4	105.9	129.6	ND	107.77	ND	ND	25.1	54.10 1	833. 467
07/6/2017 15:00	128	3843. 7	122.7	120.6	112.3	136.8	ND	120.89	ND	ND	25.4	54.88 0	1004 .268
07/6/2017 16:00	128	3805. 8	122.7	123.7	113.5	139.6	ND	125.91	ND	ND	25.2	35.96 1	1049 .917
07/6/2017 17:00	128	3823. 7	121.4	118.6	112.5	138.1	ND	123.04	ND	ND	26.9	60.52 3	968. 337
07/6/2017 18:00	128	3817. 6	122.9	117.3	112.4	140.3	ND	123.88	ND	ND	26.1	65.33 1	1041 .291
07/6/2017 19:00	128	3773. 3	122.1	116.9	112.5	141.9	ND	125.66	ND	ND	26.1	91.49 6	1028 .447
07/6/2017 20:00	128	3869. 2	122.7	114.7	112.9	141.5	ND	125.98	ND	ND	25.7	38.50 5	1028 .994
07/6/2017 21:00	128	3865. 6	123.5	113.4	113.0	141.4	ND	125.42	ND	ND	26.3	46.98 2	1006 .622
07/6/2017 22:00	128	3862. 0	123.3	113.4	113.0	141.4	ND	125.63	ND	ND	26.4	32.76 8	1003 .072
07/6/2017 23:00	128	3853. 8	122.9	114.4	112.8	141.9	ND	126.27	ND	ND	25.7	51.99 2	1021 .441
07/7/2017 0:00	128	3848. 2	121.8	117.7	112.6	143.3	ND	126.51	ND	ND	26.5	96.95 8	1016 .957
07/7/2017 1:00	128	3845. 5	122.1	109.5	112.4	138.6	ND	123.62	ND	ND	26.7	78.08 7	965. 074
07/7/2017 2:00	128	3799. 6	123.3	106.8	112.4	139.5	ND	121.76	ND	ND	26.7	26.09 9	1039 .309
07/7/2017 3:00	128	3821. 3	123.3	109.4	112.6	141.5	ND	125.54	ND	ND	26.1	102.8 54	997. 770
07/7/2017 4:00	128	3775. 7	121.8	107.0	112.3	138.0	ND	120.12	ND	ND	26.2	55.25 8	1021 .679
07/7/2017 5:00	128	3783. 5	122.9	108.4	112.5	140.9	ND	124.50	ND	ND	27.4	50.32 4	987. 918

07/7/2017 6:00	128	3813. 6	121.6	113.7	112.2	142.9	ND	126.67	ND	ND	26.3	65.49 6	1013 .693
07/7/2017 7:00	128	3845. 1	121.6	114.3	112.2	142.4	ND	126.47	ND	ND	25.9	29.86 6	1046 .184
07/7/2017 8:00	128	3862. 4	121.8	118.2	112.1	143.7	ND	127.70	ND	ND	25.9	41.09 2	1018 .943
07/7/2017 9:00	128	3883. 1	121.8	123.2	112.1	143.7	ND	126.93	ND	ND	26.5	35.39 8	1080 .580
07/7/2017 10:00	128	3902. 6	122.1	121.7	112.6	144.1	ND	127.47	ND	ND	26.1	49.40 7	991. 910
07/7/2017 11:00	128	37.5	77.0	122.3	71.3	134.5	ND	117.00	ND	ND	23.9	2.748	212. 074
07/7/2017 12:00	128	3790. 9	121.4	126.9	112.1	143.0	ND	125.59	ND	ND	25.9	47.41 5	1000 .834
07/7/2017 13:00	128	3768. 8	120.8	125.1	112.1	142.6	ND	126.24	ND	ND	26.2	38.06 1	998. 535
07/7/2017 14:00	128	3755. 8	122.3	130.3	112.2	145.3	ND	127.41	ND	ND	25.5	34.43 5	1025 .219
07/7/2017 15:00	128	3761. 6	120.0	128.0	112.0	144.2	ND	128.19	ND	ND	25.3	59.89 3	1032 .989
07/7/2017 16:00	128	3792. 5	121.8	112.7	112.3	140.2	ND	123.97	ND	ND	25.6	30.94 9	1038 .695
07/7/2017 17:00	128	3792. 5	121.8	112.7	112.3	140.2	ND	123.97	ND	ND	25.6	30.94 9	1038 .695
07/7/2017 18:00	128	3765. 2	122.3	116.7	111.8	142.0	ND	125.93	ND	ND	26.5	31.02 5	1024 .061
07/7/2017 19:00	128	3784. 5	121.8	116.5	112.3	141.6	ND	126.38	ND	ND	26.0	41.01 7	1010 .308
07/7/2017 20:00	128	3796. 0	122.7	116.8	112.1	141.6	ND	126.24	ND	ND	26.8	31.68 5	1003 .178
07/7/2017 21:00	128	3818. 0	123.1	114.1	112.2	141.3	ND	124.31	ND	ND	26.1	32.11 8	976. 957
07/7/2017 22:00	128	3823. 9	122.1	117.1	112.1	142.2	ND	125.12	ND	ND	26.2	43.12 8	964. 561
07/7/2017 23:00	128	3847. 4	121.4	110.2	111.6	137.0	ND	117.08	ND	ND	26.7	41.20 1	942. 294

07/8/2017 0:00	128	3868. 0	122.1	109.4	112.3	140.2	ND	122.66	ND	ND	26.5	54.91 2	949. 554
07/8/2017 1:00	128	3880. 1	122.1	112.3	112.1	142.1	ND	125.57	ND	ND	26.6	50.52 9	959. 223
07/8/2017 2:00	128	3866. 4	122.1	115.7	112.0	142.5	ND	126.04	ND	ND	26.4	56.14 7	945. 639
07/8/2017 3:00	128	3886. 1	122.1	115.6	112.0	142.1	ND	124.76	ND	ND	26.3	62.78 1	1007 .074
07/8/2017 4:00	128	3857. 4	122.1	117.4	112.0	142.7	ND	125.42	ND	ND	26.4	65.12 6	1013 .839
07/8/2017 5:00	128	3868. 4	122.1	117.2	111.9	143.2	ND	126.59	ND	ND	25.9	61.90 0	1028 .130
07/8/2017 6:00	128	3875. 5	122.1	117.2	112.1	143.4	ND	126.69	ND	ND	26.3	64.03 2	994. 886
07/8/2017 7:00	128	3887. 7	122.1	121.9	111.7	144.9	ND	127.43	ND	ND	25.9	61.12 1	1034 .501
07/8/2017 8:00	128	3850. 8	121.8	117.6	111.9	144.4	ND	127.63	ND	ND	26.1	52.34 7	993. 627
07/8/2017 9:00	128	3858. 2	121.8	120.8	111.9	144.9	ND	127.39	ND	ND	26.3	58.28 8	999. 484
07/8/2017 10:00	128	3859. 8	121.8	126.3	111.9	147.4	ND	129.32	ND	ND	25.3	52.20 5	1050 .408
07/8/2017 11:00	128	3865. 0	120.8	130.2	111.5	147.6	ND	129.08	ND	ND	26.1	71.48 5	1012 .873
07/8/2017 12:00	128	3861. 8	120.6	134.4	111.5	148.4	ND	129.89	ND	ND	25.2	59.75 2	1026 .131
07/8/2017 13:00	128	3866. 0	120.2	130.6	111.5	147.3	ND	129.37	ND	ND	25.9	69.65 9	1019 .293
07/8/2017 14:00	128	3869. 2	121.4	119.6	111.5	145.3	ND	127.26	ND	ND	26.0	68.30 6	1010 .372
07/8/2017 15:00	128	3865. 2	120.8	127.3	111.3	147.4	ND	129.60	ND	ND	25.6	64.97 7	1010 .621
07/8/2017 16:00	128	3863. 6	119.4	126.5	111.5	147.4	ND	130.46	ND	ND	25.7	61.66 4	1013 .869
07/8/2017 17:00	128	3866. 0	119.4	125.3	111.2	146.2	ND	130.89	ND	ND	24.9	64.19 0	1002 .635

07/8/2017 18:00	128	3868. 8	120.2	120.4	111.3	145.2	ND	127.01	ND	ND	26.3	62.38 0	1015 .292
07/8/2017 19:00	128	3878. 7	121.2	119.8	111.4	145.5	ND	127.45	ND	ND	26.5	55.41 6	995. 818
07/8/2017 20:00	128	3882. 7	120.8	120.3	111.3	145.6	ND	126.84	ND	ND	26.3	66.69 2	1005 .947
07/8/2017 21:00	128	3888. 1	120.8	120.4	111.2	145.7	ND	129.22	ND	ND	26.1	71.46 9	1057 .110
07/8/2017 22:00	128	3895. 9	120.0	119.5	111.1	145.5	ND	127.64	ND	ND	27.6	106.5 36	1285 .400
07/8/2017 23:00	128	3894. 7	120.4	121.2	111.1	145.8	ND	128.52	ND	ND	26.5	47.42 5	834. 900
07/9/2017 0:00	128	3865. 3	120.6	119.0	110.9	145.0	ND	128.24	ND	ND	26.5	46.32 0	829. 100
07/9/2017 1:00	128	3847. 2	120.5	121.8	110.8	145.9	ND	128.27	ND	ND	26.4	46.30 9	825. 000
07/9/2017 2:00	128	3850. 9	120.2	121.4	110.8	145.5	ND	127.49	ND	ND	26.5	45.07 3	817. 500
07/9/2017 3:00	128	3854. 3	120.1	119.2	110.8	145.0	ND	127.41	ND	ND	26.6	44.48 7	810. 400
07/9/2017 4:00	128	3864. 8	120.0	114.5	110.5	141.6	ND	122.74	ND	ND	26.7	42.15 5	830. 094
07/9/2017 5:00	128	3867. 0	120.0	111.8	110.5	141.9	ND	123.74	ND	ND	26.7	41.94 2	827. 335
07/9/2017 6:00	128	3868. 4	119.9	113.2	110.3	140.7	ND	119.80	ND	ND	26.5	38.88 1	798. 338
07/9/2017 7:00	128	3886. 1	119.8	112.6	110.0	138.6	ND	113.82	ND	ND	26.5	36.35 8	618. 932
07/9/2017 8:00	128	3873. 1	119.8	111.6	110.3	139.4	ND	118.87	ND	ND	26.7	38.57 8	636. 606
07/9/2017 9:00	128	3870. 1	120.2	113.5	110.3	141.9	ND	124.45	ND	ND	26.5	39.77 8	640. 181
07/9/2017 10:00	128	3868. 3	120.0	116.2	110.1	144.0	ND	126.06	ND	ND	26.1	41.62 1	648. 578
07/9/2017 11:00	128	3870. 5	119.9	123.2	110.1	146.0	ND	126.58	ND	ND	25.8	41.88 3	646. 559

07/9/2017 12:00	128	69.9	79.7	127.8	74.6	141.8	ND	124.30	ND	ND	24.8		
07/9/2017 13:00	128	3764. 8	120.0	137.3	110.9	148.0	ND	128.06	ND	ND	24.3	67.34 5	782. 412
07/9/2017 14:00	128	3769. 9	119.4	134.6	112.1	147.6	ND	130.64	ND	ND	25.5	53.19 6	816. 706
07/9/2017 15:00	128	3767. 2	119.8	131.5	111.6	147.1	ND	129.60	ND	ND	26.2	32.90 8	737. 900
07/9/2017 16:00	128	72.6	84.6	118.2	78.0	134.5	ND	115.39	ND	ND	24.1		
07/9/2017 17:00	128	28.7	99.4	104.6	94.9	113.1	ND	105.21	ND	ND	17.3		
07/9/2017 18:00	128	3816. 6	119.8	116.4	111.3	137.2	ND	118.92	ND	ND	26.5	41.61 2	826. 100
07/9/2017 19:00	128	3819. 9	120.2	117.1	111.2	138.1	ND	121.17	ND	ND	26.5	38.79 2	785. 700
07/9/2017 20:00	128	3788. 3	120.4	118.3	111.3	140.3	ND	123.52	ND	ND	26.5	39.56 8	792. 300
07/9/2017 21:00	128	3817. 0	120.4	119.6	111.6	141.8	ND	124.82	ND	ND	26.5	39.87 6	794. 400
07/9/2017 22:00	128	3891. 0	120.8	121.3	111.7	142.8	ND	126.41	ND	ND	26.4	40.12 3	794. 800
07/9/2017 23:00	128		0.0	0.0	0.0	0.0	ND		ND	ND			0.00 0
07/10/2017 0:00	128	3891. 1	121.4	116.9	111.3	140.6	ND	121.63	ND	ND	26.4	40.77 9	804. 600
07/10/2017 1:00	128	3844. 5	121.6	119.3	111.6	142.0	ND	125.54	ND	ND	26.4	43.03 0	823. 200
07/10/2017 2:00	128	3875. 5	125.7	119.5	111.5	142.8	ND	125.64	ND	ND	26.3	38.41 9	777. 400
07/10/2017 3:00	128	3775. 9	123.3	118.0	110.9	141.5	ND	123.04	ND	ND	26.4	36.52 4	761. 700
07/10/2017 4:00	128	3770. 9	123.1	118.5	111.2	141.8	ND	123.63	ND	ND	26.4	36.78 4	764. 000
07/10/2017 5:00	128	3891. 1	123.5	119.7	111.3	142.6	ND	124.70	ND	ND	26.4	38.00 7	785. 742

07/10/2017 6:00	128	3799. 6	122.1	117.8	111.1	142.7	ND	125.27	ND	ND	26.4	89.46 6	845. 870
07/10/2017 7:00	128	3759. 2	122.3	119.1	111.1	142.5	ND	124.95	ND	ND	26.3	82.80 9	814. 812
07/10/2017 8:00	128	3741. 1	121.4	125.0	111.0	144.8	ND	127.40	ND	ND	25.9	89.97 0	840. 445
07/10/2017 9:00	128	3881. 5	121.2	118.9	111.0	141.5	ND	124.72	ND	ND	26.2	85.78 3	827. 020
07/10/2017 10:00	128	3880. 1	120.0	125.1	111.1	145.8	ND	128.19	ND	ND	25.9	89.03 3	835. 738
07/10/2017 11:00	128	3874. 9	119.8	134.7	111.1	145.5	ND	129.60	ND	ND	25.7	90.36 3	838. 856
07/10/2017 12:00	128	3868. 8	120.6	144.4	111.2	150.9	ND	131.39	ND	ND	24.9	90.23 7	828. 626
07/10/2017 13:00	128	3871. 2	121.4	144.4	111.0	148.9	ND	131.28	ND	ND	25.1	87.40 4	818. 065
07/10/2017 14:00	128	3880. 3	119.2	138.6	111.0	146.4	ND	129.36	ND	ND	26.2	85.11 4	821. 155
07/10/2017 15:00	128	3878. 9	119.0	140.5	110.9	147.6	ND	130.79	ND	ND	25.7	91.92 1	845. 247
07/10/2017 16:00	128	3875. 9	118.8	138.3	110.8	147.0	ND	130.91	ND	ND	26.0	89.01 0	835. 034
07/10/2017 17:00	128	3882. 7	119.2	136.1	110.7	146.0	ND	130.06	ND	ND	26.3	82.74 6	810. 172
07/10/2017 18:00	128	3887. 2	119.1	134.0	110.7	145.0	ND	129.25	ND	ND	26.5	85.90 5	827. 426
07/10/2017 19:00	128	3890. 2	119.5	132.3	110.6	144.2	ND	127.58	ND	ND	26.5	84.77 2	823. 894
07/10/2017 20:00	128	3890. 3	119.7	132.4	110.6	144.3	ND	128.47	ND	ND	26.5	84.94 6	824. 210
07/10/2017 21:00	128	3895. 8	119.4	132.0	110.3	143.0	ND	126.47	ND	ND	26.6	83.49 7	807. 900
07/10/2017 22:00	128	3906. 6	119.5	128.4	110.2	141.0	ND	123.83	ND	ND	26.8	81.68 7	803. 600
07/10/2017 23:00	128	3915. 6	119.5	129.0	110.2	142.2	ND	125.41	ND	ND	26.7	82.41 2	804. 200

07/11/2017 0:00	128	3920. 3	119.5	129.1	110.2	141.9	ND	124.60	ND	ND	26.6	81.00 0	803. 400
07/11/2017 1:00	128	3856. 5	119.4	129.3	109.9	141.9	ND	124.62	ND	ND	26.5	81.84 9	800. 000
07/11/2017 2:00	128	3778. 6	119.0	127.9	109.6	140.6	ND	122.42	ND	ND	26.5	81.15 2	798. 700
07/11/2017 3:00	128	3782. 6	118.8	127.7	109.5	140.2	ND	121.80	ND	ND	26.4	80.75 6	798. 700

Fuente: HALLIBURTON Latin America S.A. Testing and Subsea. Informe general prueba de presión DST en la Formación Limestone, año 2018. Consultado en septiembre del 2018.

ANEXO K

NORMAS ASTM, TABLA 53^a, CORRECCIÓN GENERALIZADA DE DENSIDAD DE ACEITES CRUDOS A 60°F

Temp 812.0 812.0 813.0 813.0 820.0 822.0 824.0 826.0 828.0 830.0 Tomp "C CORRESPONDING DENSITY AT 115 'C 'C C
Temp B12.0 B14.0 B14.0 B14.0 B20.0 B22.0 B22.0 B22.0 B22.0 B22.0 CORRESPONDING DENSITY AT 15 C C B8.00 663.3 865.2 867.2 866.1 872.7 874.6 876.5 878.7 880.4 88.22 88.50 863.8 865.7 866.7 860.9 871.1 873.0 874.9 876.8 878.7 880.5 880.7 89.00 864.0 865.7 867.9 869.0 871.5 873.3 875.4 877.4 879.2 881.0 89.22 89.00 864.3 866.2 866.0 866.7 867.7 877.4 877.8 879.2 881.4 89.7 90.05 864.4 866.3 868.2 870.1 872.2 874.3 876.4 879.5 877.4 879.5 881.7 90.2 90.05 865.4 866.3 868.2 870.1 872.5 874.4 876.3 880.0 881.7
"C CORRESPONDING DENSITY AT 15 °C "C 88.00 863.3 865.2 867.0 870.8 872.7 874.6 876.5 878.5 880.2 88.02 88.25 863.6 865.7 867.4 860.3 871.1 873.2 874.7 876.6 878.7 880.5 885.7 88.25 863.6 865.7 867.4 860.3 871.1 873.2 875.1 875.9 878.7 880.7 88.7 89.00 864.0 865.8 867.7 869.6 877.3 877.2 877.3 879.2 881.4 890.7 89.25 864.1 866.2 868.4 870.3 872.6 877.6 877.6 879.8 881.7 90.0 90.25 864.8 866.7 868.8 870.4 872.5 874.4 875.4 877.6 879.8 881.7 90.0 865.8 866.7 866.8 867.4 870.8 880.7 880.8 882.2 91.0 90.05 865.1
88.00 865.2 867.2 870.8 872.7 874.6 875.5 878.3 880.2 880.4 88.50 885.3 865.5 867.4 860.9 871.1 873.2 875.1 876.5 878.5 880.7 880.7 880.8 865.7 867.6 867.8 875.1 876.9 878.8 880.7 880.7 880.7 880.7 880.7 880.7 860.8 877.1 877.0 878.8 880.7 887.7 89.00 864.4 866.2 866.0 869.9 871.8 873.7 875.6 877.4 879.5 881.4 89.7 90.00 864.8 866.3 868.4 870.3 872.1 874.2 875.1 879.5 881.4 89.7 90.05 865.8 866.7 866.8 870.3 872.5 874.3 876.2 878.4 880.8 882.2 91.00 90.55 865.7 866.8 870.5 872.6 878.4 880.8 882.2 <t< td=""></t<>
B8.20 B65.3 B67.2 B67.1 B77.0 B77.1 B77.0 B77.5 B87.5 B81.4 B9.7 90.00 864.6 866.7 B65.7 B65.7 B70.6 B77.2 B73.4 B75.5 B77.6 B77.5 B77.6 B77.6 B77.6 B77.6 B77.6 B77.6 B77.6 B77.6 B81.4 B9.7 D0.0 B65.5 B65.7 B66.7 B70.6 B81.5 D0.0 B65.5 B67.7 B60.7 B70.8 B71.4 </td
88.50 865.5 867.4 867.4 874.9 874.9 874.9 874.9 874.9 876.7 880.0 88.7 88.75 866.1 866.7 865.0 867.7 860.6 871.8 873.3 875.1 877.3 879.0 880.7 880.7 860.8 871.6 873.3 875.4 877.4 879.0 880.0 89.20 89.25 864.1 866.2 868.0 860.9 871.6 873.7 875.4 877.4 879.3 881.5 90.00 864.8 866.3 868.4 870.3 871.4 875.7 877.6 879.5 881.4 90.00 90.25 864.8 866.7 870.6 872.3 874.1 875.1 877.8 880.0 881.7 90.20 90.25 865.8 867.4 870.6 872.5 874.1 876.1 877.8 880.0 882.7 90.20 90.25 865.8 867.7 860.8 870.4 872.5 874.1 876.5 878.1 880.0
BB.75 B65.8 B67.7 B67.5 B73.2 B73.2 B73.2 B73.2 B73.1 B73.2 B73.1 B73.2 B73.1 B73.2 B73.1 B73.2 B73.1 B73.2 B77.1 B77.0 B80.0 B80.7 B80.7 B87.4 B73.3 B73.2 B77.4 B77.0 B80.7 B81.0 B92.2 B95.0 B64.3 B66.2 B68.0 B71.8 B73.8 B75.6 B77.4 B79.3 B81.2 B95.0 B9.50 B64.4 B66.5 B66.4 B70.3 B72.1 B74.2 B74.1 B77.9 B77.8 B81.5 90.0 90.50 B65.6 B66.7 B66.7 B66.7 B67.8 B70.8 B72.6 B74.4 B76.5 B78.4 B80.0 B81.8 90.5 90.50 B65.6 B66.7 B66.7 B66.8 B67.7 B670.8 B70.8 B71.1 B73.0 B74.4 B76.5 B78.8 B80.6 B82.5 91.0 B82.5
BU.00 B65.8 B67.7 B69.6 B71.5 B73.3 B75.2 B77.1 B79.0 B80.9 B9.27 B9.50 B64.4 B66.2 B66.2 B67.0 B77.6 B77.8 B70.8 B81.7 90.05 B65.1 B66.7 B66.7 B67.6 B74.4 B75.7 B74.8 B80.3 B80.3 B70.4 B73.3 B75.4 B77.8 B80.3 B80.3 B87.9 B73.8 B80.3 B82.2 91.07 91.05 B65.6 B67.7 B60.4 B71.3 B73.3 B75.2 B74.4 B75.5 B74.4 B75.5 B74.4 B75
BD_20 B64.3 B65.3 B67.3 B73.5 B73.5 B73.4 B73.3 B73.5 B73.4 B73.3 B73.5 B73.4 B73.3 B81.4 B93.5 B9.00 B64.3 B66.3 B66.4 B73.8 B73.7 B77.6 S77.5 S77.6 S77.5 S79.5 B81.4 B90.0 90.02 S64.4 B66.7 B66.8 B70.3 S72.1 874.2 S77.6 S79.5 B81.5 90.02 90.25 S65.1 B66.7 B66.8 B70.6 S72.8 S74.1 B76.5 S78.4 S81.8 90.02 S90.5 S65.1 B67.7 B60.0 S70.9 S72.8 S74.1 S76.5 S78.4 880.3 882.2 91.00 S65.5 B67.7 B60.0 S71.1 S73.1 S75.1 S77.4 S79.8 S80.5 S82.3 91.25 S75.8 S77.4 S79.2 S81.1 S80.2 S82.3 91.25 91.50 S65.6 S67.8 S60.9
BD.50 BB4.5 BB0.5 BB1.4 BD1.5 90.55 B65.5 B67.2 B87.6 B71.4 B72.8 B74.7 B76.5 B78.4 BB0.3 B82.2 91.00 91.55 B65.5 B67.7 B66.0 B71.1 B73.0 B75.9 B78.8 B80.6 B82.7 91.50 91.55 B65.8 B67.7 B69.0 B71.7 B73.6 B75.7 B77.4 B79.2 B81.1 B83.0 92.25 92.50 B66.8
BD.75 B66.5 B66.2 B77.6 B77.7 B77.6 B87.7 B77.6 B87.7 B77.6 B77.7 B77.6 B87.7 B77.7 B77.7 B77.7 B77.7 B77.7 B77.6 B87.7 B77.7 B77.6 B87.7 B77.7 B77.6 B87.7 <th< td=""></th<>
90.20 864.8 865.7 865.8 870.5 871.2 874.2 871.5 877.9 879.8 881.7 90.25 90.25 865.1 865.7 865.7 870.6 872.2 874.3 876.2 878.1 880.0 881.8 90.57 90.75 865.1 867.2 869.0 870.8 872.6 874.5 876.4 878.3 880.0 882.2 91.07 91.05 865.5 867.3 869.0 870.8 872.8 874.7 875.6 878.4 880.5 882.2 91.27 91.55 865.6 867.8 869.2 871.1 873.3 875.2 877.0 878.8 880.6 882.7 91.75 92.00 866.0 867.8 869.7 871.6 873.5 877.4 879.2 881.1 883.0 92.27 92.00 866.6 868.2 870.0 871.7 873.8 875.7 877.7 879.6 881.1 883.3 92.27
DD.20 B65.0 B66.1 B67.0 B77.3 B87.3 B77.7 B77.4 B77.3 B77.3 B77.3 B87.3 B77.3 B77.3 B77.3 B87.3 B77.3 <th< td=""></th<>
DOD B65.1 B65.2 B67.0 B68.9 B70.8 B72.5 B74.3 B76.4 876.4 876.4 876.4 876.4 876.4 880.3 B82.0 90.71 91.00 865.3 867.0 869.0 870.9 872.8 874.7 876.7 878.6 880.3 882.2 91.00 91.25 865.5 867.3 869.4 871.3 873.0 876.9 878.6 880.5 882.3 91.27 91.50 865.6 867.7 869.5 871.4 873.3 875.2 877.4 879.4 881.0 882.5 91.7 92.00 866.6 866.7 869.7 871.6 873.3 875.3 877.4 879.4 881.0 882.7 91.7 92.25 866.3 868.3 870.0 871.9 873.8 877.7 879.4 881.5 883.3 92.25 92.50 866.8 868.7 870.4 872.2 874.4 876.3 878.2 880.1 883.3
91.00 865.3 867.2 860.0 870.3 874.7 876.5 878.4 880.7 882.2 91.0 91.00 865.3 867.2 869.2 871.3 873.0 874.8 876.5 878.8 880.5 882.2 91.2 91.50 865.8 867.7 869.2 871.3 875.0 876.9 878.8 880.6 882.2 91.2 91.75 865.8 867.7 869.5 871.4 873.3 875.2 877.0 878.8 880.6 882.7 91.7 92.00 866.0 867.8 869.7 871.6 873.6 875.5 877.4 881.0 882.7 91.7 92.00 866.3 868.2 870.0 871.4 873.6 877.5 879.4 881.3 883.2 92.50 92.50 866.3 868.1 870.4 872.6 874.4 876.3 878.0 879.7 881.6 883.6 93.25 93.50 866.9 868.8
91.25 865.3 867.3 867.3 874.8 876.7 878.6 880.5 882.3 91.25 91.50 865.5 867.7 869.4 871.1 873.0 876.7 878.5 880.5 882.3 91.25 91.50 865.5 867.7 869.5 871.4 873.3 875.2 877.0 878.5 880.8 882.7 91.75 92.00 866.0 867.8 669.9 871.7 873.6 875.5 877.4 879.2 881.1 883.0 92.27 92.50 866.3 868.2 870.0 871.9 873.8 875.7 877.4 879.4 881.3 883.0 92.75 92.50 866.8 868.7 870.4 872.2 874.1 876.0 877.7 879.6 881.3 883.2 92.75 93.00 866.8 868.7 870.4 872.2 874.4 876.2 878.2 880.1 881.9 883.5 93.00 93.75 867.1
91.50 867.5 867.5 871.3 873.3 875.9 876.9 876.8 880.5 882.5 91.77 92.00 866.0 867.7 869.5 871.4 873.3 875.2 877.0 879.1 881.0 882.5 91.77 92.00 866.0 867.8 869.7 871.6 873.5 877.2 879.1 881.0 882.8 92.02 92.25 866.1 868.0 869.9 871.7 873.8 875.7 877.6 879.4 881.3 883.3 92.25 92.50 866.5 868.3 870.2 877.1 879.6 881.5 883.3 92.25 93.00 866.6 868.3 870.4 872.2 874.4 876.2 879.9 881.8 883.3 93.25 93.50 866.9 868.8 870.7 872.6 874.4 876.2 878.4 880.2 882.1 884.3 93.25 93.50 866.9 867.8 869.2 871.
91.75 885.8 887.7 869.5 871.4 873.5 875.2 877.0 878.5 880.8 882.7 91.75 92.00 \$866.0 867.8 869.7 871.6 873.5 875.2 877.0 878.5 880.8 882.7 91.75 92.50 866.1 866.0 866.2 870.0 871.5 873.6 875.5 877.7 879.1 881.3 883.0 92.25 92.50 866.1 866.2 870.0 871.5 873.6 875.5 877.7 879.6 881.3 883.3 92.55 92.75 866.5 868.2 870.4 872.4 874.3 876.0 877.9 881.6 883.5 93.25 93.25 866.8 885.7 870.5 872.4 874.6 876.5 878.0 881.6 883.6 93.25 93.50 866.9 868.8 870.7 872.6 874.4 876.5 878.4 880.4 882.1 884.8 93.50
92.00 866.0 867.8 869.7 871.6 873.5 877.2 877.2 879.2 881.0 882.8 92.00 92.25 866.1 868.2 870.0 871.9 873.8 875.5 877.4 879.2 881.1 883.0 92.21 92.50 866.3 868.2 870.0 871.9 873.8 877.7 879.4 881.3 883.2 92.21 93.00 866.6 668.3 870.2 872.1 873.8 877.7 879.6 881.5 883.3 92.71 93.00 866.6 668.8 870.4 872.2 874.1 876.2 877.0 879.9 881.8 883.6 93.00 93.50 866.9 688.8 870.7 872.6 874.4 876.2 878.4 880.2 882.1 883.8 93.50 93.50 867.5 869.3 871.2 873.1 874.8 880.7 882.3 884.1 94.20 94.50 867.6 869.
92.25 866.1 868.0 869.0 871.3 873.6 875.5 877.4 879.2 881.1 883.0 92.25 92.250 866.3 868.2 870.0 871.9 873.8 875.7 877.4 879.4 881.3 883.2 92.25 92.75 866.5 868.3 870.4 872.2 874.1 876.6 879.6 881.5 883.3 92.27 93.00 866.6 868.7 870.4 872.2 874.4 876.2 877.9 879.6 881.8 883.5 93.27 93.55 866.7 869.0 870.5 872.7 874.4 876.3 878.2 880.1 881.8 833.8 93.27 94.00 867.3 869.0 871.0 872.7 874.8 876.6 878.7 880.6 882.4 884.3 94.20 94.57 867.5 869.3 871.4 873.2 875.4 877.3 879.2 881.0 882.4 884.3 94.20
92 50 866.3 868.2 871.0 871.9 873.8 875.7 877.5 879.4 881.3 883.2 92.50 92 75 866.5 868.3 870.2 872.1 873.9 875.8 877.7 879.6 881.5 883.3 92.75 93 00 866.6 868.1 870.4 872.2 874.1 876.0 877.9 879.9 881.8 883.6 93.25 93 25 866.8 868.7 870.5 872.4 874.3 876.2 878.0 879.9 881.8 883.6 93.25 93 35 567.1 869.0 870.7 872.6 874.4 876.3 878.4 880.1 881.9 833.8 93.50 94 00 867.3 869.2 871.0 872.9 874.8 876.6 878.4 880.4 882.4 884.1 94.00 94 25 867.6 869.8 871.7 875.3 877.1 879.0 880.4 884.19 94.00 94.
92.75 866.5 868.3 870.2 872.1 873.9 875.8 877.7 879.6 881.5 883.3 92.75 93.00 866.6 668.1 870.4 872.2 874.1 876.0 877.9 881.6 883.5 93.25 93.50 866.8 668.7 870.7 872.6 874.4 876.2 878.0 879.9 881.8 883.6 93.25 93.50 866.9 668.8 870.7 872.6 874.4 876.5 878.4 880.2 881.9 833.8 93.50 94.00 867.3 869.2 871.0 872.9 874.8 876.6 878.7 880.4 882.1 884.1 94.09 94.50 867.6 669.3 871.4 873.3 875.3 877.1 880.6 882.4 884.5 94.50 94.50 867.8 860.7 871.4 873.3 875.3 877.1 879.0 880.9 882.8 884.6 94.50 94.5
93.00 866.6 868.5 870.4 872.2 874.1 876.0 877.9 879.7 881.6 883.5 93.00 93.25 866.8 868.7 870.5 872.4 874.3 876.2 878.0 879.9 881.8 883.6 93.25 93.50 866.9 868.8 870.7 872.6 874.4 876.2 878.4 880.2 881.9 883.8 93.55 93.75 867.1 869.0 870.9 872.7 874.6 876.5 878.4 880.2 882.1 884.0 93.75 94.00 867.5 869.3 871.1 873.2 875.1 877.7 880.4 882.3 884.1 94.02 94.50 867.6 869.3 871.1 873.2 875.1 877.1 879.2 880.7 882.8 884.5 94.50 94.50 867.6 869.8 871.1 873.6 877.1 879.2 881.0 882.8 84.5 94.50 94.50
93.25 866.8 868.7 870.5 872.4 874.3 876.2 878.0 879.9 881.8 883.6 93.22 93.50 866.9 986.8 870.7 872.6 874.4 876.3 878.2 880.1 881.9 883.8 93.50 93.57 867.1 869.0 870.7 874.6 876.5 878.4 880.1 881.9 883.8 93.50 94.00 867.3 869.0 871.0 872.9 874.8 876.6 878.4 880.4 882.3 884.1 94.00 94.50 867.5 869.0 871.1 873.4 875.3 877.1 879.0 880.6 882.4 84.3 94.25 94.50 867.6 867.8 870.0 871.5 873.4 875.3 877.1 879.0 880.9 882.4 84.4 94.50 95.00 868.0 867.0 871.7 875.6 877.3 879.3 881.4 883.2 884.4 94.50
93.50 866.9 868.8 870.7 872.6 874.4 876.3 878.2 880.1 881.9 883.8 93.50 93.75 867.1 869.0 870.9 872.7 874.6 876.5 878.4 880.2 882.1 884.0 93.75 94.00 867.3 869.2 871.0 872.9 874.8 876.5 878.5 880.4 882.1 884.1 94.00 94.25 867.5 869.2 871.1 873.2 875.1 877.0 878.5 880.7 882.4 884.3 94.22 94.50 857.6 869.7 871.4 873.5 875.4 877.1 879.0 880.9 882.2 884.6 94.72 95.00 868.0 869.7 871.7 873.6 875.8 877.6 879.3 881.2 883.1 884.9 95.27 95.50 868.3 870.2 873.6 875.8 877.6 879.7 881.4 883.2 885.1 95.50
93.75 867.1 869.0 870.9 872.7 874.6 876.5 878.4 880.2 882.1 884.0 93.77 94.00 867.3 869.2 871.0 872.9 874.8 876.6 878.5 880.4 882.3 884.1 94.00 94.25 867.5 869.3 871.2 873.1 874.9 876.8 878.7 880.4 882.3 884.1 94.00 94.50 867.6 869.3 871.1 873.2 875.1 877.0 878.8 880.7 882.4 884.5 94.50 94.50 867.6 869.7 871.4 875.3 877.1 879.2 881.0 882.8 884.6 94.75 95.05 868.1 870.0 871.9 873.7 875.6 879.7 881.4 883.2 884.9 95.02 95.50 868.3 870.2 874.4 875.8 877.6 879.7 881.5 883.4 885.3 96.75 96.00 868.
94.00 867.3 869.2 871.0 872.9 874.8 876.6 878.5 880.4 882.3 884.1 94.00 94.25 867.5 869.3 871.2 873.1 874.9 876.8 878.7 880.6 882.4 884.3 94.00 94.55 867.6 869.5 871.4 873.2 875.1 877.0 880.6 882.4 884.3 94.25 94.75 867.8 869.5 871.4 873.2 875.1 877.0 880.6 882.4 884.5 94.77 95.00 868.0 860.7 871.7 875.4 877.3 879.2 881.0 882.9 884.8 94.77 95.00 868.1 870.0 871.9 873.7 875.4 877.3 879.3 881.2 883.1 884.9 95.27 95.50 868.3 870.2 872.4 874.2 875.1 879.5 881.4 883.3 98.5 96.57 96.50 868.8 870.6
94.25 867.5 869.3 871.2 873.1 874.9 876.8 878.7 880.6 882.4 884.3 94.21 94.50 867.6 869.7 871.4 873.2 875.1 877.0 878.8 880.7 882.6 884.5 94.21 94.50 867.6 869.7 871.1 873.2 875.1 877.0 878.8 880.7 882.6 884.5 94.50 94.75 867.8 869.7 871.1 873.6 875.4 877.3 879.0 880.7 882.8 884.6 94.70 95.00 868.0 869.7 871.7 873.6 877.6 879.0 881.0 882.9 884.8 95.00 95.75 868.5 870.2 872.4 875.8 877.6 879.5 881.4 883.3 885.3 95.75 96.00 886.8 870.2 872.4 874.2 876.1 879.0 881.7 883.6 885.3 95.75 96.50 868.8 870.6 872.4
94.50 87.5 887.5 875.1 877.0 878.8 880.7 882.6 884.6 94.50 94.75 867.8 869.7 871.4 875.3 877.1 879.0 880.5 882.6 884.6 94.75 95.00 886.0 869.8 871.7 875.3 877.1 879.2 881.0 882.8 884.6 94.75 95.00 886.0 867.2 871.7 873.6 875.4 879.2 881.0 882.8 884.6 94.52 95.50 868.3 870.2 877.0 875.8 877.6 879.7 881.4 883.2 881.1 95.52 95.50 868.5 870.3 872.2 874.0 875.9 879.7 881.5 883.4 885.3 95.75 95.50 868.6 870.5 872.4 874.2 876.1 879.7 881.5 883.4 885.3 95.75 96.00 868.6 870.5 872.4 874.2 876.1 879.8
94.75 867.8 869.7 871.5 873.4 875.3 877.1 879.0 880.9 882.8 884.6 94.75 95.00 868.0 869.8 871.7 875.4 877.3 879.2 881.0 882.9 884.8 95.07 95.25 868.1 870.0 871.9 873.7 875.6 877.3 879.3 881.2 883.1 884.9 95.27 95.50 868.3 870.0 877.2 875.9 877.6 879.3 881.5 883.4 885.3 95.57 95.50 868.5 870.3 872.2 874.4 875.9 877.8 879.7 881.5 883.4 885.3 96.57 96.00 868.6 870.6 872.7 874.4 876.3 878.1 880.0 881.9 883.7 885.6 96.27 96.50 868.9 870.6 872.7 876.4 876.3 880.2 884.1 885.9 96.75 96.50 869.3 871.
95.00 886.0 869.8 871.7 875.4 877.3 879.2 881.0 882.9 884.8 95.00 95.25 868.1 870.0 871.7 873.6 877.6 877.3 879.2 881.2 883.1 884.9 95.00 95.50 868.3 870.2 877.3 875.6 877.5 879.5 881.2 883.1 884.9 95.00 95.50 868.3 870.3 872.2 874.0 875.9 877.8 879.5 881.5 883.4 885.3 95.75 96.00 886.8 870.5 872.4 874.1 876.1 870.8 881.7 883.6 885.4 96.07 96.50 868.8 870.6 872.4 874.4 876.3 878.1 880.0 881.9 883.6 885.6 96.27 96.50 868.9 870.8 872.7 874.4 876.3 880.2 882.9 884.8 96.07 96.50 869.3 871.1 873.
95.25 868.1 870.0 871.9 873.7 875.6 877.5 879.3 881.2 883.1 884.9 95.25 95.50 868.3 870.2 872.0 873.9 875.8 877.6 879.5 881.4 883.2 885.1 95.55 95.50 868.5 870.3 872.2 874.0 875.9 877.6 879.7 881.5 883.4 885.3 95.75 96.00 868.6 870.5 872.4 876.3 878.1 880.0 881.7 883.6 885.4 96.00 96.50 868.8 870.6 872.5 874.4 876.3 878.1 880.0 881.9 883.7 885.6 96.50 96.50 869.8 870.8 872.7 874.5 876.4 878.3 880.2 883.9 885.9 96.50 96.50 869.1 871.0 872.9 874.7 876.6 878.4 880.3 882.2 884.1 885.9 96.50 97.5
95.50 868.3 870.2 873.9 875.8 877.6 879.5 881.4 883.2 885.1 95.50 95.75 868.5 870.3 872.2 874.0 875.8 877.6 879.7 881.5 883.2 885.1 95.50 95.00 868.6 870.3 872.2 874.0 875.8 879.7 881.5 883.4 885.3 95.71 96.00 868.6 870.5 872.4 874.2 876.1 879.7 881.5 883.4 885.3 96.75 96.50 868.9 870.8 872.7 874.5 876.4 878.3 880.2 883.0 885.8 96.75 96.50 869.1 871.0 872.9 874.7 876.6 878.4 880.3 882.0 883.4 885.3 96.57 96.75 869.1 871.0 873.2 876.7 876.8 880.6 882.7 884.4 886.3 97.70 97.50 869.4 871.3 873.
95.75 886.5 870.3 872.2 874.0 875.9 877.8 879.7 881.5 883.4 885.3 95.75 96.00 868.6 870.5 872.2 874.2 876.1 878.0 879.8 881.5 883.4 885.4 96.70 96.25 868.6 870.6 872.5 874.4 876.3 880.0 881.7 883.6 885.4 96.70 96.50 868.9 870.8 872.7 874.5 876.4 878.3 880.2 883.7 885.6 96.50 96.75 869.1 871.0 872.7 874.5 876.6 876.4 880.3 882.2 884.1 885.9 96.50 96.75 869.1 871.1 873.0 874.9 876.7 876.6 880.5 882.4 886.1 97.05 97.00 869.6 871.1 873.3 875.2 877.1 878.9 880.6 882.7 884.6 886.4 97.55 97.50 869.
96.00 886.6 870.5 874.4 874.2 876.1 878.0 879.8 881.7 883.5 885.4 96.02 96.25 868.8 870.6 872.5 874.4 876.3 878.1 880.0 881.9 883.7 885.6 96.22 96.50 868.9 870.8 872.7 874.5 876.4 878.3 880.2 883.9 883.7 885.6 96.22 96.50 868.9 870.8 872.7 874.5 876.4 878.3 880.2 883.9 885.8 96.57 97.00 869.3 871.1 873.0 874.9 876.7 878.6 880.5 882.4 884.1 885.9 96.75 97.50 869.4 871.3 873.2 875.0 876.9 878.8 880.6 882.7 884.6 886.4 97.50 97.50 869.6 871.5 873.3 875.2 877.1 879.9 881.0 882.7 884.6 886.4 97.50
96.25 868.8 870.6 872.5 874.4 876.3 878.1 880.0 881.9 881.37 885.6 96.52 96.50 868.9 870.8 872.7 874.4 876.3 878.1 880.2 881.9 883.7 885.6 96.52 96.50 869.1 871.0 872.9 874.7 876.6 878.4 880.2 882.0 883.7 885.8 96.57 97.00 869.3 871.1 873.0 874.7 876.6 878.4 880.2 882.4 884.1 885.9 96.75 97.50 869.4 871.3 873.2 875.0 876.9 878.8 880.6 882.5 884.4 886.3 97.20 97.50 869.6 871.5 873.3 875.2 877.1 878.8 880.6 882.5 884.4 886.3 97.20 97.50 869.8 871.6 873.5 877.4 879.3 881.1 883.0 886.3 97.57 98.
web.01 sec.91 s70.8 s77.2 s74.51 s76.4 s78.3 s80.2 s82.0 s83.9 s88.5 96.57 96.75 869.1 871.0 874.7 876.6 878.4 880.3 s82.2 s84.1 s85.9 96.75 97.00 869.3 871.1 873.0 874.7 876.6 878.4 880.3 s82.2 s84.1 s85.9 96.75 97.00 869.3 871.1 873.2 875.0 876.9 878.8 880.5 s82.2 s84.4 s86.3 97.25 97.50 869.6 871.5 873.3 875.2 877.1 878.9 880.6 882.7 s84.6 886.3 97.55 97.50 869.6 871.6 873.3 875.4 877.2 879.1 881.0 882.7 886.6 97.55 98.00 869.9 871.6 873.7 875.5 877.4 879.3 881.1 883.0 884.9 886.7 98.65 98.05 <
ye.roj ceu.1 871.0 874.9 874.7 876.6 876.4 880.3 882.2 884.1 880.9 96.7 97.00 869.3 871.1 873.0 874.9 876.7 876.6 880.5 882.4 884.1 885.9 96.7 97.00 869.3 871.1 873.0 874.9 876.7 876.6 880.5 882.4 884.2 886.1 97.00 97.50 869.6 871.3 873.2 875.0 876.9 876.8 880.6 882.4 886.3 97.25 97.50 869.6 871.5 873.3 875.2 877.1 878.9 880.6 882.7 884.6 886.6 97.55 98.00 869.8 871.6 873.7 875.5 877.4 879.3 881.1 883.3 886.6 97.55 98.00 869.9 871.8 873.7 875.5 877.4 879.4 881.1 883.3 886.9 98.25 98.50 870.3
97.50 600.3 671.3 673.0 674.3 676.7 676.6 580.0 682.4 884.2 886.1 97.00 97.50 869.6 871.3 873.2 875.0 876.9 878.8 880.6 882.7 884.6 886.3 97.20 97.50 869.6 871.3 873.3 875.2 877.1 878.8 880.6 882.7 884.6 886.4 97.50 97.75 869.8 871.6 873.5 877.4 877.2 879.1 881.0 882.7 884.6 886.4 97.50 98.00 869.9 871.8 873.5 877.4 879.3 881.1 883.0 884.7 886.6 97.75 98.00 882.8 884.7 886.6 97.75 98.00 882.7 884.7 886.6 97.75 98.00 882.8 881.7 885.0 886.7 98.00 98.25 870.1 87.0 98.00 882.8 881.3 883.2 885.0 98.20 98.20
97.20 869.4 871.3 873.2 875.0 874.9 878.8 880.8 882.5 884.4 888.3 97.22 97.50 869.6 871.5 871.3 875.2 877.1 878.9 880.8 882.5 884.4 886.3 97.22 97.75 860.8 871.5 871.5 877.4 879.3 886.9 882.7 884.6 886.4 97.55 98.00 860.9 871.8 873.5 877.4 879.3 881.0 882.8 884.7 886.6 97.75 98.00 860.9 871.8 873.7 877.5 877.4 879.3 881.1 883.0 884.9 886.7 98.09 98.25 870.1 872.0 873.8 875.7 877.6 879.6 881.3 883.2 885.0 886.7 98.09 98.25 885.0 887.1 98.50 870.3 877.2 877.9 879.8 881.5 883.3 885.2 887.1 98.50 98.75 870.4
97.50 682.71 673.3 675.21 677.11 876.9 882.71 682.71 684.8 884.8 97.71 97.75 869.8 871.6 873.51 875.4 877.2 879.1 881.0 882.71 684.8 884.7 886.6 97.71 98.00 869.9 871.8 873.7 875.5 877.4 879.3 881.1 883.0 884.9 886.7 98.00 98.25 870.1 872.0 873.8 875.7 877.6 879.4 881.3 883.2 885.0 886.9 98.25 98.50 870.3 872.1 874.0 875.9 877.7 879.6 881.5 883.3 885.2 887.1 98.50 98.50 870.4 872.3 874.2 877.9 879.6 881.6 883.5 885.4 887.2 98.75 98.00 870.6 874.3 876.2 878.1 879.9 881.8 883.7 885.4 887.4 99.00
98.00 869.9 871.8 871.8 875.7 875.5 877.4 879.3 881.1 883.0 884.9 886.7 98.00 98.25 870.1 872.0 873.8 875.7 877.6 879.4 881.3 883.2 885.0 886.9 98.0 98.50 870.3 872.1 874.0 875.9 877.7 879.6 881.5 883.3 885.2 887.1 98.0 98.75 870.4 872.3 874.2 876.0 877.9 879.8 881.6 883.5 885.4 887.2 98.75 99.00 870.6 872.5 874.3 876.2 878.1 879.9 881.8 883.7 885.5 887.4 99.00
98.25 870.1 872.0 873.8 875.7 877.6 879.4 881.3 883.2 885.0 886.9 98.22 98.50 870.3 872.1 874.0 875.9 877.7 879.6 881.5 883.3 885.2 887.1 98.50 98.75 870.4 872.3 874.2 876.0 877.9 879.8 881.6 883.5 885.4 887.2 98.75 99.00 870.6 872.5 874.3 876.2 878.1 879.9 881.8 883.7 885.5 887.4 99.00
98.50 870.3 872.1 874.0 875.9 877.7 879.6 881.5 883.3 885.2 887.1 98.50 98.75 870.4 872.3 874.2 876.0 877.9 879.8 881.6 883.5 885.4 887.2 98.75 99.00 870.6 872.5 874.3 876.2 878.1 879.9 881.8 883.7 885.5 887.4 99.00
98.75 870.4 872.3 874.2 876.0 877.9 879.8 881.6 883.5 885.4 887.2 98.75 99.00 870.6 872.5 874.3 876.2 878.1 879.9 881.8 883.7 885.5 887.4 99.00
99.00 870.6 872.5 874.3 876.2 878.1 879.9 881.8 883.7 885.5 887.4 99.00
99.25 870.8 872.6 874.5 876.4 878.2 880.1 882.0 883.8 885.7 887.5 99.25
99.50 870.9 872.8 874.7 876.5 878.4 880.3 882.1 884.0 885.8 887.7 99.50
99.75 871.1 873.0 874.8 876.7 878.5 880.4 882.3 884.1 886.0 887.9 99.75
100.00 871.3 873.1 875.0 876.8 878.7 880.6 882.4 884.3 886.2 888.0 100.00
100.25 871.4 873.3 875.1 877.0 878.9 880.7 882.6 884.5 886.3 888.2 100.25
100.50 871.6 873.5 875.3 877.2 879.0 880.9 882.8 884.6 886.5 888.4 100.50
100.75 871.8 873.6 875.5 877.3 879.2 881.1 882.9 884.8 886.7 888.5 100.75
101.00 871.9 873.8 875.6 877.5 879.4 881.2 883.1 885.0 886.8 888.7 101.00

Figura 11. Tabla 53^a, corrección generalizada densidad de aceites crudos a 60°F.

Fuente: ASTM. Normas ASTM, table 53, corrección generalizada de densidad de aceites crudos a 60°F. Consultado en septiembre del 2018.